| 
0102
 03
 04
 05
 06
 07
 08
 09
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 
 | package algs42;
import stdlib.*;
import algs13.Queue;
/* ***********************************************************************
 *  Compilation:  javac BruteSCC.java
 *  Dependencies: Digraph.java TransitiveClosure.java
 *
 *  Compute the strongly-connected components of a digraph using
 *  brute force.
 *
 *  Runs in O(EV) time.
 *
 *  % java BruteSCC tinyDG.txt
 *  5 components
 *  0 2 3 4 5
 *  1
 *  6
 *  7 8
 *  9 10 11 12
 *
 *************************************************************************/
public class XBruteSCC {
  private int count;    // number of strongly connected components
  private final int[] id;     // id[v] = id of strong component containing v
  public XBruteSCC(Digraph G) {
    // initially each vertex is in its own component
    id = new int[G.V()];
    for (int v = 0; v < G.V(); v++)
      id[v] = v;
    // compute transitive closure
    TransitiveClosure tc = new TransitiveClosure(G);
    // if v and w are mutally reachable, assign v to w's component
    for (int v = 0; v < G.V(); v++)
      for (int w = 0; w < v; w++)
        if (tc.reachable(v, w) && tc.reachable(w, v))
          id[v] = id[w];
    // compute number of strongly connected components
    for (int v = 0; v < G.V(); v++)
      if (id[v] == v)
        count++;
  }
  // return the number of strongly connected components
  public int count() { return count; }
  // are v and w strongly connected?
  public boolean stronglyConnected(int v, int w) {
    return id[v] == id[w];
  }
  // in which strongly connected component is vertex v?
  public int id(int v) { return id[v]; }
  public static void main(String[] args) {
    args = new String[] { "data/tinyDG.txt" };
    In in = new In(args[0]);
    Digraph G = DigraphGenerator.fromIn(in);
    XBruteSCC scc = new XBruteSCC(G);
    // number of connected components
    int M = scc.count();
    StdOut.println(M + " components");
    // compute list of vertices in each strong component
    @SuppressWarnings("unchecked")
    final
    Queue<Integer>[] components = new Queue[G.V()];
    for (int i = 0; i < G.V(); i++) {
      components[i] = new Queue<>();
    }
    for (int v = 0; v < G.V(); v++) {
      components[scc.id(v)].enqueue(v);
    }
    // print results
    for (int i = 0; i < G.V(); i++) {
      if (!components[i].isEmpty()) {
        for (int v : components[i]) {
          StdOut.print(v + " ");
        }
        StdOut.println();
      }
    }
  }
}
 |