
Distributed Processes and Location Failures
(Extended Abstract)

James Riely and Matthew Hennessy∗

Abstract

Site failure is an essential aspect of distributed systems; nonetheless its effect on
programming language semantics remains poorly understood. To model such systems,
we define a process calculus in which processes are run at distributedlocations. The
language provides operators to kill locations, to test the status (dead or alive) of loca-
tions, and to spawn processes at remote locations. Using a variation of bisimulation,
we provide alternative characterizations of strong and weak barbed congruence for
this language, based on an operational semantics that usesconfigurationsto record
the status of locations. We then derive a second, symbolic characterization in which
configurations are replaced by logical formulae. In the strong case the formulae come
from a standard propositional logic, while in the weak case a temporal logic with past
time modalities is required. The symbolic characterization establishes that, in princi-
ple, barbed congruence for such languages can be checked efficiently using existing
techniques.

1 Introduction

Many semantic theories have been proposed for concurrent processes [18, 16, 6]. Although
these theories have been fruitfully applied to the analysis of some distributed systems, for
the most part they ignore an essential feature of such systems, namely theirdistribution.

As a simple example consider two implementations of a client-server application in
which the client can demand an interactive service provided by the server, such as pre-
viewing or updating a document. In one implementation (System A) the server spawns
a process to handle the document at its own site, the remote location, and the client pre-
views the document remotely. In the other (System B) the server sends a process, including
the document, to the client site, and the client previews the document locally. Using the
semantic theories mentioned above it would be difficult to distinguish between these im-
plementations, as the only difference between them is the location at which activity occurs.
We aim to develop a usefulextensionaltheory of systems which would take this type of
property into account.

∗Research funded by EPSRC project GR/K60701. Authors’ address: School of Cognitive and Computing
Sciences, Univ. of Sussex, Falmer, Brighton, BN1 9QH, UK,{jamesri,matthewh}@cogs.susx.ac.uk
Acknowledgement:We thank Flavio Corradini and Alan Jeffrey; both made important comments and sug-
gestions in the early stages of this work.

1

In [8, 20, 10] such theories have been proposed. All of these theories, however, are
based on a very strong assumption: that an observer, or user, can determine the location at
which every action is performed. Here we start from a weaker premise: that in distributed
systems sites are liable tofailure. The model of failure we have adopted is afail stopmodel
in which failures are independent of each other and the number of failures that can occur
is unbounded. Assuming that sites can fail, it is easy to see that Systems A and B, outlined
above, are indeed different: if, after the client has begun interaction with the document, a
failure occurs at the remote site, then in System A the client deadlocks, while in System B
it can continue operation unaffected.

Our work is motivated by the papers [2, 12]. In these papers, distributed languages with
location failures are defined and shown to be very expressive. In both of these papers, the
semantics is based onbarbed equivalence, which requires quantification over all program
contexts and thus is difficult to use directly. In each of the cited works, the authors provide a
translation from their language into a simpler (non-distributed) language and prove that the
translations are adequate or fully abstract in some sense. While these translations provide
theoretical results about the relative expressiveness of distributed and interleaving calculi,
they are sufficiently complicated to make reasoning about examples, even simple ones, very
difficult.

By restricting attention to an asynchronous language, Amadio [4] has recently improved
on the results of [2], providing simpler translations. Although our work developed inde-
pendently of [4], the language we study has much in common with the language developed
there. The main difference is that our language has no value-passing, allowing us to con-
centrate on the effects of location failure and simplifying the statement of many of our
results. Since the issues raised by failures and value passing are largely independent, this
paper may be seen as providing two extensional views of a language similar to Amadio’s;
the first of these is concrete, as is his translation, the second is more abstract.

In Section2, we consider a simple language forlocated processesbased on pureCCS

[18], with which we assume familiarity. For example(a.p)` is a process located at` which,
if ` is alive, may perform the actiona and then behave as(p)`. In addition to the usual
operators ofCCS we have the following new operators:spawn(`, p) which starts process
p running at locatioǹ ; kill`.p which, if location` is alive, kills ` (with the result that
any process located at` is deactivated) and then behaves asp; andif ` then p else q which
silently evolves to eitherp or q, depending on whether̀is alive or dead when the test is
performed.

We give an operational semantics for this language in terms of a labelled transition sys-
tem. The judgments depend on a setL, of live locations, and are of the formL.P α7−→ L′ .P′,
whereP andP′ are located processes andα is either a visible action, which permits syn-
chronization, or the internal actionτ. To decide on an appropriate equivalence between
process terms we follow the approach advocated in [22]. We define both strong and weak
barbed equivalence between processes,

.∼ and
.
≈. We then dictate that the required equiva-

lence, which we refer to asbarbed bisimulation equivalence, is defined (for example in the
weak case) as:P≈Q if and only if for every suitable contextC[], C[P]

.
≈ C[Q]. Although

this may be reasonable, it is not a very useful definition; the reader is invited to determine
whether the following pairs of processes should be equivalent or distinguished.

2

P1 =
[
(α)` | (α+ τ.a)k

]
\α P2 = [(if k then α else nil)` |(α.a)k]\α

Q1 =
[
(α+ τ)` | (α.a)k

]
\α Q2 = (spawn(k,a))`

In Section3 we define two bisimulation-based relations, strong and weakLocated-
Failure equivalence(LF-equivalence) and show that these coincide with the indirectly de-
fined barbed congruences. Since LF-equivalence is defined using bisimulations, the prob-
lem of deciding that two systems are semantically congruent can, in principle, be solved
using standard proof techniques associated with bisimulation [18]. However, constructing
an LF-bisimulation requires that one consider the behavior of the systems under all possi-
ble sequences of kills, by both the systems themselves and the environment. The number
of states that must be explored may be exponentially larger than the number needed to
construct aCCSbisimulation.

In Section4 we use the ideas of [15] to give alternativesymboliccharacterizations
of LF-equivalence that can be decided using a much smaller state space. The idea is to
replace the operational judgmentsL.P α7−→ L′ .P′ with judgments of the formP α−→ϕ P′,
whereϕ is a logical formula that describes the circumstances under which the actionα can
be performed. In the strong case the required logic is straightforward: a propositional logic
that describes the state (dead or alive) of the sites in the system. In the weak case, however,
we require a more complicated logic that can express statements of the formsite ` was
alive at some point in the past. Using these symbolic transitions, the standard definition
of symbolic bisimulation[15] requires only minor modification to capture' andu; hence
the symbolic proof techniques and tools of [15] may be used to check the new semantic
equivalences proposed in this paper.

In this extended abstract we have omitted several formal definitions and all proofs. The
full version [21] includes additional results and examples, including a discussion of basic
processes and comparisons with other equivalences.

2 The Language

The syntax of processes is parameterized with respect to several syntactic sets. We assume
a setLoc of locations k, `, m, a setPConstof process constants Aused to define recursive
processes, and a setAct of communication actions a, b, c, such that every actiona∈ Act
has a complementa∈ Act (· is a bijection onAct). The setActτ = Act∪{τ} of actionsα
includes also the distinguishedsilent actionτ. The formal syntax is as follows. Most of the
operators should be familiar fromCCS; all of the new constructs have been described in the
introduction.

p,q (∈ BProc) ::= α.p spawn(`, p) kill`.p if ` then p else q A ∑i∈I pi

p|q p\a p[f]
P,Q (∈ LProc) ::= P|Q P\a P[f] (p)`

We have adopted a two-level syntax which distinguishes betweenbasicprocessesp and
locatedprocessesP. Intuitively, a basic process corresponds to what one normally thinks
of as aprocess: a collection of threads of computation that must be run at a single site. A
located process, instead, corresponds to adistributionof basic processes over several sites.

3

Note that many basic processes may be located at a single site, and a basic process may
share a private channel (unknown to other basic processes running at the same site) with a
remote process.

The ability of a process to perform an action is dependent on the set of live locations,
and consequently the transition relation determining the operational semantics is defined
betweenconfigurations. A liveset Lis any subset ofLoc. A configuration(L.P) is a pair
comprising a livesetL and a located process termP. The set of all configurations isConfig,
ranged over byC andD.

In giving the intensional semantics of processes, it will be convenient for later devel-
opment if we distinguish executions of the operatorkill`.p depending upon whether` is
alive or dead at the time of execution. To capture this distinction, we extend the set of ac-
tions to the setKAct= Act∪{kill ` | ` ∈ Loc}, which includes thekill actions kill`. Unless
otherwise specified,µ ranges overKActτ = KAct∪{τ}. In Table1 we define the transi-
tion relation(µ−→) ⊆ Config×Config. The definition uses the following simple structural
equivalence on processes:

(p|q)` ≡ (p)` |(q)` (p\a)` ≡ (p)` \a (p[f])` ≡ (p)` [f]

While the transition relation−→ distinguishes effective kill actions from those that have
no effect, a basic tenet of our study is that the precise moment of location failure should be
unobservable. Thus we extract from−→ a transition relation7−→ in which all kill actions
have been replaced with silent actions. It is this derived relation7−→ that we take to be
fundamental.

Definition 1 (7−→). C a7−→C′ iff C a−→C′

C τ7−→C′ iff C τ−→C′ or∃k: C killk−−→C′
�

Most of the rules inTable 1 are straightforward, being inherited directly fromCCS,
modulo the constraint that the process(p)` can only move if` is alive. Note that the
three new operators — kill, spawn and the conditional — are modeled asτ-transitions; this
reflects the fact that in a distributed system the implementation of these operators would
involve some computation and thus the passage of some time.

We now discuss the problem of defining an appropriate semantic equivalence for lo-
cated processes, based on the transition relation7−→. An obvious possibility is to adapt the
bisimulation equivalences ofCCS [18]. (Strong)CCS-bisimulationis the largest symmetric
relation

.∼ccs on configurations such that wheneverC
.∼ccs D andC α7−→C′ there exists aD′

such thatD α7−→ D′ andC′
.∼ccs D′. A weak version of this relation,

.
≈ccs, can be obtained

by adapting this definition to theweaktransition relationZ=⇒, defined as usual. To see that
CCS-bisimulation is not suitable for our language, for example is not a congruence, con-
sider the processesP3 =

[
(α.a)` |(α)k

]
\α andQ3 =

[
(α)` |(α.a)k

]
\α. P3

.∼ccs Q3, butP3

andQ3 can be distinguished by a context that kills location`, if this kill action is performed
after the initial communication onα.

The use of
.
≈ccs for CCS has been justified in [22] by the fact that it coincides with

the congruence obtained from a simple notion of observation calledbarbed bisimulation.
Similar results have been obtained for lazy and eager functional languages [1, 14, 7], giving
further evidence for the reasonableness of this approach. Roughly, two processes are barbed

4

Table 1Transition system with configurations (symmetric rules for| omitted)

Actc) L.(α.p)`
α−→ L.(p)` if ` ∈ L

Spawnc) L.(spawn(k, p))`
τ−→ L.(p)k if ` ∈ L

Kill1c) L.(killm.p)`
killm−−−→ L\{m}.(p)` if ` ∈ L, m∈ L

Kill2c) L.(killm.p)`
τ−→ L.(p)` if ` ∈ L, m 6∈ L

Cond1c) L.(if m then p else q)`
τ−→ L.(p)` if ` ∈ L, m∈ L

Cond2c) L.(if m then p else q)`
τ−→ L.(q)` if ` ∈ L, m 6∈ L

Sumc) L.(∑i∈I pi)`
µ−→ L′ .(p′j)k if L.(p j)`

µ−→ L′ .(p′j)k , j ∈ I

Defc) L.(A)`
µ−→ L′ .(p′)k if L.(p)`

µ−→ L′ .(p′)k , A
def= p

Strc) L.P µ−→ L′ .Q if P≡ P′, L.P′ µ−→ L′ .Q′, Q′ ≡Q

Parc) L.P|Q µ−→ L′ .P′ |Q if L.P µ−→ L′ .P′

Commc) L.P|Q τ−→ L′ .P′ |Q′ if L.P a−→ L′ .P′, L.Q a−→ L′ .Q′

Restrc) L.P\a µ−→ L′ .P′\a if L.P µ−→ L′ .P′, µ 6∈ {a,a}
Renc) L.P[f] f (µ)−−→ L′ .P′[f] if L.P µ−→ L′ .P′

bisimilar if every silent transition of one can be matched by a silent transition of the other
in such a way that the derived states are capable of exactly the same observable actions;
in addition, the derived states must also be barbed bisimilar. For our language, the formal
definition is as follows.

Definition 2 (Barbed bisimulation). Weakbarbed bisimilarity(
.
≈) is the largest symmet-

ric relation over configurations such that wheneverC
.
≈ D: (a) C τ7−→C′ implies that for

someD′, D εZ=⇒ D′ andC′
.
≈ D′; and (b) for everya, C a7−→ impliesD aZ=⇒. Strong barbed

bisimilarity (
.∼) is obtained by replacingZ=⇒ by 7−→ everywhere in the definition. �

Barbed bisimulation is a very weak relation; for example, it is not preserved by parallel
composition. However, by closing over all contexts we arrive at a reasonable semantic
equivalence that by definition enjoys an important property, namely that it is a congruence.

Definition 3 (Barbed equivalence).Located processesP andQ are (weak)barbed equiv-
alent (P≈ Q) if for every contextC[] such thatC[P] andC[Q] are configurations,C[P]
.
≈ C[Q]. Strong barbed equivalence(∼) is obtained in the same manner from

.∼. �

Because it requires quantification over all contexts, barbed equivalence is difficult to use
directly. For example the processesP1 andQ1, given in the introduction, are distinguished
by≈ whereasP2 andQ2 are identified; it is far from obvious why. Even worse, processes
P5 andQ5 (given inSection3) are related, although establishing this fact requires that one
prove thatP1 andQ1 arerelatedunder the assumption that` is alive at the timeP1 andQ1

are compared, that is,` is initially alive.
We end this section with some additional, simpler examples. The processes(a)` |(b)k

and(b)` |(a)k can be distinguished by a context that kills`. The same context can be used

5

to distinguish the basic processesspawn(`,a) andspawn(k,a), regardless of where they are
located. These examples indicate that although the location of an action is not reflected
directly in the operational semantics they do impinge on the behavior of processes. The
order in which kill actions are executed is also significant. For examplekill`.killk can be
distinguished fromkillk.kill` using the process(a)` |(b)k.

3 Located-Failures Equivalence

In this section and the next, we provide alternative characterizations of barbed equivalence
for our language. Note that ifL.P µ−→ L′ .P′, then L′ is determined byL and µ. To
emphasize this, we adopt the following notation. For each actionµ, we define a function
“iafterµ” which reflects the immediate effect of actionµ on a liveset. We also define the
relations µ−→L and µ=⇒

L
on process terms, which capture the capability of actionµ under

livesetL.

iafterµ(L) def=

{
L\{k} , if µ= killk

L, if µ∈ Act∪{τ,ε}
P µ−→L P′

def⇔ L.P µ−→ iafterµ(L).P′

P µ=⇒
L

P′
def⇔ L.P µ=⇒ iafterµ(L).P′

For example, iafterα(L) = L for any α, and iafterkill `({`,k}) = {k}. If P = (α.a)` |(α)k,
thenP a===⇒{`,k} nil, butP has noa-transition under the liveset{k}.

We first present the strong case.

Definition 4 (Strong LF-equivalence). Let S = {SL}L⊆Loc be an indexed family of rela-
tions onLProc. S is astrongLF-bisimulationif for everyL, SL is symmetric and whenever
P SL Q:

(a) P µ−→L P′ implies∃Q′ : Q µ−→L Q′ andP′ Siafterµ(L) Q′

(b) for everyk∈ L P SL\{k} Q

P andQ are strong LF-equivalent under L(P'L Q) if there exists a strong LF-bisimulation
S with P SL Q.

P andQ are strong LF-equivalent(P'Q), if P'L Q for every subsetL of Loc. �

In the full paper, we prove that' and∼ coincide. The alternative characterization
of weak barbed equivalence is more complicated: it is not sufficient to change the strong
arrows inDefinition 4 to weak arrows. To see this, consider the following processes:

P5=
[(

b.β.α+b.(α+ τ)
)
`
|
(
β.(α+ τ.a)+α.a

)
k

]
\α\β

Q5=
[(

b.(α+ τ)
)
`
|

(
α.a
)

k

]
\α

If ` is initially dead,P5 andQ5 are clearly equivalent: both are strong equivalent tonil.
If ` is initially alive, however, the situation is not so clear. The questionable move isP5’s
b-transition toP1 '

[
(α)` | (α+ τ.a)k

]
\α. To match this moveQ5 must perform a weak

b-transition toQ1 '
[
(α+ τ)` | (α.a)k

]
\α. But P1 andQ1 are not barbed equivalent: if`

6

is dead, thenQ1 is capable of aa transition thatP1 cannot match. This would lead one to
believe thatP andQ arenot barbed equivalent; however, they are.

Intuitively this is true because whenP5 reachesP1, ` must be alive; thusP1 andQ1 need
only be compared under the constraint that` is initially alive. Once this comparison has
begun, the environment can distinguishQ1 from P1 only by killing `, but it cannot control
internal activity on the part ofP1 before` is dead.

Definition 5 (Weak LF-equivalence). For µ∈ Actτ, defineµ̂ such that̂a = a and τ̂ = ε.
The definition ofu is similar to that for', except that whenP SL Q, we require:

(a) P µ−→L P′ implies∃Q′ : Q µ̂=⇒
L

Q′ andP′ Siafterµ(L) Q′

(b) for everyk∈ L ∃Q′ : Q ε=⇒
L
· ε===⇒

L\{k} Q′ andP SL\{k} Q′ �

Whereas the first clause in the definition of weak LF-bisimulation is as one would
expect, the second clause is somewhat surprising. It says, in effect, that if the environment
kills a locationk, thenQ must be able to (silently) evolve to a processQ′ that matchesP;
but in reachingQ′, Q may exploit the intermediate states of the system (that is,k alive, then
k dead).

Theorem 6. For all located processes Pu Q if and only if P≈Q. �

4 Symbolic characterizations

While the LF-equivalences provide a great deal of insight into the meaning of barbed equiv-
alence in distributed process description languages such as ours, they are unwieldy to use
in practice. For the most part, this is due to the use of configurations in the operational
semantics. In this section, we improve this situation by defining asymbolictransition sys-
tem directly on located process terms, then giving characterizations of strong and weak
LF-equivalence using these symbolic transitions. As one should expect, the weak case is
quite a bit more subtle than the strong.

We begin by giving the symbolic operational semantics. The symbolic transition re-
lation makes use of propositional formulaeπ, ρ, which are given a semantics in terms of
livesets. Intuitively, a formula indicates a set of constraints on the status of locations (dead
or alive) at the time that the transition is enabled. IfP µ−−→0∧1 P′ then if location 0 is dead
and 1 is alive,P is capable of making anµ-transition toP′; that is, if 0 6∈ L and 1∈ L then
P µ−→L P′. In Table2 we define the transition relationµ−→π ⊆ LProc×LProc. The two tran-
sition systems are related by the fact thatP µ−→L P′ if and only if there exists aπ such that
P µ−→π P′ andL � π.

The standard definition of symbolic bisimulation [15] requires that we define entailment
between formulae, which we do in the standard way:

π
 ρ iff ∀L : L � π impliesL � ρ

Note that entailment is a preorder on formulae. Ifπ
 ρ we say thatπ is strongerthanρ. ff
is the strongest formula under
, tt the weakest.

7

Table 2Symbolic transition system (symmetric rules for| omitted)

Acts) (α.p)`
α−→̀ (p)`

Spawns) (spawn(k, p))`
τ−→̀ (p)k

Kill1s) (killm.p)`
killm−−−→`∧m (p)`

Kill2s) (killm.p)`
τ−−→`∧m (p)`

Cond1s) (if m then p else q)`
τ−−→`∧m (p)`

Cond2s) (if m then p else q)`
τ−−→`∧m (q)`

Sums) (∑i∈I pi)`
µ−→π (p′j)` if

(
p j
)
`

µ−→π (p′j)` , j ∈ I

Defs) (A)`
µ−→π (p′)` if (p)`

µ−→π (p′)` , A
def= p

Strs) P µ−→π Q if P≡ P′, P′ µ−→π Q′, Q′ ≡Q

Pars) P|Q µ−→π P′ |Q if P µ−→π P′

Comms) P|Q τ−−→π∧ρ P′ |Q′ if P a−→π P′, Q a−→ρ Q′

Restrs) P\a µ−→π P′\a if P µ−→π P′, µ 6∈ {a,a}
Rens) P[f] f (µ)−−→π P′[f] if P µ−→π P′

We must also identify a set of formulae suitable as parameters in the recursive definition
of symbolic equivalence, that is, the analogs of the parametersL in the definition of LF-
equivalence. Intuitively, when we say thatP and Q are LF-equivalent underL, we are
limiting attention to a single possible world, namely that in which exactly the sites inL
are alive. The idea of symbolic equivalences, instead, is to treat many possible worlds
simultaneously (via entailment). In the case of strong LF-bisimulation, whereP 'L Q
andM ⊆ L imply P'M Q, this is achieved by restricting attention tonegative formulae
— formulae which contain no positive atoms — in the recursive definition of symbolic
equivalence. Finally, we identify a transformation on formulae (indexed by actions) which
specifies the conditions under which residual processes are to be compared:

M � afterα(ρ) iff ∃L : L � ρ andM ⊆ L

M � afterkillk(ρ) iff ∃L : L � ρ andM ⊆ L\{k}

Definition 7 (Strong symbolic bisimulation). Let S be a family of relations onLProc in-
dexed by negative formulaeϑ. S is a strong symbolic bisimulationif for every ϑ, Sϑ is
symmetric and wheneverP Sϑ Q andP µ−→π P′ then for someπi , ρi , andQi :

(a) ϑ∧π

∨

i ρi,
(b) ρi
 πi,

(c) Q µ−→πi
Qi, and

(d) P′ Safterµ(ρi) Qi

We writeP's
ϑ Q to indicate that there exists a symbolic bisimulationS with P Sϑ Q. �

Theorem 8. P'L Q iff ∃ϑ : P's
ϑ Q and L� ϑ. In addition,(') = ('s

tt). �

As a first attempt to define weak symbolic bisimulation, let us try simply replacing the
strong transitions inDefinition 7 with weak edges defined by conjoining formulae. For

8

example, we would haveP ε=⇒tt P and P a==⇒π∧ρ P′ if P τ−→π · a−→ρ P′. Unfortunately, this
definition does not suffice. Consider the processesP5 andQ5, previously defined; these
have the following symbolic transition graphs (where we have writeµ−→π as µπ−→):

P5

•

P1

• •
•

Q1

•
•

•

b`

{{wwwww

τ`∧k ��

τ`∧k
{{xxx

τk
##FFF

ak��

b`

��4
44

44
44

44

τ`∧k
##FFF

ak��

τ`

{{xxx

≈
Q5

Q1

•
•

•

b`

��

τ`∧k
##FFF

ak��

τ`

{{xxx

As noted inSection3, in order to prove these processes equivalent we must compare the
processesP1 andQ1 under the assumption that` is initially alive, but using our provisional
definition we would end up comparingP1 andQ1 under the assumptiontt = neg(`∧ k),
which is not strong enough to prove that they are related.

As a second attempt, we might simply allow all positive information to carry over into
the recursive formulaϑi , that is, change the last clause ofDefinition 7 to ϑi = ρi . Whereas
our first attempt produced an equivalence that was too strong, the revised definition is too
weak. For example, the following processes would be identified even though they are not
barbed equivalent.

P6 =
[
(α.a)` |(α)k

]
\α

P′6

•

τ`∧k��

a`��

Y≈
Q6 =

[
(α)` |(α.a)k

]
\α

Q′6

•

τ`∧k��

ak��

HereP′6 andQ′6 would be compared under the formula`∧k. This formula, however, says
something more than we would like, namely that` and k remain alive untilP′6 and Q′6
execute their first action. More complicated examples can be constructed to show that we
must be able to express properties such as “` andk must have been alive, then` must have
died, and after thatk must have died.”

Our solution is to define weak symbolic edges using apast-time temporal logic[17],
interpreted over sequences of livesets. Alive sequenceL is a finite nonempty sequence of
livesets〈L1, . . . ,Ln〉, such that for everyi between 1 andn−1 there exists a locationk such
thatLi+1 = Li\{k}. For example,〈{`},∅〉 is a live sequence, but〈{`},{`}〉 and〈{`,k},∅〉
are not. We writeL(i) for the ith element ofL and, where clear from context, usen to refer
to the length ofL. Thus, for example,L models` if ` 6∈ L(n) andL models−♦ϕ if L or
some prefix ofL modelsϕ. Because live sequences must be strictly decreasing,`∧−♦` is
unsatisfiable; however〈{`},∅〉 � `∧−♦`. Weak symbolic transitions are defined as follows:

P ε=⇒tt P P α======⇒ϕ∧π P′ if P ε=⇒ϕ ·
α−−−→π P′

P ε====⇒−♦(ϕ∧π)
P′ if P ε=⇒ϕ ·

τ−→π P′ P killk======⇒
k∧�(ϕ∧π)

P′ if P ε=⇒ϕ ·
killk−−→π P′

P µ====⇒
ϕ∧π

P′ if P µ=⇒ϕ ·
τ−→π P′

9

Intuitively P µ=⇒ϕ P′ means thatP can perform the actionµ to becomeP′ in an environment
where the change in live sets satisfies the formulaϕ. For example ifϕ1 = (`∧ k) # ` and
ϕ2 = (`∧k) #k thenP6 has the symbolic transitiona=⇒ϕ1

but not a=⇒ϕ2
, whereas forQ6 it is the

opposite.
As parameters to the weak relation we simply take Boolean formulae, but now inter-

preted on the initial liveset of a live sequence. Rather than use two logics in the definition
or introduce additional operators, we define the function “initially” which converts Boolean
formulae into temporal formulae with this interpretation in mind. The transformation func-
tion for generating formulae after an action is performed, which we call “finally”, must
then transform temporal formula into Boolean ones. The definitions are as follows: (In the
full paper, we show how to calculate these functions.)

L � initially(π) iff L(1) �π
M �finally(ϕ) iff ∃L : L �ϕ andM = L(n)

Definition 9 (Weak symbolic bisimulation). Similar toDefinition 7, except that whenP
Sπ Q andP µ̂=⇒ϕ P′ we require:

(a) initially(π)∧ϕ

∨

i ψi,
(b) ψi
 ϕi,

(c) Q µ̂=⇒ϕi
Qi, and

(d) P′ Sfinally(ψi) Qi �

Theorem 10. P uL Q iff ∃π : L � π and Pu
s
π Q. In addition,(u) = (us

tt). �

5 Conclusions

In this paper we have proposed a new semantic theory for distributed systems which takes
into account the possibility of failures at sites. This theory is an adaptation of standard
bisimulation-based theories [18] using an operational semantics forlocated processes. The
new semantic equivalences are justified in terms ofbarbed bisimulations[22]. We also
give symboliccharacterizations of the new equivalences, which means that they can be
investigated using the symbolic methods of [15].

Site failure has also played a role in languages studied in [2, 4, 12]. In these papers
abstract languages based on Facile [13] or the pi-calculus [19, 5] are studied. The original
motivation for this paper was to provide an alternative characterization of barbed equiva-
lence for languages such as these. Although we have not treated value passing or references,
we postulate that our results can be extended in a straightforward way to value-passing lan-
guages which retain the assumption that all failures are independent, such as the languages
in [2, 4]. More delicate is the extension to languages such as the distributed join-calculus
[12] in which the independence assumption is dropped. In this case the logical language
used for symbolic bisimulations must be extended to allow statements about the interde-
pendence of locations; we leave this to future work.

A number of location-based equivalences already exist in the literature [8, 9, 20, 10];
however, none of these theories addresses the possible failure of sites. Their emphasis,
rather, is to define a measure of the concurrency or distribution of a process: two processes

10

are deemed equivalent only if, informally, they have the same degree of concurrency. In the
full paper we give a series of counter-examples which show thatu is incomparable with
all of the equivalences proposed in these papers; we also discuss variations on the language
and model of failure.

References

[1] Samson Abramsky. The lazy lambda calculus. InResearch Topics in Functional Program-
ming, pages 65–117. Addison-Wesley, 1990.

[2] Roberto Amadio and Sanjiva Prasad. Localities and failures. InFST-TCS, volume 880 of
LNCS. Springer, 1994.

[3] Roberto Amadio. From a concurrentλ-calculus to theπ-calculus. InFoundations of Compu-
tation Theory, volume 965 ofLNCS. Springer, 1995.

[4] Roberto Amadio. An asynchronous model of locality, failure, and process mobility. Technical
report, Laboratoire d’Informatique de Marseille, 1997.

[5] Roberto Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations for the asyn-
chronousπ-calculus. InCONCUR96, volume 1119 ofLNCS, pages 147–162. Springer, 1996.

[6] J. C. M. Baeten and W. P. Weijland.Process Algebra. Cambridge University Press, 1990.

[7] G. Boudol. A lambda calculus for (strict) parallel functions.Information and Control, 108:51–
127, 1994.

[8] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. A theory of processes with localities.
Formal Aspects of Computing, 6:165–200, 1994.

[9] I. Castellani. Observing distribution in processes: static and dynamic localities.International
Journal of Foundations of Computer Science, 6(6):353–393, 1995.

[10] Flavio Corradini.Space, Time and Nondeterminism in Process Algebras. PhD thesis, Univer-
sità Degli Studi di Roma “La Sapienza”, 1996.

[11] C. Fournet and G. Gonthier. The refliexive CHAM and the join-calculus. InPOPL94. ACM
Press, 1994.

[12] C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Remy. A calculus of mobile agents.
In CONCUR96, volume 1119 ofLNCS, pages 406–421. Springer, 1996.

[13] A. Giacalone, P. Mishra, and S. Prasad. A symmetric integration of concurrent and functional
programming.International Journal of Parallel Programming, 18(2):121–160, 1989.

[14] Andrew D. Gordon. Bisimilarity as a theory of functional programming. InMFPS, volume 1
of ENTCS, http://pigeon.elsevier.nl/mcs/tcs/pc/Menu.html. Elsevier, 1995.

[15] M. C. B. Hennessy and H. Lin. Symbolic bisimulations.Theoretical Computer Science,
138:353–389, 1995.

[16] C. A. R. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.

[17] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent System: Specifica-
tion. Springer, 1992.

[18] Robin Milner. Communication and concurrency. Prentice-Hall, 1989.

[19] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes.Informa-
tion and Computation, 100(1), September 1992.

11

[20] Ugo Montanari and Daniel Yankelovich. Partial order localities. InICALP92, volume 623 of
LNCS, pages 617–628. Springer, 1992.

[21] James Riely and Matthew Hennessy. Distributed processes and location failures. Technical
Report 2/97, University of Sussex, Department of Computer Science,http://www.cogs.
susx.ac.uk, 1997.

[22] Davide Sangiorgi.Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis, University of Edinburgh, 1992.

12

	Introduction
	The Language
	Located-Failures Equivalence
	Symbolic characterizations
	Conclusions

