001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
package algs42;
import stdlib.*;
import algs13.Queue;
/* ***********************************************************************
 *  Compilation:  javac KosarajuSharirSCC.java
 *  Execution:    java KosarajuSharirSCC filename.txt
 *  Dependencies: Digraph.java TransitiveClosure.java StdOut.java In.java
 *  Data files:   http://algs4.cs.princeton.edu/42directed/tinyDG.txt
 *
 *  Compute the strongly-connected components of a digraph using the
 *  Kosaraju-Sharir algorithm.
 *
 *  Runs in O(E + V) time.
 *
 *  % java KosarajuSCC tinyDG.txt
 *  5 components
 *  1
 *  0 2 3 4 5
 *  9 10 11 12
 *  6
 *  7 8
 *
 *  % java KosarajuSharirSCC mediumDG.txt
 *  10 components
 *  21
 *  2 5 6 8 9 11 12 13 15 16 18 19 22 23 25 26 28 29 30 31 32 33 34 35 37 38 39 40 42 43 44 46 47 48 49
 *  14
 *  3 4 17 20 24 27 36
 *  41
 *  7
 *  45
 *  1
 *  0
 *  10
 *
 *************************************************************************/

public class XKosarajuSharirReverseSCC {
  private final boolean[] marked;     // marked[v] = has vertex v been visited?
  private final int[] id;             // id[v] = id of strong component containing v
  private int count;                  // number of strongly-connected components


  public XKosarajuSharirReverseSCC(Digraph G) {

    // compute reverse postorder of graph
    Digraph R = G.reverse ();
    DepthFirstOrder dfs = new DepthFirstOrder(G);

    // run DFS on G.reverse(), using reverse postorder to guide calculation
    marked = new boolean[G.V()];
    id = new int[G.V()];
    for (int v : dfs.reversePost()) {
      if (!marked[v]) {
        dfs(R, v);
        count++;
      }
    }

    // check that id[] gives strong components
    assert check(G);
  }

  // DFS on graph G
  private void dfs(Digraph G, int v) {
    marked[v] = true;
    id[v] = count;
    for (int w : G.adj(v)) {
      if (!marked[w]) dfs(G, w);
    }
  }

  // return the number of strongly connected components
  public int count() { return count; }

  // are v and w strongly connected?
  public boolean stronglyConnected(int v, int w) {
    return id[v] == id[w];
  }

  // id of strong component containing v
  public int id(int v) {
    return id[v];
  }

  // does the id[] array contain the strongly connected components?
  private boolean check(Digraph G) {
    TransitiveClosure tc = new TransitiveClosure(G);
    for (int v = 0; v < G.V(); v++) {
      for (int w = 0; w < G.V(); w++) {
        if (stronglyConnected(v, w) != (tc.reachable(v, w) && tc.reachable(w, v)))
          return false;
      }
    }
    return true;
  }

  public static void main(String[] args) {
    //args = new String[] { "data/tinyDG.txt" };
    args = new String[] { "data/mediumDG.txt" };

    In in = new In(args[0]);
    Digraph G = DigraphGenerator.fromIn(in);
    XKosarajuSharirReverseSCC scc = new XKosarajuSharirReverseSCC(G);
    if (!scc.check(G)) throw new Error ();

    // number of connected components
    int M = scc.count();
    StdOut.println(M + " components");

    // compute list of vertices in each strong component
    @SuppressWarnings("unchecked")
    Queue<Integer>[] components = new Queue[M];
    for (int i = 0; i < M; i++) {
      components[i] = new Queue<>();
    }
    for (int v = 0; v < G.V(); v++) {
      components[scc.id(v)].enqueue(v);
    }

    // print results
    for (int i = 0; i < M; i++) {
      for (int v : components[i]) {
        StdOut.print(v + " ");
      }
      StdOut.println();
    }

  }

}