| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 
 | // Exercise 4.2.39 (Solution published at http://algs4.cs.princeton.edu/)
package algs42;
import stdlib.*;
import algs13.Queue;
/* ***********************************************************************
 *  Compilation:  javac TopologicalQueue.java
 *  Execution:    java TopologicalQueue V E F
 *  Dependencies: Queue.java
 *
 *  Compute topological ordering of a DAG using queue-based algorithm.
 *  Runs in O(E + V) time.
 *
 *
 *************************************************************************/
public class XTopologicalQueue {
  private final Queue<Integer> order;     // vertices in topological order
  private final int[] indegree;           // indegree[v] = indegree of vertex v
  private final int[] rank;               // rank[v] = order where vertex v appers in order
  private int count;                // for computing the ranks
  public XTopologicalQueue(Digraph G) {
    indegree = new int[G.V()];
    rank = new int[G.V()];
    order = new Queue<>();
    // compute indegrees
    for (int v = 0; v < G.V(); v++) {
      for (int w : G.adj(v)) {
        indegree[w]++;
      }
    }
    // initialize queue to contain all vertices with indegree = 0
    Queue<Integer> queue = new Queue<>();
    for (int v = 0; v < G.V(); v++)
      if (indegree[v] == 0) queue.enqueue(v);
    while (!queue.isEmpty()) {
      int v = queue.dequeue();
      order.enqueue(v);
      rank[v] = count++;
      for (int w : G.adj(v)) {
        indegree[w]--;
        if (indegree[w] == 0) queue.enqueue(w);
      }
    }
  }
  // is G a directed acyclic graph?
  public boolean isDAG() {
    for (int element : indegree)
      if (element != 0) return false;
    return true;
  }
  // the vertices in topological order (assuming G is a DAG)
  public Iterable<Integer> order() {
    return order;
  }
  // the rank of vertex v in topological order
  public int rank(int v) {
    return rank[v];
  }
  // certify that digraph is acyclic
  private boolean check(Digraph G) {
    // digraph is acyclic
    if (isDAG()) {
      // check that ranks are a permutation of 0 to V-1
      boolean[] found = new boolean[G.V()];
      for (int i = 0; i < G.V(); i++) {
        found[rank(i)] = true;
      }
      for (int i = 0; i < G.V(); i++) {
        if (!found[i]) {
          System.err.println("No vertex with rank " + i);
          return false;
        }
      }
      // check that ranks provide a valid toplogical order
      for (int v = 0; v < G.V(); v++) {
        for (int w : G.adj(v)) {
          if (rank(v) > rank(w)) {
            System.err.format("%d-%d: rank(%d) = %d, rank(%d) = %d\n",
                v, w, v, rank(v), w, rank(w));
            return false;
          }
        }
      }
      // check that order() is consistent with rank()
      int r = 0;
      for (int v : order()) {
        if (rank(v) != r) {
          System.err.println("order() and rank() inconsistent");
          return false;
        }
        r++;
      }
    }
    return true;
  }
  public static void main(String[] args) {
    args = new String[] { "10", "20", "2" };
    // create random DAG with V vertices and E edges; then add F random edges
    int V = Integer.parseInt(args[0]);
    int E = Integer.parseInt(args[1]);
    int F = Integer.parseInt(args[2]);
    Digraph G = new Digraph(V);
    int[] vertices = new int[V];
    for (int i = 0; i < V; i++) vertices[i] = i;
    StdRandom.shuffle(vertices);
    for (int i = 0; i < E; i++) {
      int v, w;
      do {
        v = StdRandom.uniform(V);
        w = StdRandom.uniform(V);
      } while (v >= w);
      G.addEdge(vertices[v], vertices[w]);
    }
    // add F extra edges
    for (int i = 0; i < F; i++) {
      int v = (int) (Math.random() * V);
      int w = (int) (Math.random() * V);
      G.addEdge(v, w);
    }
    StdOut.println(G);
    // find a directed cycle
    XTopologicalQueue topological = new XTopologicalQueue(G);
    if (!topological.isDAG()) {
      StdOut.println("Not a DAG");
    }
    // or give topologial sort
    else {
      StdOut.print("Topological order: ");
      for (int v : topological.order()) {
        StdOut.print(v + " ");
      }
      StdOut.println();
    }
  }
}
 |