01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
|
package algs53; // section 5.3
import stdlib.*;
/* *************************************************************
* Compilation: javac Manacher.java
* Execution: java Manacher text
*
* Computes the longest palindromic substring in linear time
* using Manacher's algorithm.
*
* Credits: The code is lifted from the following excellent reference
* http://www.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html
*
***************************************************************/
public class XManacher {
private final int[] p; // p[i] = length of longest palindromic substring of t, centered at i
private final String s; // original string
private final char[] t; // transformed string
public XManacher(String s) {
this.s = s;
t = preprocess(s);
p = new int[t.length];
int center = 0, right = 0;
for (int i = 1; i < t.length-1; i++) {
int mirror = 2*center - i;
if (right > i) p[i] = Math.min(right - i, p[mirror]);
// attempt to expand palindrome centered at i
while (t[i + (1 + p[i])] == t[i - (1 + p[i])])
p[i]++;
// if palindrome centered at i expands past right,
// adjust center based on expanded palindrome.
if (i + p[i] > right) {
center = i;
right = i + p[i];
}
}
}
// Transform s into t.
// For example, if s = "abba", then t = "$#a#b#b#a#@"
// the # are interleaved to avoid even/odd-length palindromes uniformly
// $ and @ are prepended and appended to each end to avoid bounds checking
public char[] preprocess(String s) {
char[] t = new char[s.length()*2 + 3];
t[0] = '$';
t[s.length()*2 + 2] = '@';
for (int i = 0; i < s.length(); i++) {
t[2*i + 1] = '#';
t[2*i + 2] = s.charAt(i);
}
t[s.length()*2 + 1] = '#';
return t;
}
// longest palindromic substring
public String longestPalindromicSubstring() {
int length = 0; // length of longest palindromic substring
int center = 0; // center of longest palindromic substring
for (int i = 1; i < p.length-1; i++) {
if (p[i] > length) {
length = p[i];
center = i;
}
}
return s.substring((center - 1 - length) / 2, (center - 1 + length) / 2);
}
// longest palindromic substring centered at index i/2
public String longestPalindromicSubstring(int i) {
i = i + 2;
int length = p[i];
int center = i;
return s.substring((center - 1 - length) / 2, (center - 1 + length) / 2);
}
// test client
public static void main(String[] args) {
String s = args[0];
XManacher manacher = new XManacher(s);
StdOut.println(manacher.longestPalindromicSubstring());
for (int i = 0; i < 2*s.length(); i++)
StdOut.println(i + ": " + manacher.longestPalindromicSubstring(i));
}
}
|