Distributed Processes and Location Failures

(Extended Abstract)

James Riely and Matthew Hennessy

Abstract

Site failure is an essential aspect of distributed systems; nonetheless its effect on
programming language semantics remains poorly understood. To model such systems,
we define a process calculus in which processes are run at distribatgbns The
language provides operators to kill locations, to test the status (dead or alive) of loca-
tions, and to spawn processes at remote locations. Using a variation of bisimulation,
we provide alternative characterizations of strong and weak barbed congruence for
this language, based on an operational semantics thatcoséigurationsto record
the status of locations. We then derive a second, symbolic characterization in which
configurations are replaced by logical formulae. In the strong case the formulae come
from a standard propositional logic, while in the weak case a temporal logic with past
time modalities is required. The symbolic characterization establishes that, in princi-
ple, barbed congruence for such languages can be checked efficiently using existing
techniques.

1 Introduction

Many semantic theories have been proposed for concurrent processes []. Although
these theories have been fruitfully applied to the analysis of some distributed systems, for
the most part they ignore an essential feature of such systems, namebistréaution

As a simple example consider two implementations of a client-server application in
which the client can demand an interactive service provided by the server, such as pre-
viewing or updating a document. In one implementation (System A) the server spawns
a process to handle the document at its own site, the remote location, and the client pre-
views the document remotely. In the other (System B) the server sends a process, including
the document, to the client site, and the client previews the document locally. Using the
semantic theories mentioned above it would be difficult to distinguish between these im-
plementations, as the only difference between them is the location at which activity occurs.
We aim to develop a usefextensionatheory of systems which would take this type of
property into account.

*Research funded by EPSRC project GR/K60701. Authors’ address: School of Cognitive and Computing
Sciences, Univ. of Sussex, Falmer, Brighton, BN1 9QH, Ykamesri,matthewh}@cogs.susx.ac.uk
Acknowledgement: We thank Flavio Corradini and Alan Jeffrey; both made important comments and sug-
gestions in the early stages of this work.

In [8, 20, 10] such theories have been proposed. All of these theories, however, are
based on a very strong assumption: that an observer, or user, can determine the location at
which every action is performed. Here we start from a weaker premise: that in distributed
systems sites are liable failure. The model of failure we have adopted ifad stopmodel
in which failures are independent of each other and the number of failures that can occur
is unbounded. Assuming that sites can falil, it is easy to see that Systems A and B, outlined
above, are indeed different: if, after the client has begun interaction with the document, a
failure occurs at the remote site, then in System A the client deadlocks, while in System B
it can continue operation unaffected.

Our work is motivated by the papers [LZ]. In these papers, distributed languages with
location failures are defined and shown to be very expressive. In both of these papers, the
semantics is based drarbed equivalengevhich requires quantification over all program
contexts and thus is difficult to use directly. In each of the cited works, the authors provide a
translation from their language into a simpler (non-distributed) language and prove that the
translations are adequate or fully abstract in some sense. While these translations provide
theoretical results about the relative expressiveness of distributed and interleaving calculi,
they are sufficiently complicated to make reasoning about examples, even simple ones, very
difficult.

By restricting attention to an asynchronous language, Amagiitgs recently improved
on the results of4], providing simpler translations. Although our work developed inde-
pendently of {], the language we study has much in common with the language developed
there. The main difference is that our language has no value-passing, allowing us to con-
centrate on the effects of location failure and simplifying the statement of many of our
results. Since the issues raised by failures and value passing are largely independent, this
paper may be seen as providing two extensional views of a language similar to Amadio’s;
the first of these is concrete, as is his translation, the second is more abstract.

In Section2, we consider a simple language focated processdsased on purecs
[18], with which we assume familiarity. For examg& p), is a process located &tvhich,
if ¢ is alive, may perform the actioa and then behave g9),. In addition to the usual
operators ofccswe have the following new operatorspawn(¢, p) which starts process
p running at locatior?; kill£.p which, if location/ is alive, kills ¢ (with the result that
any process located 4is deactivated) and then behavegpaandif ¢ then p else q which
silently evolves to eithep or g, depending on whethéeris alive or dead when the test is
performed.

We give an operational semantics for this language in terms of a labelled transition sys-
tem. The judgments depend on alsgtf live locations, and are of the forbn-P +% L' P,
whereP andP’ are located processes ands either a visible action, which permits syn-
chronization, or the internal action To decide on an appropriate equivalence between
process terms we follow the approach advocated ih [We define both strong and weak
barbed equivalence between processeand~. We then dictate that the required equiva-
lence, which we refer to dsarbed bisimulation equivalences defined (for example in the
weak case) a® ~ Q if and only if for every suitable conteft| |, C[P] ~ C[Q]. Although
this may be reasonabile, it is not a very useful definition; the reader is invited to determine
whether the following pairs of processes should be equivalent or distinguished.

P = \a P> = [(if kthen a else nil), | (O.a),] \a
QL = \a Q2 = (spawn(k,a)),

In Section3 we define two bisimulation-based relations, strong and weatated-
Failure equivalencéLF-equivalencgand show that these coincide with the indirectly de-
fined barbed congruences. Since LF-equivalence is defined using bisimulations, the prob-
lem of deciding that two systems are semantically congruent can, in principle, be solved
using standard proof techniques associated with bisimulatigin However, constructing
an LF-bisimulation requires that one consider the behavior of the systems under all possi-
ble sequences of kills, by both the systems themselves and the environment. The number
of states that must be explored may be exponentially larger than the number needed to
construct accsbisimulation.

In Section4 we use the ideas ofL[] to give alternativesymboliccharacterizations
of LF-equivalence that can be decided using a much smaller state space. The idea is to
replace the operational judgmerts P~ L'>P" with judgments of the fornP —- P,
whereg is a logical formula that describes the circumstances under which the actiam
be performed. In the strong case the required logic is straightforward: a propositional logic
that describes the state (dead or alive) of the sites in the system. In the weak case, however,
we require a more complicated logic that can express statements of thesiterfrwas
alive at some point in the pastJsing these symbolic transitions, the standard definition
of symbolic bisimulatioi15] requires only minor modification to captureand~; hence
the symbolic proof techniques and tools at] may be used to check the new semantic
equivalences proposed in this paper.

In this extended abstract we have omitted several formal definitions and all proofs. The
full version [21] includes additional results and examples, including a discussion of basic
processes and comparisons with other equivalences.

(a), | (@ +T.a)
(o +1),| (@.a)

2 The Language

The syntax of processes is parameterized with respect to several syntactic sets. We assume
a setLoc of locations k ¢, m, a setPConstof process constants ésed to define recursive
processes, and a s&tt of communication actions,d, ¢, such that every actioa € Act

has a complemerat € Act (~ is a bijection onAct). The setAct; = Actu {1} of actionsa

includes also the distinguishedent actiont. The formal syntax is as follows. Most of the
operators should be familiar froocs all of the new constructs have been described in the
introduction.

p,q(€BProc) ::= a.p |spawn(f,p) | killl.p | if £then pelseq | A | Sici b
| pla | p\a | pf]
PQ(eLProc) = P|Q |P\a | P[f] | (p),
We have adopted a two-level syntax which distinguishes betWwasioprocessep and
locatedprocesse®. Intuitively, a basic process corresponds to what one normally thinks

of as aprocess a collection of threads of computation that must be run at a single site. A
located process, instead, correspondsdasaibutionof basic processes over several sites.

3

Note that many basic processes may be located at a single site, and a basic process may
share a private channel (unknown to other basic processes running at the same site) with a
remote process.

The ability of a process to perform an action is dependent on the set of live locations,
and consequently the transition relation determining the operational semantics is defined
betweerconfigurations A liveset Lis any subset ofoc. A configuration(L>P) is a pair
comprising a liveselt and a located process tefn The set of all configurations Sonfig
ranged over b andD.

In giving the intensional semantics of processes, it will be convenient for later devel-
opment if we distinguish executions of the operatdi/.p depending upon whethéris
alive or dead at the time of execution. To capture this distinction, we extend the set of ac-
tions to the seKAct= ActU {kill | ¢ € Loc}, which includes théill actions kill¢. Unless
otherwise specified) ranges oveKAct; = KActU {t1}. In Table1 we define the transi-
tion relation(—-) C Configx Config The definition uses the following simple structural
equivalence on processes:

(pla), = (P, l(A), (P\a), = (p),\a (p[f]), = (P)[f]

While the transition relatior— distinguishes effective kill actions from those that have
no effect, a basic tenet of our study is that the precise moment of location failure should be
unobservable. Thus we extract from- a transition relatiom— in which all kill actions
have been replaced with silent actions. It is this derived relatienthat we take to be
fundamental.

Definition 1 (—). c&Ciff c-&C O
Cc-LC iff C-C or3k: Cc Xk, ¢

Most of the rules inTable 1 are straightforward, being inherited directly froots,
modulo the constraint that the procggs, can only move if¢ is alive. Note that the
three new operators — Kkill, spawn and the conditional — are modeledrassitions; this
reflects the fact that in a distributed system the implementation of these operators would
involve some computation and thus the passage of some time.

We now discuss the problem of defining an appropriate semantic equivalence for lo-
cated processes, based on the transition relatienAn obvious possibility is to adapt the
bisimulation equivalences afcs[18]. (Strong)ccs-bisimulationis the largest symmetric
relation~<¢ on configurations such that whene@#¢-<=* D andC %+ C’ there exists ®’
such thatD % D" andC’ << D’. A weak version of this relationsz=, can be obtained
by adapting this definition to theeaktransition relation—=>, defined as usual. To see that
ccshbisimulation is not suitable for our language, for example is not a congruence, con-
sider the processés = [(a.a),| (0),] \a andQs = [(a),| (a.a), | \a. Ps ~°= Qs, butPs
andQs can be distinguished by a context that kills locattoit this kill action is performed
after the initial communication oa.

The use of~ for ccs has been justified in2[] by the fact that it coincides with
the congruence obtained from a simple notion of observation chiéoed bisimulation
Similar results have been obtained for lazy and eager functional languagés{], giving
further evidence for the reasonableness of this approach. Roughly, two processes are barbed

4

Table 1 Transition system with configurations (symmetric rules|fomitted)

Act.) L>(a.p), %L (p), if Cel
Spawnc) L (spawn(k,p)), = L>(p), if €L

Killle) Lo (kitmp), KM, |\ {m}>(p), if fel,mel

Kill2.) Lo (kilmp), & L>(p), if fel,mégL

Condlc) Li(if mthen pelseq), ——L>(p), if f€lL,melL

Cond2.) Loi(if mthen pelseq), > L>(q), if (el mgL

Sume) Lo (Zier Py = Lo (P 1 Lo (py)y 5 L' (P, j €1
Def,) L>(A), - L'>(p), if L>(p)€J‘—>L’|>(p)k,A p
Stre) LoP S LsQ if P=P.LoP 5 1UbQ,Q=0Q
Par.) LoP|Q-E LU'sP |Q if LoP-ELUnP
Comm,) LoP|Q S LUpP|Q if LeP-3LUsP,LbQ-3LpQ
Restr,) LeP\a-% LU'pP\a if LeP-YLUsP u¢{aa}

)

LoP[f] 18, /sP[f] i LoP S LUnP

bisimilar if every silent transition of one can be matched by a silent transition of the other

in such a way that the derived states are capable of exactly the same observable actions;
in addition, the derived states must also be barbed bisimilar. For our language, the formal
definition is as follows.

Definition 2 (Barbed bisimulation). Weakbarbed bisimilarity(=) is the largest symmet-
ric relation over configurations such that whene@ex D (a)C C’ implies that for
someD’, D & D’ andC' ~ D; and (b) for everya, C -2 impliesD 2. Strong barbed
bisimilarity (~) is obtained by replacing=- by — everywhere in the definition. O

Barbed bisimulation is a very weak relation; for example, it is not preserved by parallel
composition. However, by closing over all contexts we arrive at a reasonable semantic
equivalence that by definition enjoys an important property, namely that it is a congruence.

Definition 3 (Barbed equivalence).Located processddandQ are (weakparbed equiv-
alent (P ~ Q) if for every contextC|[| such thatC[P] and C[Q] are configurationsC[P]
~ C[Q]. Strong barbed equivalen¢e) is obtained in the same manner frem O

Because it requires quantification over all contexts, barbed equivalence is difficult to use
directly. For example the procesd@sandQ, given in the introduction, are distinguished
by ~ wheread? andQ, are identified; it is far from obvious why. Even worse, processes
Ps andQs (given inSection3) are related, although establishing this fact requires that one
prove thatP; andQq arerelatedunder the assumption théats alive at the timd?, andQ;
are compared, that ig,is initially alive.

We end this section with some additional, simpler examples. The prodegsed),
and(b), | (a), can be distinguished by a context that killsThe same context can be used

5

to distinguish the basic processpswn(¢,a) andspawn(k,a), regardless of where they are
located. These examples indicate that although the location of an action is not reflected
directly in the operational semantics they do impinge on the behavior of processes. The
order in which kill actions are executed is also significant. For examiplkekillk can be
distinguished fronkillk.kill £ using the proces&), | (b),.

3 Located-Failures Equivalence

In this section and the next, we provide alternative characterizations of barbed equivalence
for our language. Note that if>P ¥ L'>P, thenl’ is determined by. and. To
emphasize this, we adopt the following notation. For each agtiave define a function
“iafter,” which reflects the immediate effect of actipnon a liveset. We also define the
reIationsJIf—> and% on process terms, which capture the capability of actiamder
livesetL.

e (L) 2 JEVKD, i p=Killk PP & LoP s iafter,(L)>P'
aten(L) = L, if ue Actu{t,e} | P=> P & LoP =L iafter,(L)>P

For example, iaftef(L) = L for any a, and iafteg (({¢,k}) = {k}. If P = (a.a),|(T),,
thenP Ti—ak—f nil, butP has noa-transition under the livesdk}.
We first present the strong case.

Definition 4 (Strong LF-equivalence). Let 8 = {8, }, | o be an indexed family of rela-
tions onLProc. § is astrongLF-bisimulationif for everyL, § is symmetric and whenever

PSLQ:
(@) P~ P'implies3Q": Q - Q andP’ 8jafter, 1) Q'
(b) foreverykelL P3pg Q
P andQ are strong LFequivalent under I(P ~| Q) if there exists a strong LF-bisimulation

Swith PS_ Q.
P andQ are strong LFequivalent(P ~ Q), if P~ Q for every subsei of Loc. O

In the full paper, we prove that and ~ coincide. The alternative characterization
of weak barbed equivalence is more complicated: it is not sufficient to change the strong
arrows inDefinition 4 to weak arrows. To see this, consider the following processes:

Ps=[(b.B.a+b.(a+71)),|(B.(@+T.a)+0.a)] \o\B
Qs= [(b.(a+71)),] (a.a)]\a

If ¢ is initially dead,Ps and Qs are clearly equivalent: both are strong equivaleniito
If ¢ is initially alive, however, the situation is not so clear. The questionable madwgsis
b-transition toP; ~ [(a), | (@+T1.a), | \a. To match this move&)s must perform a weak
b-transition toQ; ~ | (a +1), | (@.a),] \a. But P andQ; are not barbed equivalent: 4f

is dead, ther@ is capable of a transition that?; cannot match. This would lead one to
believe thaP andQ arenot barbed equivalent; however, they are.

Intuitively this is true because whé reache$;, £ must be alive; thu®; andQ; need
only be compared under the constraint that initially alive. Once this comparison has
begun, the environment can distinguidh from Py only by killing ¢, but it cannot control
internal activity on the part d?; before/ is dead.

Definition 5 (Weak LF-equivalence). For p € Act;, definefl such thatd = a andT = «.
The definition of= is similar to that for~, except that wheR S Q, we require:

(2) P P implies3Q': Q= Q andP’ Siasier, 1) @
(b) foreverykce L 3Q': Q % : ﬁ Q' andP 8 \yy Q' O

Whereas the first clause in the definition of weak LF-bisimulation is as one would
expect, the second clause is somewhat surprising. It says, in effect, that if the environment
kills a locationk, thenQ must be able to (silently) evolve to a proc€¥sthat matche®;
but in reachind’, Q may exploit the intermediate states of the system (th&tasye, then
k dead).

Theorem 6. For all located processes R Q if and only if P~ Q. O

4 Symbolic characterizations

While the LF-equivalences provide a great deal of insight into the meaning of barbed equiv-
alence in distributed process description languages such as ours, they are unwieldy to use
in practice. For the most part, this is due to the use of configurations in the operational
semantics. In this section, we improve this situation by definiagnabolictransition sys-

tem directly on located process terms, then giving characterizations of strong and weak
LF-equivalence using these symbolic transitions. As one should expect, the weak case is
quite a bit more subtle than the strong.

We begin by giving the symbolic operational semantics. The symbolic transition re-
lation makes use of propositional formulaep, which are given a semantics in terms of
livesets. Intuitively, a formula indicates a set of constraints on the status of locations (dead
or alive) at the time that the transition is enabled PI£t-> P’ then if location O is dead
and 1 is aliveP is capable of making ap-transition toP’; that is, if 0¢ L and 1€ L then
P -5 P'. In Table2 we define the transition relatiod> C LProc x LProc. The two tran-
sition systems are related by the fact tﬁatllf—> P’ if and only if there exists at such that
P-X P andLETL

The standard definition of symbolic bisimulatiort] requires that we define entailment
between formulae, which we do in the standard way:

mtl-p iff VL: LE mtimpliesLFp

Note that entailment is a preorder on formulaatlif p we say thattis strongerthanp. ff
is the strongest formula unde, tt the weakest.

7

Table 2 Symbolic transition system (symmetric rules famitted)

Acts) (a.p)y 7~ (P)y
Spawns) (spawn(k, p)), = (P)k
Kill1,) (killm. p), 450> (p),
Kill2s) (kiltm.p), 7 (P
Condl) (if mthen pelse q), 7w (P),
Cond2,) (if mthen pelse q), 7= (),
Sums) (iel pi)ﬁ%(p’,)g it (pj), Jv (F)) il
Defs) A (), i () (7)), AZp
Strs) PQ if P=P,PRQ,Q=Q
Pars) PIQP|Q if P-pF
Commy) PIQmwp P'|Q if PHP.Q5Q
Restrs) P\a-t-P\a if P+ P . u¢{aa}
Rens) PIf] 1 Pf] if PP

We must also identify a set of formulae suitable as parameters in the recursive definition
of symbolic equivalence, that is, the analogs of the paraméterghe definition of LF-
equivalence. Intuitively, when we say thatand Q are LF-equivalent unddt, we are
limiting attention to a single possible world, namely that in which exactly the sités in
are alive. The idea of symbolic equivalences, instead, is to treat many possible worlds
simultaneously (via entailment). In the case of strong LF-bisimulation, wRer¢ Q
andM C L imply P ~\ Q, this is achieved by restricting attention tegative formulae
— formulae which contain no positive atoms — in the recursive definition of symbolic
equivalence. Finally, we identify a transformation on formulae (indexed by actions) which
specifies the conditions under which residual processes are to be compared:

M E aftery(p) iff IL: LEpandM CL
M E aftefqik (p) iff IL: LF pandM C L\{k}

Definition 7 (Strong symbolic bisimulation). Let 8 be a family of relations ohProcin-
dexed by negative formulag. S is astrong symbolic bisimulatioif for every 8, 8y is
symmetric and whenev@ 8 Q andP - P’ then for somer, pj, andQ;:

(@ ATk Vipi, () Q4 Q. and
(b) pilkTE, d P 8after“(pi) Qi

We write P ~3 Qto indicate that there exists a symbolic bisimulatfowith P85 Q. [

Theorem 8. P~ Q iff 39: P~3 Qand LF 3. In addition,(~) = (~%,). O

As a first attempt to define weak symbolic bisimulation, let us try simply replacing the
strong transitions iefinition 7 with weak edges defined by conjoining formulae. For

8

example, we would have == P andP === P’ if P 4 - 5> P/. Unfortunately, this
definition does not suffice. Consider the proced3eand Qs, previously defined; these
have the following symbolic transition graphs (where we have wiiteas-+v):

Ps Qs
b
. X ~ o
Tf/\k\L
Tenk Py Tk v Q1 Tenk Q1 Tenk

[] [] [[]

& & &
As noted inSection3, in order to prove these processes equivalent we must compare the
processe®; andQ; under the assumption théts initially alive, but using our provisional
definition we would end up comparirgg andQ; under the assumptiont = neg? AKk),
which is not strong enough to prove that they are related.

As a second attempt, we might simply allow all positive information to carry over into

the recursive formula;, that is, change the last clause@finition 7 to 9; = p;. Whereas
our first attempt produced an equivalence that was too strong, the revised definition is too
weak. For example, the following processes would be identified even though they are not
barbed equivalent.

Ps = [(a.a),|(@)]\a Qs = [(a), | (o)]\a
\LT(]Ak ~ ika
Py Qs
: ;

HereP§ and Qg would be compared under the formula k. This formula, however, says
something more than we would like, namely tifaand k remain alive untilPy and Q;
execute their first action. More complicated examples can be constructed to show that we
must be able to express properties such/antlk must have been alive, thémmust have
died, and after that must have died.”

Our solution is to define weak symbolic edges usingpat-time temporal logi§l 7],
interpreted over sequences of livesetdiv& sequencé& is a finite nonempty sequence of
livesets(Ls,...,Ln), such that for everybetween 1 and — 1 there exists a locatidasuch
thatL;;1 = L\ {k}. For example{{¢}, o) is a live sequence, buf/¢},{¢}) and({¢,k},)
are not. We writel ;, for thei™ element ofC and, where clear from context, uséo refer
to the length ofC. Thus, for examplef models? if ¢ ¢ Lny andL modelsoe if L or
some prefix ofl modelsd. Because live sequences must be strictly decreasings/ is
unsatisfiable; howevel ¢}, @) E £ A &L, Weak symbolic transitions are defined as follows:

PP P%P’ if =5 -~ P
/ € T / killk /
PﬁP |fP%> P P———— k/\e(d) P if P?

/ T /
P%P ﬁP%»TP

Killk, p
-~ P

Intuitively P P’ means thaP can perform the actiopto becomé”’ in an environment
where the change in live sets satisfies the fornguldor example ifp; = (¢ AK) ¢ ¢ and
¢2 = (£ AK) sk thenPs has the symbolic transitio% but not%, whereas foRg it is the
opposite.

As parameters to the weak relation we simply take Boolean formulae, but now inter-
preted on the initial liveset of a live sequence. Rather than use two logics in the definition
or introduce additional operators, we define the function “initially” which converts Boolean
formulae into temporal formulae with this interpretation in mind. The transformation func-
tion for generating formulae after an action is performed, which we call “finally”, must
then transform temporal formula into Boolean ones. The definitions are as follows: (In the
full paper, we show how to calculate these functions.)

L Finitially () iff L) Fm
M Efinally(¢) iff 3L: LF¢andM =L,

Definition 9 (Weak symbolic bisimulation). Similar to Definition 7, except that whe®
SxQandP % P’ we require:

(@) initially(T) A IF Vi, © O %‘;» Qi, and
(b) Wil i, (d) P Stinayw) Qi O

Theorem 10. P~ Q iff 3: L F mand P=; Q. In addition,(x) = (=5,). O

5 Conclusions

In this paper we have proposed a hew semantic theory for distributed systems which takes
into account the possibility of failures at sites. This theory is an adaptation of standard
bisimulation-based theoriesd] using an operational semantics focated processe3 he

new semantic equivalences are justified in termbgarbed bisimulationg?”]. We also

give symboliccharacterizations of the new equivalences, which means that they can be
investigated using the symbolic methods o[

Site failure has also played a role in languages studied,i,[17]. In these papers
abstract languages based on Facilg pr the pi-calculus 19, 5] are studied. The original
motivation for this paper was to provide an alternative characterization of barbed equiva-
lence for languages such as these. Although we have not treated value passing or references,
we postulate that our results can be extended in a straightforward way to value-passing lan-
guages which retain the assumption that all failures are independent, such as the languages
in [2, 4]. More delicate is the extension to languages such as the distributed join-calculus
[17] in which the independence assumption is dropped. In this case the logical language
used for symbolic bisimulations must be extended to allow statements about the interde-
pendence of locations; we leave this to future work.

A number of location-based equivalences already exist in the literatueg 20, 10];
however, none of these theories addresses the possible failure of sites. Their emphasis,
rather, is to define a measure of the concurrency or distribution of a process: two processes

10

are deemed equivalent only if, informally, they have the same degree of concurrency. In the
full paper we give a series of counter-examples which showahetincomparable with

all of the equivalences proposed in these papers; we also discuss variations on the language
and model of failure.

References

[1] Samson Abramsky. The lazy lambda calculus.Risearch Topics in Functional Program-
ming pages 65-117. Addison-Wesley, 1990.

[2] Roberto Amadio and Sanjiva Prasad. Localities and failuresFSm-TCS volume 880 of
LNCS Springer, 1994.

[3] Roberto Amadio. From a concurrekicalculus to thatcalculus. InFoundations of Compu-
tation Theoryvolume 965 olLNCS Springer, 1995.

[4] Roberto Amadio. An asynchronous model of locality, failure, and process mobility. Technical
report, Laboratoire d’'Informatique de Marseille, 1997.

[5] Roberto Amadio, llaria Castellani, and Davide Sangiorgi. On bisimulations for the asyn-
chronoustcalculus. INCONCUR96volume 1119 ot NCS pages 147-162. Springer, 1996.

[6] J.C. M. Baeten and W. P. Weijlan&rocess AlgebraCambridge University Press, 1990.

[7] G.Boudol. Alambda calculus for (strict) parallel functiohsformation and Contrql108:51—
127,1994.

[8] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. A theory of processes with localities.
Formal Aspects of Computing:165-200, 1994.

[9] I. Castellani. Observing distribution in processes: static and dynamic localittesnational
Journal of Foundations of Computer Scien665):353—-393, 1995.

[10] Flavio Corradini.Space, Time and Nondeterminism in Process Algel?&® thesis, Univer-
sita Degli Studi di Roma “La Sapienza”, 1996.

[11] C. Fournet and G. Gonthier. The refliexive CHAM and the join-calculu?@iPL94 ACM
Press, 1994.

[12] C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Remy. A calculus of mobile agents.
In CONCUR96volume 1119 o NCS pages 406—421. Springer, 1996.

[13] A. Giacalone, P. Mishra, and S. Prasad. A symmetric integration of concurrent and functional
programming.nternational Journal of Parallel Programmind.8(2):121-160, 1989.

[14] Andrew D. Gordon. Bisimilarity as a theory of functional programmingMRPS volume 1
of ENTCShttp://pigeon.elsevier.nl/mcs/tcs/pc/Menu. html. Elsevier, 1995.

[15] M. C. B. Hennessy and H. Lin. Symbolic bisimulation§heoretical Computer Science
138:353-389, 1995.

[16] C. A. R. Hoare.Communicating Sequential ProcessPsentice-Hall, 1985.

[17] Z. Manna and A. PnueliThe Temporal Logic of Reactive and Concurrent System: Specifica-
tion. Springer, 1992.

[18] Robin Milner. Communication and concurrencirentice-Hall, 1989.

[19] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processtsma-
tion and Computation100(1), September 1992.

11

[20] Ugo Montanari and Daniel Yankelovich. Partial order localitiesIGALP92 volume 623 of
LNCS pages 617-628. Springer, 1992.

[21] James Riely and Matthew Hennessy. Distributed processes and location failures. Technical
Report 2/97, University of Sussex, Department of Computer Sciéitagy: //www.cogs.
susx.ac.uk, 1997.

[22] Davide Sangiorgi.Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms PhD thesis, University of Edinburgh, 1992.

12

	Introduction
	The Language
	Located-Failures Equivalence
	Symbolic characterizations
	Conclusions

