001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
package algs91; // section 9.9
import stdlib.*;
import algs12.Complex;
/* ***********************************************************************
 *  Compilation:  javac FFT.java
 *  Execution:    java FFT N
 *  Dependencies: Complex.java
 *
 *  Compute the FFT and inverse FFT of a length N complex sequence.
 *  Bare bones implementation that runs in O(N log N) time. Our goal
 *  is to optimize the clarity of the code, rather than performance.
 *
 *  Limitations
 *  -----------
 *   -  assumes N is a power of 2
 *
 *   -  not the most memory efficient algorithm (because it uses
 *      an object type for representing complex numbers and because
 *      it re-allocates memory for the subarray, instead of doing
 *      in-place or reusing a single temporary array)
 *
 *************************************************************************/

public class FFT {

  // compute the FFT of x[], assuming its length is a power of 2
  public static Complex[] fft(Complex[] x) {
    int N = x.length;

    // base case
    if (N == 1) return new Complex[] { x[0] };

    // radix 2 Cooley-Tukey FFT
    if (N % 2 != 0) { throw new Error("N is not a power of 2"); }

    // fft of even terms
    Complex[] even = new Complex[N/2];
    for (int k = 0; k < N/2; k++) {
      even[k] = x[2*k];
    }
    Complex[] q = fft(even);

    // fft of odd terms
    Complex[] odd  = even;  // reuse the array
    for (int k = 0; k < N/2; k++) {
      odd[k] = x[2*k + 1];
    }
    Complex[] r = fft(odd);

    // combine
    Complex[] y = new Complex[N];
    for (int k = 0; k < N/2; k++) {
      double kth = -2 * k * Math.PI / N;
      Complex wk = new Complex(Math.cos(kth), Math.sin(kth));
      y[k]       = q[k].plus(wk.times(r[k]));
      y[k + N/2] = q[k].minus(wk.times(r[k]));
    }
    return y;
  }


  // compute the inverse FFT of x[], assuming its length is a power of 2
  public static Complex[] ifft(Complex[] x) {
    int N = x.length;
    Complex[] y = new Complex[N];

    // take conjugate
    for (int i = 0; i < N; i++) {
      y[i] = x[i].conjugate();
    }

    // compute forward FFT
    y = fft(y);

    // take conjugate again
    for (int i = 0; i < N; i++) {
      y[i] = y[i].conjugate();
    }

    // divide by N
    for (int i = 0; i < N; i++) {
      y[i] = y[i].times(1.0 / N);
    }

    return y;

  }

  // compute the circular convolution of x and y
  public static Complex[] cconvolve(Complex[] x, Complex[] y) {

    // should probably pad x and y with 0s so that they have same length
    // and are powers of 2
    if (x.length != y.length) { throw new Error("Dimensions don't agree"); }

    int N = x.length;

    // compute FFT of each sequence
    Complex[] a = fft(x);
    Complex[] b = fft(y);

    // point-wise multiply
    Complex[] c = new Complex[N];
    for (int i = 0; i < N; i++) {
      c[i] = a[i].times(b[i]);
    }

    // compute inverse FFT
    return ifft(c);
  }


  // compute the linear convolution of x and y
  public static Complex[] convolve(Complex[] x, Complex[] y) {
    Complex ZERO = new Complex(0, 0);

    Complex[] a = new Complex[2*x.length];
    for (int i = 0;        i <   x.length; i++) a[i] = x[i];
    for (int i = x.length; i < 2*x.length; i++) a[i] = ZERO;

    Complex[] b = new Complex[2*y.length];
    for (int i = 0;        i <   y.length; i++) b[i] = y[i];
    for (int i = y.length; i < 2*y.length; i++) b[i] = ZERO;

    return cconvolve(a, b);
  }

  // display an array of Complex numbers to standard output
  public static void show(Complex[] x, String title) {
    StdOut.println(title);
    StdOut.println("-------------------");
    for (Complex element : x) {
      StdOut.println(element);
    }
    StdOut.println();
  }


  /* *******************************************************************
   *  Test client and sample execution
   *
   *  % java FFT 4
   *  x
   *  -------------------
   *  -0.03480425839330703
   *  0.07910192950176387
   *  0.7233322451735928
   *  0.1659819820667019
   *
   *  y = fft(x)
   *  -------------------
   *  0.9336118983487516
   *  -0.7581365035668999 + 0.08688005256493803i
   *  0.44344407521182005
   *  -0.7581365035668999 - 0.08688005256493803i
   *
   *  z = ifft(y)
   *  -------------------
   *  -0.03480425839330703
   *  0.07910192950176387 + 2.6599344570851287E-18i
   *  0.7233322451735928
   *  0.1659819820667019 - 2.6599344570851287E-18i
   *
   *  c = cconvolve(x, x)
   *  -------------------
   *  0.5506798633981853
   *  0.23461407150576394 - 4.033186818023279E-18i
   *  -0.016542951108772352
   *  0.10288019294318276 + 4.033186818023279E-18i
   *
   *  d = convolve(x, x)
   *  -------------------
   *  0.001211336402308083 - 3.122502256758253E-17i
   *  -0.005506167987577068 - 5.058885073636224E-17i
   *  -0.044092969479563274 + 2.1934338938072244E-18i
   *  0.10288019294318276 - 3.6147323062478115E-17i
   *  0.5494685269958772 + 3.122502256758253E-17i
   *  0.240120239493341 + 4.655566391833896E-17i
   *  0.02755001837079092 - 2.1934338938072244E-18i
   *  4.01805098805014E-17i
   *
   *********************************************************************/

  public static void main(String[] args) {
    int N = Integer.parseInt(args[0]);
    Complex[] x = new Complex[N];

    // original data
    for (int i = 0; i < N; i++) {
      x[i] = new Complex(i, 0);
      x[i] = new Complex(-2*Math.random() + 1, 0);
    }
    show(x, "x");

    // FFT of original data
    Complex[] y = fft(x);
    show(y, "y = fft(x)");

    // take inverse FFT
    Complex[] z = ifft(y);
    show(z, "z = ifft(y)");

    // circular convolution of x with itself
    Complex[] c = cconvolve(x, x);
    show(c, "c = cconvolve(x, x)");

    // linear convolution of x with itself
    Complex[] d = convolve(x, x);
    show(d, "d = convolve(x, x)");
  }

}