| 
0102
 03
 04
 05
 06
 07
 08
 09
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 
 | package algs24;
import stdlib.*;
/* ***********************************************************************
 *  Compilation:  javac PerfectPower.java
 *  Execution:    java PerfectPower x | more
 *
 *  Print out all 64-bit integers of the form a^b where b <= x.
 *
 *  Limitations
 *  ----------
 *    - currently prints out duplicates, i.e., when a itself is a perfect
 *      power, then there is more than one way to get a^b
 *
 *  % java PerfectPower 2
 *  4 = 2^2
 *  8 = 2^3
 *  9 = 3^2
 *  16 = 2^4
 *  16 = 4^2
 *  25 = 5^2
 *  27 = 3^3
 *
 *  % java PerfectPower 10
 *  1024 = 2^10
 *  ...
 *  7450580596923828125 = 5^27
 *  7516865509350965248 = 52^11
 *  8335775831236199424 = 78^10
 *  8650415919381337933 = 13^17
 *  9065737908494995456 = 38^12
 *
 *************************************************************************/
public class XPerfectPower implements Comparable<XPerfectPower> {
  private final long value;
  private final int a;
  private final int b;
  public XPerfectPower(int a, int b) {
    this.value = power(a, b);
    this.a = a;
    this.b = b;
  }
  // brute force exponentation suffices
  public static long power(int a, int b) {
    long pow = 1;
    for (int i = 0; i < b; i++) {
      pow *= a;
    }
    return pow;
  }
  public int compareTo(XPerfectPower that) {
    if      (this.value < that.value) return -1;
    else if (this.value > that.value) return +1;
    else                              return  0;
  }
  public String toString() {
    return value + " = " + a + "^" + b;
  }
  public static void main(String[] args) {
    int x = 2;
    if (args.length == 1) x = Integer.parseInt(args[0]);
    // initialize priority queue
    MinPQ<XPerfectPower> pq = new MinPQ<>();
    // maximum power representable as a long is 2^62
    for (int b = x; b <= 62; b++) {
      pq.insert(new XPerfectPower(2, b));
    }
    // find smallest power, print out, and update
    while (!pq.isEmpty()) {
      XPerfectPower p = pq.delMin();
      StdOut.println(p);
      // add next perfect power if it doesn't overflow a long
      if (Math.pow(p.a + 1, p.b) < Long.MAX_VALUE)
        pq.insert(new XPerfectPower(p.a + 1, p.b));
    }
  }
}
 |