| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 
 | package algs42;
import algs35.SET;
import algs13.Stack;
import  stdlib.*;
/*************************************************************************
 *  Compilation:  javac DigraphGenerator.java
 *  Execution:    java DigraphGenerator V E
 *  Dependencies: Digraph.java
 *
 *  A digraph generator.
 *
 *************************************************************************/
/**
 *  The {@code DigraphGenerator} class provides static methods for creating
 *  various digraphs, including Erdos-Renyi random digraphs, random DAGs,
 *  random rooted trees, random rooted DAGs, random tournaments, path digraphs,
 *  cycle digraphs, and the complete digraph.
 *  <p>
 *  For additional documentation, see <a href="http://algs4.cs.princeton.edu/42digraph">Section 4.2</a> of
 *  <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
 *
 *  @author Robert Sedgewick
 *  @author Kevin Wayne
 */
public class DigraphGenerator {
  private static class Edge implements Comparable<Edge> {
    private int v;
    private int w;
    private Edge(int v, int w) {
      this.v = v;
      this.w = w;
    }
    public int compareTo(Edge that) {
      if (this.v < that.v) return -1;
      if (this.v > that.v) return +1;
      if (this.w < that.w) return -1;
      if (this.w > that.w) return +1;
      return 0;
    }
  }
  public static Digraph fromIn(In in) {
    Digraph G = new Digraph (in.readInt());
    int E = in.readInt();
    if (E < 0) throw new IllegalArgumentException("Number of edges in a Digraph must be nonnegative");
    for (int i = 0; i < E; i++) {
      int v = in.readInt();
      int w = in.readInt();
      G.addEdge(v, w);
    }
    return G;
  }
  public static Digraph copy (Digraph G) {
    Digraph R = new Digraph (G.V());
        for (int v = 0; v < G.V(); v++) {
            // reverse so that adjacency list is in same order as original
            Stack<Integer> reverse = new Stack<Integer>();
            for (int w : G.adj(v)) {
                reverse.push(w);
            }
            for (int w : reverse) {
                R.addEdge (v, w);
            }
        }
    return R;
  }
  /**
   * Create a random digraph with V vertices and E edges.
   * Expected running time is proportional to V + E.
   */
  public static Digraph random(int V, int E) {
    if (E < 0) throw new Error("Number of edges must be nonnegative");
    Digraph G = new Digraph(V);
    for (int i = 0; i < E; i++) {
      int v = (int) (Math.random() * V);
      int w = (int) (Math.random() * V);
      G.addEdge(v, w);
    }
    return G;
  }
  /**
   * Returns a random simple digraph containing {@code V} vertices and {@code E} edges.
   * @param V the number of vertices
   * @param E the number of vertices
   * @return a random simple digraph on {@code V} vertices, containing a total
   *     of {@code E} edges
   * @throws IllegalArgumentException if no such simple digraph exists
   */
  public static Digraph simple(int V, int E) {
    if (E > (long) V*(V-1)) throw new IllegalArgumentException("Too many edges");
    if (E < 0)              throw new IllegalArgumentException("Too few edges");
    Digraph G = new Digraph(V);
    SET<Edge> set = new SET<>();
    while (G.E() < E) {
      int v = StdRandom.uniform(V);
      int w = StdRandom.uniform(V);
      Edge e = new Edge(v, w);
      if ((v != w) && !set.contains(e)) {
        set.add(e);
        G.addEdge(v, w);
      }
    }
    return G;
  }
  /**
   * Returns a random simple digraph on {@code V} vertices, with an
   * edge between any two vertices with probability {@code p}. This is sometimes
   * referred to as the Erdos-Renyi random digraph model.
   * This implementations takes time propotional to V^2 (even if {@code p} is small).
   * @param V the number of vertices
   * @param p the probability of choosing an edge
   * @return a random simple digraph on {@code V} vertices, with an edge between
   *     any two vertices with probability {@code p}
   * @throws IllegalArgumentException if probability is not between 0 and 1
   */
  public static Digraph simple(int V, double p) {
    if (p < 0.0 || p > 1.0)
      throw new IllegalArgumentException("Probability must be between 0 and 1");
    Digraph G = new Digraph(V);
    for (int v = 0; v < V; v++)
      for (int w = 0; w < V; w++)
        if (v != w)
          if (StdRandom.bernoulli(p))
            G.addEdge(v, w);
    return G;
  }
  /**
   * Returns the complete digraph on {@code V} vertices.
   * @param V the number of vertices
   * @return the complete digraph on {@code V} vertices
   */
  public static Digraph complete(int V) {
    return simple(V, V*(V-1));
  }
  /**
   * Returns a random simple DAG containing {@code V} vertices and {@code E} edges.
   * Note: it is not uniformly selected at random among all such DAGs.
   * @param V the number of vertices
   * @param E the number of vertices
   * @return a random simple DAG on {@code V} vertices, containing a total
   *     of {@code E} edges
   * @throws IllegalArgumentException if no such simple DAG exists
   */
  public static Digraph dag(int V, int E) {
    if (E > (long) V*(V-1) / 2) throw new IllegalArgumentException("Too many edges");
    if (E < 0)                  throw new IllegalArgumentException("Too few edges");
    Digraph G = new Digraph(V);
    SET<Edge> set = new SET<>();
    int[] vertices = new int[V];
    for (int i = 0; i < V; i++) vertices[i] = i;
    StdRandom.shuffle(vertices);
    while (G.E() < E) {
      int v = StdRandom.uniform(V);
      int w = StdRandom.uniform(V);
      Edge e = new Edge(v, w);
      if ((v < w) && !set.contains(e)) {
        set.add(e);
        G.addEdge(vertices[v], vertices[w]);
      }
    }
    return G;
  }
  /**
   * Returns a random tournament digraph on {@code V} vertices. A tournament digraph
   * is a DAG in which for every two vertices, there is one directed edge.
   * A tournament is an oriented complete graph.
   * @param V the number of vertices
   * @return a random tournament digraph on {@code V} vertices
   */
  public static Digraph tournament(int V) {
    return dag(V, V*(V-1)/2);
  }
  /**
   * Returns a random rooted-in DAG on {@code V} vertices and {@code E} edges.
   * A rooted in-tree is a DAG in which there is a single vertex
   * reachable from every other vertex.
   * The DAG returned is not chosen uniformly at random among all such DAGs.
   * @param V the number of vertices
   * @param E the number of edges
   * @return a random rooted-in DAG on {@code V} vertices and {@code E} edges
   */
  public static Digraph rootedInDAG(int V, int E) {
    if (E > (long) V*(V-1) / 2) throw new IllegalArgumentException("Too many edges");
    if (E < V-1)                throw new IllegalArgumentException("Too few edges");
    Digraph G = new Digraph(V);
    SET<Edge> set = new SET<>();
    // fix a topological order
    int[] vertices = new int[V];
    for (int i = 0; i < V; i++) vertices[i] = i;
    StdRandom.shuffle(vertices);
    // one edge pointing from each vertex, other than the root = vertices[V-1]
    for (int v = 0; v < V-1; v++) {
      int w = StdRandom.uniform(v+1, V);
      Edge e = new Edge(v, w);
      set.add(e);
      G.addEdge(vertices[v], vertices[w]);
    }
    while (G.E() < E) {
      int v = StdRandom.uniform(V);
      int w = StdRandom.uniform(V);
      Edge e = new Edge(v, w);
      if ((v < w) && !set.contains(e)) {
        set.add(e);
        G.addEdge(vertices[v], vertices[w]);
      }
    }
    return G;
  }
  /**
   * Returns a random rooted-out DAG on {@code V} vertices and {@code E} edges.
   * A rooted out-tree is a DAG in which every vertex is reachable from a
   * single vertex.
   * The DAG returned is not chosen uniformly at random among all such DAGs.
   * @param V the number of vertices
   * @param E the number of edges
   * @return a random rooted-out DAG on {@code V} vertices and {@code E} edges
   */
  public static Digraph rootedOutDAG(int V, int E) {
    if (E > (long) V*(V-1) / 2) throw new IllegalArgumentException("Too many edges");
    if (E < V-1)                throw new IllegalArgumentException("Too few edges");
    Digraph G = new Digraph(V);
    SET<Edge> set = new SET<>();
    // fix a topological order
    int[] vertices = new int[V];
    for (int i = 0; i < V; i++) vertices[i] = i;
    StdRandom.shuffle(vertices);
    // one edge pointing from each vertex, other than the root = vertices[V-1]
    for (int v = 0; v < V-1; v++) {
      int w = StdRandom.uniform(v+1, V);
      Edge e = new Edge(w, v);
      set.add(e);
      G.addEdge(vertices[w], vertices[v]);
    }
    while (G.E() < E) {
      int v = StdRandom.uniform(V);
      int w = StdRandom.uniform(V);
      Edge e = new Edge(w, v);
      if ((v < w) && !set.contains(e)) {
        set.add(e);
        G.addEdge(vertices[w], vertices[v]);
      }
    }
    return G;
  }
  /**
   * Returns a random rooted-in tree on {@code V} vertices.
   * A rooted in-tree is an oriented tree in which there is a single vertex
   * reachable from every other vertex.
   * The tree returned is not chosen uniformly at random among all such trees.
   * @param V the number of vertices
   * @return a random rooted-in tree on {@code V} vertices
   */
  public static Digraph rootedInTree(int V) {
    return rootedInDAG(V, V-1);
  }
  /**
   * Returns a random rooted-out tree on {@code V} vertices. A rooted out-tree
   * is an oriented tree in which each vertex is reachable from a single vertex.
   * It is also known as a <em>arborescence</em> or <em>branching</em>.
   * The tree returned is not chosen uniformly at random among all such trees.
   * @param V the number of vertices
   * @return a random rooted-out tree on {@code V} vertices
   */
  public static Digraph rootedOutTree(int V) {
    return rootedOutDAG(V, V-1);
  }
  /**
   * Returns a path digraph on {@code V} vertices.
   * @param V the number of vertices in the path
   * @return a digraph that is a directed path on {@code V} vertices
   */
  public static Digraph path(int V) {
    Digraph G = new Digraph(V);
    int[] vertices = new int[V];
    for (int i = 0; i < V; i++) vertices[i] = i;
    StdRandom.shuffle(vertices);
    for (int i = 0; i < V-1; i++) {
      G.addEdge(vertices[i], vertices[i+1]);
    }
    return G;
  }
  /**
   * Returns a complete binary tree digraph on {@code V} vertices.
   * @param V the number of vertices in the binary tree
   * @return a digraph that is a complete binary tree on {@code V} vertices
   */
  public static Digraph binaryTree(int V) {
    Digraph G = new Digraph(V);
    int[] vertices = new int[V];
    for (int i = 0; i < V; i++) vertices[i] = i;
    StdRandom.shuffle(vertices);
    for (int i = 1; i < V; i++) {
      G.addEdge(vertices[i], vertices[(i-1)/2]);
    }
    return G;
  }
  /**
   * Returns a cycle digraph on {@code V} vertices.
   * @param V the number of vertices in the cycle
   * @return a digraph that is a directed cycle on {@code V} vertices
   */
  public static Digraph cycle(int V) {
    Digraph G = new Digraph(V);
    int[] vertices = new int[V];
    for (int i = 0; i < V; i++) vertices[i] = i;
    StdRandom.shuffle(vertices);
    for (int i = 0; i < V-1; i++) {
      G.addEdge(vertices[i], vertices[i+1]);
    }
    G.addEdge(vertices[V-1], vertices[0]);
    return G;
  }
  
    /**
     * Returns an Eulerian cycle digraph on {@code V} vertices.
     *
     * @param  V the number of vertices in the cycle
     * @param  E the number of edges in the cycle
     * @return a digraph that is a directed Eulerian cycle on {@code V} vertices
     *         and {@code E} edges
     * @throws IllegalArgumentException if either {@code V <= 0} or {@code E <= 0}
     */
    public static Digraph eulerianCycle(int V, int E) {
        if (E <= 0)
            throw new IllegalArgumentException("An Eulerian cycle must have at least one edge");
        if (V <= 0)
            throw new IllegalArgumentException("An Eulerian cycle must have at least one vertex");
        Digraph G = new Digraph(V);
        int[] vertices = new int[E];
        for (int i = 0; i < E; i++)
            vertices[i] = StdRandom.uniform(V);
        for (int i = 0; i < E-1; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        G.addEdge(vertices[E-1], vertices[0]);
        return G;
    }
    /**
     * Returns an Eulerian path digraph on {@code V} vertices.
     *
     * @param  V the number of vertices in the path
     * @param  E the number of edges in the path
     * @return a digraph that is a directed Eulerian path on {@code V} vertices
     *         and {@code E} edges
     * @throws IllegalArgumentException if either {@code V <= 0} or {@code E < 0}
     */
    public static Digraph eulerianPath(int V, int E) {
        if (E < 0)
            throw new IllegalArgumentException("negative number of edges");
        if (V <= 0)
            throw new IllegalArgumentException("An Eulerian path must have at least one vertex");
        Digraph G = new Digraph(V);
        int[] vertices = new int[E+1];
        for (int i = 0; i < E+1; i++)
            vertices[i] = StdRandom.uniform(V);
        for (int i = 0; i < E; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        return G;
    }
  /**
   * Returns a random simple digraph on {@code V} vertices, {@code E}
   * edges and (at most) {@code c} strong components. The vertices are randomly
   * assigned integer labels between  {@code 0} and {@code c-1} (corresponding to
   * strong components). Then, a strong component is created among the vertices
   * with the same label. Next, random edges (either between two vertices with
   * the same labels or from a vertex with a smaller label to a vertex with a
   * larger label). The number of components will be equal to the number of
   * distinct labels that are assigned to vertices.
   *
   * @param V the number of vertices
   * @param E the number of edges
   * @param c the (maximum) number of strong components
   * @return a random simple digraph on {@code V} vertices and
               {@code E} edges, with (at most) {@code c} strong components
   * @throws IllegalArgumentException if {@code c} is larger than {@code V}
   */
  public static Digraph strong(int V, int E, int c) {
    if (c >= V || c <= 0)
      throw new IllegalArgumentException("Number of components must be between 1 and V");
    if (E <= 2*(V-c))
      throw new IllegalArgumentException("Number of edges must be at least 2(V-c)");
    if (E > (long) V*(V-1) / 2)
      throw new IllegalArgumentException("Too many edges");
    // the digraph
    Digraph G = new Digraph(V);
    // edges added to G (to avoid duplicate edges)
    SET<Edge> set = new SET<>();
    int[] label = new int[V];
    for (int v = 0; v < V; v++)
      label[v] = StdRandom.uniform(c);
    // make all vertices with label c a strong component by
    // combining a rooted in-tree and a rooted out-tree
    for (int i = 0; i < c; i++) {
      // how many vertices in component c
      int count = 0;
      for (int v = 0; v < G.V(); v++) {
        if (label[v] == i) count++;
      }
      // if (count == 0) System.err.println("less than desired number of strong components");
      int[] vertices = new int[count];
      int j = 0;
      for (int v = 0; v < V; v++) {
        if (label[v] == i) vertices[j++] = v;
      }
      StdRandom.shuffle(vertices);
      // rooted-in tree with root = vertices[count-1]
      for (int v = 0; v < count-1; v++) {
        int w = StdRandom.uniform(v+1, count);
        Edge e = new Edge(w, v);
        set.add(e);
        G.addEdge(vertices[w], vertices[v]);
      }
      // rooted-out tree with root = vertices[count-1]
      for (int v = 0; v < count-1; v++) {
        int w = StdRandom.uniform(v+1, count);
        Edge e = new Edge(v, w);
        set.add(e);
        G.addEdge(vertices[v], vertices[w]);
      }
    }
    while (G.E() < E) {
      int v = StdRandom.uniform(V);
      int w = StdRandom.uniform(V);
      Edge e = new Edge(v, w);
      if (!set.contains(e) && v != w && label[v] <= label[w]) {
        set.add(e);
        G.addEdge(v, w);
      }
    }
    return G;
  }
  /**
   * Unit tests the {@code DigraphGenerator} library.
   */
  private static void print (Digraph G, String filename) {
    System.out.println(filename);
    System.out.println(G);
    System.out.println();
    G.toGraphviz (filename + ".png");
  }
  public static void main(String[] args) {
    args = new String [] { "6", "10", "0.25", "3" };
    int V = Integer.parseInt(args[0]);
    int E = Integer.parseInt(args[1]);
    double p = Double.parseDouble (args[2]);
    int c = Integer.parseInt(args[3]);
    for (int i=5; i>0; i--) {
      print(DigraphGenerator.random(V,E), "random-" + V + "-" + E);
      print(DigraphGenerator.simple(V,E), "simpleA-" + V + "-" + E);
      print(DigraphGenerator.simple(V,p), "simpleB-" + V + "-" + p);
      print(DigraphGenerator.complete(V), "complete-" + V);
      print(DigraphGenerator.dag(V,E), "dag-" + V + "-" + E);
      print(DigraphGenerator.tournament(V), "tournament-" + V);
      print(DigraphGenerator.rootedInDAG(V,E), "rootedInDAG-" + V + "-" + E);
      print(DigraphGenerator.rootedOutDAG(V,E), "rootedOutDAG-" + V + "-" + E);
      print(DigraphGenerator.rootedInTree(V), "rootedInTree-" + V);
      print(DigraphGenerator.rootedOutTree(V), "rootedOutTree-" + V);
      print(DigraphGenerator.path(V), "path-" + V);
      print(DigraphGenerator.binaryTree(V), "rootedInTreeBinary-" + V);
      print(DigraphGenerator.cycle(V), "cycle-" + V);
      if (E <= 2*(V-c)) E = 2*(V-c)+1;
      print(DigraphGenerator.strong(V,E,c), "strong-" + V + "-" + E + "-" + c);
    }
  }
}
 |