001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
package algs43;
import stdlib.*;
import algs13.Queue;
import algs15.WeightedUF;
import algs24.MinPQ;
/* ***********************************************************************
* Compilation: javac LazyPrimMST.java
* Execution: java LazyPrimMST filename.txt
* Dependencies: EdgeWeightedGraph.java Edge.java Queue.java
* MinPQ.java UF.java In.java StdOut.java
* Data files: http://algs4.cs.princeton.edu/43mst/tinyEWG.txt
* http://algs4.cs.princeton.edu/43mst/mediumEWG.txt
* http://algs4.cs.princeton.edu/43mst/largeEWG.txt
*
* Compute a minimum spanning forest using a lazy version of Prim's
* algorithm.
*
* % java LazyPrimMST tinyEWG.txt
* 0-7 0.16000
* 1-7 0.19000
* 0-2 0.26000
* 2-3 0.17000
* 5-7 0.28000
* 4-5 0.35000
* 6-2 0.40000
* 1.81000
*
* % java LazyPrimMST mediumEWG.txt
* 0-225 0.02383
* 49-225 0.03314
* 44-49 0.02107
* 44-204 0.01774
* 49-97 0.03121
* 202-204 0.04207
* 176-202 0.04299
* 176-191 0.02089
* 68-176 0.04396
* 58-68 0.04795
* 10.46351
*
* % java LazyPrimMST largeEWG.txt
* ...
* 647.66307
*
*************************************************************************/
public class LazyPrimMST {
private double weight; // total weight of MST
private final Queue<Edge> mst; // edges in the MST
private final boolean[] marked; // marked[v] = true if v on tree
private final MinPQ<Edge> pq; // edges with one endpoint in tree
// compute minimum spanning forest of G
public LazyPrimMST(EdgeWeightedGraph G) {
mst = new Queue<>();
pq = new MinPQ<>();
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++) // run Prim from all vertices to
if (!marked[v]) prim(G, v); // get a minimum spanning forest
// check optimality conditions
assert check(G);
}
// run Prim's algorithm
private void prim(EdgeWeightedGraph G, int s) {
scan(G, s);
while (!pq.isEmpty()) { // better to stop when mst has V-1 edges
Edge e = pq.delMin(); // smallest edge on pq
int v = e.either(), w = e.other(v); // two endpoints
assert marked[v] || marked[w];
if (marked[v] && marked[w]) continue; // lazy, both v and w already scanned
mst.enqueue(e); // add e to MST
weight += e.weight();
if (!marked[v]) scan(G, v); // v becomes part of tree
if (!marked[w]) scan(G, w); // w becomes part of tree
}
}
// add all edges e incident to v onto pq if the other endpoint has not yet been scanned
private void scan(EdgeWeightedGraph G, int v) {
assert !marked[v];
marked[v] = true;
for (Edge e : G.adj(v))
if (!marked[e.other(v)]) pq.insert(e);
}
// return edges in MST as an Iterable
public Iterable<Edge> edges() {
return mst;
}
// return weight of MST
public double weight() {
return weight;
}
// check optimality conditions (takes time proportional to E V lg* V)
private boolean check(EdgeWeightedGraph G) {
// check weight
double totalWeight = 0.0;
for (Edge e : edges()) {
totalWeight += e.weight();
}
double EPSILON = 1E-12;
if (Math.abs(totalWeight - weight()) > EPSILON) {
System.err.format("Weight of edges does not equal weight(): %f vs. %f\n", totalWeight, weight());
return false;
}
// check that it is acyclic
WeightedUF uf = new WeightedUF(G.V());
for (Edge e : edges()) {
int v = e.either(), w = e.other(v);
if (uf.connected(v, w)) {
System.err.println("Not a forest");
return false;
}
uf.union(v, w);
}
// check that it is a spanning forest
for (Edge e : edges()) {
int v = e.either(), w = e.other(v);
if (!uf.connected(v, w)) {
System.err.println("Not a spanning forest");
return false;
}
}
// check that it is a minimal spanning forest (cut optimality conditions)
for (Edge e : edges()) {
int v = e.either(), w = e.other(v);
// all edges in MST except e
uf = new WeightedUF(G.V());
for (Edge f : mst) {
int x = f.either(), y = f.other(x);
if (f != e) uf.union(x, y);
}
// check that e is min weight edge in crossing cut
for (Edge f : G.edges()) {
int x = f.either(), y = f.other(x);
if (!uf.connected(x, y)) {
if (f.weight() < e.weight()) {
System.err.println("Edge " + f + " violates cut optimality conditions");
return false;
}
}
}
}
return true;
}
public static void main(String[] args) {
In in = new In(args[0]);
EdgeWeightedGraph G = new EdgeWeightedGraph(in);
LazyPrimMST mst = new LazyPrimMST(G);
for (Edge e : mst.edges()) {
StdOut.println(e);
}
StdOut.format("%.5f\n", mst.weight());
}
}
|