4.2 DIRECTED GRAPHS

» digraph API

» digraph search

» topological sort

» strong components

Algorithms, 4'h Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2012 - March 28,2012 12:27:10 PM

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

vertex of
outdegree 4
and indegree 2

® y
directed path G directed

from 0 fo 2~ % J/ oyele
(9—~(9
O I

Road network

Vertex = intersection; edge = one-way street.

w TITYIES Ot
5 L
t s &
-~
Vestry 5 © E]
5%
—
1
/
-aight St f
@ Laightst
o
L
=
3 1}
bert st = f
—~—— s
5 Hubert s
2 L
[5) w ——
H 5 %
5 3 5
‘n-) _—
[S ’§’
Beach 5y I
|
[Moore st f
+—
¢ &
S
(2]
F E
& fanklin St — -~ F
£
o
2z
[~
L
2
amso,, St o r
Harmison g
=

sfaple St

U I -
66 = é\fo D 0’00 "4
% $ & e
2 = 5 & %
N i ¥ $ o
A S & N
%, S G Q
2 Canal St @ /S, s
< 1 £ ’70 “
N§ Sy
Vestry s \) ~ /
(77) .
S E] 7 .
i3 7
S ; 7
Laighy St G,
= = Laight St — ey
0 i ght St Y
< 7 -
= o2})
%] = £
' £ P -
7 s LI $
{ y X] ® 3
f (7} SO
b £7/BNC / 3
=~ York ¢ ‘bb 4 S &)
(2 S ” & -
/ o 3 S 3
o= } S &
S r / ¢
Ericsson St o f [
0 — (/soe’)e
P S, “Q,
@a /o Y 7 % A
3] 08/ sy 4 %"7'27
- N MOore St = (/",
s,
N Moore s > 7 %oy, ,
Y/ é e 4 Canal St Stat
o N N.QRW]
! 8\"‘5\ 5 U,
Franklin' St ~
Station [1 @ ©) Y
Frankiin St A Q)e n :5 ;OQ *e’. Y /
i) 2 S » &
TN [N =
I ® &
(e [~ Q,Q
ey = Ay t 11/,,,.,8
S 1Y KN 3 7 S N NS
%4
R v
o) ©2008 Google - Map data ©2QQ$\Sanbo'rh, NAVTEQ™ - Terms of Use

“%

Political blogosphere graph

Vertex = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

X
A/ s
Ve N

e

The Topology of the Federal Funds Market, Bech and Atalay, 2008

Implication graph

Vertex = variable; edge = logical implication.

if x5 is true,
then x0 is true

)
Y

(\S]

b—

-4

l
€
Y

@\,@
(D)= O)=

Combinational circuit

Vertex = logical gate; edge = wire.

WordNet graph

Vertex = synset; edge = hypernym relationship.

event

happeningoccurrence occurrent natural_event

miracle
act human_action human_activity
change alteration modification miracle \
/ \ \ group_action

damage harm impairment transition increase forfeitforfeiture sacrlﬁce action
y \
resistance opposmon transgression
leap jump saltation jumpleap
change
demotion variation

motion movement move

T S~

| . locomotion travel descent

= |
\ "\ 1\ N

N, runrunning jump parachuting

i

http:/ /wordnet.princeton.edu dash sprint

The McChrystal Afghanistan PowerPoint slide

Afghanistan Stability / COIN Dynamics ~H

= ===
Samages < el =

Casualties —_—
-

ISR/ Open
Total
Source Ops“\secu rity_—————®Targeted

>
Forceic—r oy | Dlitkes T > ‘
“ Capacity & Sweep Ops IE% Damla_ges/_A Fear of }
ocus asualties i
ci : Goyv' IANSF/ \
ANSF Unit T e N

Coalition <\
Leadershi] ANSFE Policing & Repercussion: “
&e?agtriscal Capacity, Securim’%p & P \
i o

Coalition

iti ,/ Capacity Priorities & (H
i S‘COINrt ffectiveness
Ll Manpower
Unity | Recruiting & ANSF Avgd
Coalition | Retention rofessionalisi
r Adjustment N~ skill, Discipline,
approprae |/ /G ERRRR R awsE
to Fit Afghan ate
ance of —a> ANSF -
Effort& ANSF Training & N S F rce
Force Institutional & lentoring

tomy i/ /[T NS TITUTIONAL

Experience

R.O.L. Poli Commur| Use of Force Ins. Targeted
il Ca & i Exi on & Affiliation w/
Skl R e ahid Perceive Population izacks on

Progress/
Perceived SUFgmﬂ
Damages/Use for Govit
of Force b
Gov't& Coalitio

CAPACITY & ceaiion

lev. Ops- Coalition/Homelan

AN
'PRIORITIES ey sigiah o £ /' POPULAT

CENTRAL i GOVERNMENT
GOV'T ¢ CAPACITY stat .~ SHBELIEES\ sty

Insurgent
Strength &

ION™

Perception of ’

& SF

X

ack/
K\ Message Amplification Repercussions
3 g 'Y . Impact (glov't Gov'tvs Ins
/ Breadth Adequacy o Gov't vsins
readth of Gov't Traini Integration of <
galition &V t rqlmng% Local Triba] ng?ls‘e-m
Support tting. and Gov't Structures Bad'(?::h" Perception of. ‘
ing Workforce ' ‘ Coalition Intent ’ 3
)i skill & Avai & Commitment Perception
Transparency ‘ Strer?gt;
of Gov’t Gov't Overall Gov't g &Intent
7

Processes & Professionalism _Reach,

Strength of
arrstments Policy Quality Execution. eligious
& Fayirness Capacity & Idgl_origgy &4\
Sensa| nv‘e‘s ment Structures Cultural Erosiol
BDOMEST'C \ Displacement
Gov't/
SUPPORT - o _
“vanuor Corruption & _Rivalry~___
Dev.Ops- _Tribal Fayoritisr

Ethnic/Tribal
V.
Infrastructure; ‘
Service:

Satisfaction
w/ Gains in

Security, Services
Employment Visible Gains

Expectations
th for Security,
Services,

Avera:
con. Employment

g
Connectedness
Advisol of Populatiol Perceived
&Aid

Securi

‘.»
S

Infr, Services, Econ: ‘

Policy & Execution eI

IPerceived Fairness

I
s

Consulting
Group

© PA Knowledge Limited 2009 Page 22

http://www.guardian.co.uk/news/datablog/2010/apr/29/mcchrystal-afghanistan-powerpoint-slide

= OUTSIDE SUPPORT
—_—T0 INSURGENT

FACTIONS

H | Ability t l
'K avedISeratel Kyt0) i

Ins. oordination
Territory Not Fres Aendne
erritory Nof resence actions
(Under Govit <“—Clear & Hold]
& Pakistan k\ /
‘ Ins. Provision .
Of Gov't & ‘

al
" 1 (v:lsurg_en(X
apacity,
“ Perceived 0] %% ‘ Priopritietg'&
Ins. Strategic ‘ Damages & i

CONDITIONS [\ | ‘R 3 oot 72

POPULAR 5 pbotential

e
Religious
In Security,
e [Nt) %\ :
erage ’ /
AN ¢

SR,
Effectiveness

Crime and Narcotics
Coalition Forces & Actions
Physical Environment

T renad M | Population/Popular Support
Slgmﬁcant Infrastructure, Economy, & Services
Delay B | Government

M | Afghanistan Security Forces

M | Insurgents

i}

n

3]

Counter Narcotics/
Crime Ops

Suppot
Enablement
“otine N\

L

Insurgent
Lealx‘;‘elsfs FI{nsurg‘?nl i
ade eCTUiting,
Training, Skill Retention, S

& Experience

Manpower

NSURGENTS\" \
Sl L INARCOTICS

Relati rPhoines | Likelihood o

elative nsurgents

Popular/'| . Crime/Violence'
/Ins. Support
for Payment

HoRhahe
Govtvs
Insurgents

izi theFence [S thizi Activel
é},’"}{’”"“g Syvr‘r’;%a;t‘l,!lzmg wympa izing y

Supporting

Insurgents,
Insurgency,

1]
Pro

Attractiveness Terrain

SUPPORT —=isentun Ao

(Fraction of
Workforce
And Agric.

Legitvs
Ilegit

>

WORKING DRAFT -V3

Digraph applications

transportation
web
food web
WordNet
scheduling
financial
cell phone
infectious disease
game
citation
object graph
inheritance hierarchy

control flow

street intersection
web page
species
synset
task
bank
person
person
board position
journal article
object
class

code block

one-way street
hyperlink
predator-prey relationship
hypernym
precedence constraint
transaction
placed call
infection
legal move
citation
pointer
inherits from

jump

Some digraph problems

Path. Is there a directed path from s to¢?

Shortest path. What is the shortest directed path from s to ¢?

Topological sort. Can you draw the digraph so that all edges point upwards?
Strong connectivity. Is there a directed path between all pairs of vertices?
Transitive closure. For which vertices v and w is there a path from v to w?

PageRank. What is the importance of a web page?

» digraph API

Digraph API

public class Digraph

Digraph (int V)
Digraph(In in)
void addEdge (int v, int w)
Iterable<Integer> adj(int v)
int V()
int E()
Digraph reverse ()

String toString()

In in = new In(args[0]);
Digraph G = new Digraph (in) ;

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v))
StdOut.println(v + "->" + w)

create an empty digraph with V vertices
create a digraph from input stream
add a directed edge v—w
vertices pointing from v
number of vertices
number of edges
reverse of this digraph

string representation

read digraph from

A

input stream

print out each

A

edge (once)

Digraph API

tinyDG. txt
V\13 B $ java Digraph tinyDG.txt
22 < 0->5
4 2 0->1
£ 2->0
> 2 Q 2->3
6 O -
0 1 @ 2) @ 3->5
2 0 3->2
11 12 4->3
12 9 (4) O 4->2
9 10
onn O \® 5->4
7 9 :
10 12 11->4
1}1 ;‘ 11->12
3 5 12-9
6 8
8 6
In in = new In(args[0]) -~ read digraph from
Digraph G = new Digraph(in) ;) input stream

for (int v = 0; v < G.V(); v++) .
_ _ print out each
for (int w : G.adj(v)) edge (once)
StdOut.println(v + "->" + w);

A

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

Q
DY R
/(4

&

adj[

IR

R
N R

1

5 1
0 3
5 2
3 2
4

9 || 4
6 9
6

11 10
12

4 12

Adjacency-lists graph representation: Java implementation

public class Graph

{
private final int V;
private final Bag<Integer>[] adj; <«—+— adjacency lists

public Graph (int V)
{ create empty graph
this.V = V; with V vertices
adj = (Bag<Integer>[]) new Bag[V];

for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>() ;

public void addEdge (int v, int w) <«—— add edge v—w
{
adj[v] .add (w) ;
adj[w] .add (v) ;

public Iterable<Integer> adj(int v) iterator for vertices

{ return adjlv]; } adjacent to v

Adjacency-lists digraph representation: Java implementation

public class Digraph
{

private final int V;

private final Bag<Integer>[] adj;

public Digraph (int V)

{
this.V = V;

adj = (Bag<Integer>[]) new Bag[V];

for (int v = 0; v < V; v++)

adj[v] = new Bag<Integer>() ;

public void addEdge (int v,

{
adj[v] .add (w) ;

public Iterable<Integer> adj(int v)

{ return adj[v];

}

int w)

adjacency lists

create empty digraph
with V vertices

add edge v—w

iterator for vertices
pointing from v

Digraph representations

In practice. Use adjacency-lists representation.

* Algorithms based on iterating over vertices pointing from v.
* Real-world digraphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

: insert edge edge from
representation

iterate over vertices
pointing from v?

fromvtow VvV to w?

list of edges E 1

E E
adjacency matrix V2 1t 1 \Y
adjacency lists E+V 1 outdegree(v) outdegree(v)

t disallows parallel edges

» digraph search

Reachability

Problem. Find all vertices reachable from s along a directed path.

o—> I< @ = I< I > @
' ‘ A
-« @ @ >0< 0=« ¢ »‘
I A A A A
Y
P« @< @< @ »O
ﬁ A A A
Y Y
r< o=@ »’ >’ >@—>0—>@
Y Y \ |
o > @<« +< r< ’ >¢-<—’—>‘
Y Y Y
O~ >0 >0 <0 > »@—>@
A A A
Y Y Y
¢—>‘—>+< ’ >’ >¢<—’<—O
Y Y
I—>0—>6<—0—>0<—I—>0<—6

20

Depth-first search in digraphs

Same method as for undirected graphs.

» Every undirected graph is a digraph (with edges in both directions).
* DFS is a digraph algorithm.

0
DFS (to visit a vertex v) Q G

Mark v as visited. @ e
Recursively visit all unmarked 9 @
vertices w pointing from v. , e X

21

Depth-first search demo

22

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

public class DepthFirstSearch
{

private boolean[] marked;

public DepthFirstSearch(Graph G, int s)
{

marked = new boolean[G.V()];

dfs (G, s);

private void dfs (Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs (G, w);

public boolean visited(int v)
{ return marked[v]; }

true if path to s

constructor marks
vertices connected to s

recursive DFS does the work

client can ask whether any
vertex is connected to s

23

Depth-first search (in directed graphs)

Code for directed graphs identical o undirected one.

[substitute pigraph for Graph]

public class DirectedDFS
{

private boolean[] marked;

public DirectedDFS (Digraph G, int s)
{

marked = new boolean[G.V()];

dfs (G, s);

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs (G, w);

public boolean visited(int v)
{ return marked[v]; }

true if path from s

constructor marks
vertices reachable from s

recursive DFS does the work

client can ask whether any
vertex is reachable from s

24

Reachability application: program control-flow analysis

Every program is a digraph.

» Vertex = basic block of instructions (straight-line program).

» Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.

Determine whether exit is unreachable.

40: <= 1114

T /”—“

42 <=

N~
1121314110

11121314110

<= 214

30:83<=13 :

123156101 ne tai“ o
/ 18: t8<= 15
32:t7<=16
‘ 1213141518 10
2131517 11011 l

l 1112131516 110 111 20 b=t
<=

34: 17

123 l4 519110

111213 15 1ot

t9
t\tZl314!5l10
Il(2!3t5(10111
28 6<= 15 24: l‘|1<}=M
I112l315|10ll1
1 12 B350

123110111 l

11121314110 t112t3110t11

N

121314110

0: <=
—_
ror
A\
2:13<=
3011
\J
4:td<=
t3tdrort
\
6:t1<=10
_
1t3dr
\
8:<=1114
t3dn
v
10: 2<=1n1
11121314
\J

12: 10 <=

1121314110

14 <=
13110

e

44: 10 <= 110

1310

'

46: <= t3
ort

48: 0 <=r1r0

25

Reachability application: mark-sweep garbage collector
Every data structure is a digraph.

« Vertex = object.

» Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program
(starting at a root and following a chain of pointers).

T

26

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
* Mark: mark all reachable objects.

» Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).

/J‘;,/»

|
1 J]J//J
‘\J/J ?];»JJ
N5

S100l

27

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

* Reachability.
e Path finding.
 Topological sort.

Directed cycle detection.

Basis for solving difficult digraph problems.
o 2-satisfiability.

 Directed Euler path.

e Strongly-connected components.

SIAM J. CompuT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJANt

Abstract. The value of depth-first search or “backtracking” as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k,V + k,E + k,for some constants k,, k,, and k5, where Vis the number of vertices and E is the number
of edges of the graph being examined.

28

Breadth-first search in digraphs

Same method as for undirected graphs.

» Every undirected graph is a digraph (with edges in both directions).
* BFS is a digraph algorithm.

BFS (from source vertex s) FTT I I I I

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty: q] i_,ﬁ +—

- remove the least recently added vertex v

- for each unmarked vertex pointing from v: I

add to queue and mark as visited. t } | I

Proposition. BFS computes shortest paths (fewest number of edges).

29

Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source vertices,
find shortest path from any vertex in the set to each other vertex.

Ex. Shortest path from {1,7,10} to 5 is 7=6—4—3—5,

Q. How to implement multi-source constructor?
A. Use BFS, but initialize by enqueuing all source vertices.

30

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.
Solution. BFS with implicit graph.

BFS.
* Choose root web page as source s.
* Maintain a gueue of websites to explore.
* Maintain a st of discovered websites.
e Dequeue the next website and enqueue
websites to which it links
(provided you haven't done so before).

Q. Why not use DFS?

31

Bare-bones web crawler: Java implementation

Queue<String> queue = new Queue<String>() ;

SET<String> discovered = new SET<String>() ;

String root = "http://www.princeton.edu";
queue.enqueue (root) ;
discovered.add (root) ;

while ('!'queue.isEmpty())
{
String v = queue.dequeue() ;
StdOut.println(v) ;
In in = new In(v);
String input = in.readAll () ;

String regexp = "http:// (\\w+\\.)* (\\w+)";

Pattern pattern = Pattern.compile (regexp),; «——

Matcher matcher = pattern.matcher (input) ;
while (matcher.find())
{
String w = matcher.group() ;
if ('discovered.contains(w))
{
discovered.add (w) ;
queue.enqueue (W) ;

gueue of websites to crawl
set of discovered websites

start crawling from root website

read in raw html from next
website in queue

use regular expression to find all URLs
in website of form http://xxx.yyy.zzz
[crude pattern misses relative URLs]

if undiscovered, mark it as discovered
and put on queue

32

» topological sort

33

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,
in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

S vl AW N —= O

. Algorithms

Complexity Theory
Artificial Intelligence
Intro to CS
Cryptography

Scientific Computing
Advanced Programming

1/

e

®

%

tasks

precedence constraint graph

OIC4C,

feasible schedule

34

Topological sort
DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

directed edges DAG

Solution. DFS. What else?

OIC4C,

topological order

35

Topological sort demo

36

Depth-first search order

public class DepthFirstOrder
{
private boolean[] marked;
private Stack<Integer> reversePost;

public DepthFirstOrder (Digraph G)
{
reversePost = new Stack<Integer>();
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
if ('marked[v]) dfs (G, Vv);

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs (G, w);
reversePost.push (v) ;

public Iterable<Integer> reversePost ()
{ return reversePost; }

returns all vertices in
“reverse DFS postorder”

37

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge v—w. When dfs (v) is called:

» Case 1. dfs(w) has already been called and returned.
Thus, w was done before v.

» Case 2: dfs(w) has not yet been called.
dfs (w) will get called directly or indirectly
by dfs (v) and will finish before dafs (v).
Thus, w will be done before v.

» Case 3: dfs(w) has already been called,
but has not yet returned.
Can't happen in a DAG: function call stack contains
path from w to v, so v—w would complete a cycle.

dfs (0)

dfs (1)
dfs (4)
4 done

1 done

dfs (2)

2 done

dfs (5)

5 done
0 done

ExX: ——> dfs (3)

case |1 é
dfs (6)

case 2 <I 6 done

3 done

done

all vertices pointing from 3 are done before 3 is done,
so they appear after 3 in topological order

38

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

« If directed cycle, topological order impossible.

» If no directed cycle, DFS-based algorithm finds a topological order.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle.
Solution. DFS. What else? See textbook.

39

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks?

DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.

PAGE 3

DEPARTMENT COURSE DESCRIPTON PREREQS
COMPUTER CPSC Y32 | INTERMEDIATE COMPILER | CPSC 432
SCIENCE

e LA o

http:/ /xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

40

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B % javac A.java
{ A.java:l: cyclic inheritance
“ e involving A
} public class A extends B { }
1 error

public class B extends C

{

public class C extends A
{

41

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

@ O 0O ‘| Workbook1
<> A | B | C | D
1 "=B1+1" "=C1+1" "=A1l+1"
2
3
4
5
6 _
7 Microsoft Excel cannot calculate a formula.
8 Cell references in the formula refer to the formula's
result, creating a circular reference. Try one of the
9 following:
10 « If you accidentally created the circular reference, click
OK. This will display the Circular Reference toolbar and
1 1 help for using it to correct your formula.
« To continue leaving the formula as it is, click Cancel.
12 (Cancel) E—OK—3
13
14
15
16
17
18

« < » »i T Sheetl |Sheet2 | Sheet3

» strong components

43

Strongly-connected components

Def. Vertices v and w are strongly connected if there is a directed path
from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:
* v is strongly connected to v.

» If vis strongly connected to w, then w is strongly connected to v.

e If vis strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.

@ (2

44

Connected components vs. strongly-connected components

v and w are connected if there is
a path between v and w

3 connected components

connected component id (easy to compute with DFS)

O 1 2 3 4 5 6 7 8 910 11 12
cc[] O 0 0 0 0 01 1 1 2 2 2 2

public int connected(int v, int w)

{ return cc[v] == cc[w]; }

A
I

constant-time client connectivity query

v and w are strongly connected if there is a directed

path from v to w and a directed path from w to v

5 strongly-connected components

strongly-connected component id (how to compute?)

0O 1 2 3 4 5 6 7 8 910 11 12
scc[] 1 0 1 1 1 1 3 4 3 2 2 2 2

public int stronglyConnected(int v, int w)

{ return scc[v] == scc[w]; }

A
I

constant-time client strong-connectivity query

45

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

A &

m / VOIC gfea{' egref
& “~

-qill fish
northerm copperbelly blue q! (ISI

water snake

TT—

o
iR
'{; :g I-';..
(G2
--,‘.\e,,\. ,?,‘.";.f

leopard frog

spotted salamander

algae (magnified)

cattails

http:/ /www.twingroves.district96.k12.il.us /Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.

Strong component application: software modules

Software module dependency graph.
e Vertex = software module.
e Edge: from module to dependency.

develinspr

i

/
il
iR

i

» l|l
T oleaut32.dily |
)
%
P
.V
Al
dII 4
S

'
i
\

Wi

Firefox Internet Explorer

Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.
Approach 2. Use to improve design!

Strong components algorithms: brief history

1960s: Core OR problem.
e Widely studied; some practical algorithms.
e Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

e Classic algorithm.

* Level of difficulty: Algs4++.

* Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
* Forgot notes for lecture; developed algorithm in order to teach it!
e Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
e Gabow: fixed old OR algorithm.
* Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

48

Kosaraju's algorithm: intuition
Reverse graph. Strong components in G are same as in G~

Kernel DAG. Contract each strong component into a single vertex.

?
Idea, how to compute:

» Compute topological order (reverse postorder) in kernel DAG.
e Run DFS, considering vertices in reverse topological order.

first vertex is a sink
e (has no edges pointing from it)

@ (2

digraph G and its strong components kernel DAG of G (in reverse topological order)

49

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.
* Run DFS on G to compute reverse postorder.
e Run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph Gf

ONSOL0
DAY

g@@

check unmarked vertices in the order reverse postorder for use in second dfs ()
0123456738910 11 12 102453119121067 8

dfs(0)
dfs(6)
dfs(8)
check 6
8 done
dfs(7)
7 done
6 done
dfs(2)
dfs(4)
dfs(11)
dfs(9)
dfs(12)
check 11
dfs(10)
check 9
10 done
12 done
check 7
check 6

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.
e Run DFS on G® to compute reverse postorder.
* Run DFS on G, considering vertices in order given by first DFS.

DFS in original digraph G

check unmarked vertices in the order
102453119 12 106 7 8

dfs (1) dfs(0) dfs(11) dfs(6) dfs(7)
1 done dfs(5) check 4 check 9 check 6
dfs(4) dfs(12) check 4 check 9
dfs(3) dfs(9) dfs(8) 7 done
check 5 check 11 check 6
dfs(2) dfs(10) 8 done
check 0 check 12 check 0
check 3 10 done 6 done
2 done 9 done
3 done 12 done
check 2 11 done
4 done
5 done
check 1
0 done

Proposition. Second DFS gives strong components. (1)

Connected components in an undirected graph (with DFS)

public class CC

{
private boolean marked[];
private int[] id;
private int count;

public CC(Graph G)

{
marked = new boolean[G.V()];
id = new int[G.V()];

for (int v = 0; v < G.V(); v++)
{
if ('marked[v])
{
dfs (G, v);
count++;

}

private void dfs(Graph G, int v)
{

marked[v] = true;

id[v] = count;

for (int w : G.adj(v))

if ('marked[w])
dfs (G, w);

}

public boolean connected(int v, int w)
{ return id[v] == id[w]; }

Strong components in a digraph (with two DFSs)

public class KosarajuSCC

{
private boolean marked[];
private int[] id;
private int count;

public KosarajuSCC (Digraph G)
{
marked = new boolean[G.V()];
id = new int[G.V()];
DepthFirstOrder dfs = new DepthFirstOrder (G.reverse()) ;
for (int v : dfs.reversePost())
{
if ('marked|[v])
{
dfs (G, v);
count++;

}

private void dfs(Digraph G, int wv)
{

marked[v] = true;

id[v] = count;

for (int w : G.adj(v))

if ('marked[w])
dfs (G, w);

}

public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w]; }

Digraph-processing summary: algorithms of the day

single-source

DFS
reachability
topological sort DFS
(DAG)
%\@* |
strong (2) Kosaraju
components ON /@<: DFS (twice)
19,552 Ol ey

