001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
package stdlib;
/* ***********************************************************************
* Compilation: javac StdRandom.java
* Execution: java StdRandom
*
* A library of static methods to generate pseudo-random numbers from
* different distributions (bernoulli, uniform, gaussian, discrete,
* and exponential). Also includes a method for shuffling an array.
*
*
* % java StdRandom 5
* seed = 1316600602069
* 59 16.81826 true 8.83954 0
* 32 91.32098 true 9.11026 0
* 35 10.11874 true 8.95396 3
* 92 32.88401 true 8.87089 0
* 72 92.55791 true 9.46241 0
*
* % java StdRandom 5
* seed = 1316600616575
* 96 60.17070 true 8.72821 0
* 79 32.01607 true 8.58159 0
* 81 59.49065 true 9.10423 1
* 96 51.65818 true 9.02102 0
* 99 17.55771 true 8.99762 0
*
* % java StdRandom 5 1316600616575
* seed = 1316600616575
* 96 60.17070 true 8.72821 0
* 79 32.01607 true 8.58159 0
* 81 59.49065 true 9.10423 1
* 96 51.65818 true 9.02102 0
* 99 17.55771 true 8.99762 0
*
*
* Remark
* ------
* - Relies on randomness of nextDouble() method in java.util.Random
* to generate pseudorandom numbers in [0, 1).
*
* - This library allows you to set and get the pseudorandom number seed.
*
* - See http://www.honeylocust.com/RngPack/ for an industrial
* strength random number generator in Java.
*
*************************************************************************/
import java.util.Random;
/**
* <i>Standard random</i>. This class provides methods for generating
* random number from various distributions.
* <p>
* For additional documentation, see <a href="http://introcs.cs.princeton.edu/22library">Section 2.2</a> of
* <i>Introduction to Programming in Java: An Interdisciplinary Approach</i> by Robert Sedgewick and Kevin Wayne.
*/
public final class StdRandom {
private static Random random; // pseudo-random number generator
private static long seed; // pseudo-random number generator seed
// static initializer
static {
// this is how the seed was set in Java 1.4
seed = System.currentTimeMillis();
random = new Random(seed);
}
// don't instantiate
private StdRandom() { }
/**
* Set the seed of the psedurandom number generator.
*/
public static void setSeed(long s) {
seed = s;
random = new Random(seed);
}
/**
* Get the seed of the psedurandom number generator.
*/
public static long getSeed() {
return seed;
}
/**
* Return real number uniformly in [0, 1).
*/
public static double uniform() {
return random.nextDouble();
}
/**
* Return an integer uniformly between 0 (inclusive) and N (exclusive).
*/
public static int uniform(int N) {
return random.nextInt(N);
}
///////////////////////////////////////////////////////////////////////////
// STATIC METHODS BELOW RELY ON JAVA.UTIL.RANDOM ONLY INDIRECTLY VIA
// THE STATIC METHODS ABOVE.
///////////////////////////////////////////////////////////////////////////
/**
* Return real number uniformly in [0, 1).
*/
public static double random() {
return uniform();
}
/**
* Return int uniformly in [a, b).
*/
public static int uniform(int a, int b) {
return (int) (a + uniform() * (((double)b)-((double)a)));
}
/**
* Return real number uniformly in [a, b).
*/
public static double uniform(double a, double b) {
return a + uniform() * (b-a);
}
/**
* Return a boolean, which is true with probability p, and false otherwise.
*/
public static boolean bernoulli(double p) {
return uniform() < p;
}
/**
* Return a boolean, which is true with probability .5, and false otherwise.
*/
public static boolean bernoulli() {
return bernoulli(0.5);
}
/**
* Return a real number with a standard Gaussian distribution.
*/
public static double gaussian() {
// use the polar form of the Box-Muller transform
double r, x, y;
do {
x = uniform(-1.0, 1.0);
y = uniform(-1.0, 1.0);
r = x*x + y*y;
} while (r >= 1 || r == 0);
return x * Math.sqrt(-2 * Math.log(r) / r);
// Remark: y * Math.sqrt(-2 * Math.log(r) / r)
// is an independent random gaussian
}
/**
* Return a real number from a gaussian distribution with given mean and stddev
*/
public static double gaussian(double mean, double stddev) {
return mean + stddev * gaussian();
}
/**
* Return an integer with a geometric distribution with mean 1/p.
*/
public static int geometric(double p) {
// using algorithm given by Knuth
return (int) Math.ceil(Math.log(uniform()) / Math.log(1.0 - p));
}
/**
* Return an integer with a Poisson distribution with mean lambda.
*/
public static int poisson(double lambda) {
// using algorithm given by Knuth
// see http://en.wikipedia.org/wiki/Poisson_distribution
int k = 0;
double p = 1.0;
double L = Math.exp(-lambda);
do {
k++;
p *= uniform();
} while (p >= L);
return k-1;
}
/**
* Return a real number with a Pareto distribution with parameter alpha.
*/
public static double pareto(double alpha) {
return Math.pow(1 - uniform(), -1.0/alpha) - 1.0;
}
/**
* Return a real number with a Cauchy distribution.
*/
public static double cauchy() {
return Math.tan(Math.PI * (uniform() - 0.5));
}
/**
* Return a number from a discrete distribution: i with probability a[i].
* Precondition: array entries are nonnegative and their sum (very nearly) equals 1.0.
*/
public static int discrete(double[] a) {
double EPSILON = 1E-14;
double sum = 0.0;
for (int i = 0; i < a.length; i++) {
if (a[i] < 0.0) throw new IllegalArgumentException("array entry " + i + " is negative: " + a[i]);
sum = sum + a[i];
}
if (sum > 1.0 + EPSILON || sum < 1.0 - EPSILON)
throw new IllegalArgumentException("sum of array entries not equal to one: " + sum);
// the for loop may not return a value when both r is (nearly) 1.0 and when the
// cumulative sum is less than 1.0 (as a result of floating-point roundoff error)
while (true) {
double r = uniform();
sum = 0.0;
for (int i = 0; i < a.length; i++) {
sum = sum + a[i];
if (sum > r) return i;
}
}
}
/**
* Return a real number from an exponential distribution with rate lambda.
*/
public static double exp(double lambda) {
return -Math.log(1 - uniform()) / lambda;
}
/**
* Rearrange the elements of an array in random order.
*/
public static void shuffle(Object[] a) {
int N = a.length;
for (int i = 0; i < N; i++) {
int r = i + uniform(N-i); // between i and N-1
Object temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
/**
* Rearrange the elements of a double array in random order.
*/
public static void shuffle(double[] a) {
int N = a.length;
for (int i = 0; i < N; i++) {
int r = i + uniform(N-i); // between i and N-1
double temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
/**
* Rearrange the elements of an int array in random order.
*/
public static void shuffle(int[] a) {
int N = a.length;
for (int i = 0; i < N; i++) {
int r = i + uniform(N-i); // between i and N-1
int temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
/**
* Rearrange the elements of the subarray a[lo..hi] in random order.
*/
public static void shuffle(Object[] a, int lo, int hi) {
if (lo < 0 || lo > hi || hi >= a.length)
throw new RuntimeException("Illegal subarray range");
for (int i = lo; i <= hi; i++) {
int r = i + uniform(hi-i+1); // between i and hi
Object temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
/**
* Rearrange the elements of the subarray a[lo..hi] in random order.
*/
public static void shuffle(double[] a, int lo, int hi) {
if (lo < 0 || lo > hi || hi >= a.length)
throw new RuntimeException("Illegal subarray range");
for (int i = lo; i <= hi; i++) {
int r = i + uniform(hi-i+1); // between i and hi
double temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
/**
* Rearrange the elements of the subarray a[lo..hi] in random order.
*/
public static void shuffle(int[] a, int lo, int hi) {
if (lo < 0 || lo > hi || hi >= a.length)
throw new RuntimeException("Illegal subarray range");
for (int i = lo; i <= hi; i++) {
int r = i + uniform(hi-i+1); // between i and hi
int temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
/**
* Unit test.
*/
public static void main(String[] args) {
int N = Integer.parseInt(args[0]);
if (args.length == 2) StdRandom.setSeed(Long.parseLong(args[1]));
double[] t = { .5, .3, .1, .1 };
StdOut.println("seed = " + StdRandom.getSeed());
for (int i = 0; i < N; i++) {
StdOut.format("%2d " , uniform(100));
StdOut.format("%8.5f ", uniform(10.0, 99.0));
StdOut.format("%5b " , bernoulli(.5));
StdOut.format("%7.5f ", gaussian(9.0, .2));
StdOut.format("%2d " , discrete(t));
StdOut.println();
}
String[] a = "A B C D E F G".split(" ");
for (String s : a)
StdOut.print(s + " ");
StdOut.println();
}
}
|