| 
0102
 03
 04
 05
 06
 07
 08
 09
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 
 | package algs35;
import stdlib.*;
/* ***********************************************************************
 *  Compilation:  javac SparseMatrix.java
 *  Execution:    java SparseMatrix
 *
 *  A sparse, square matrix, implementing using two arrays of sparse
 *  vectors, one representation for the rows and one for the columns.
 *
 *  For matrix-matrix product, we might also want to store the
 *  column representation.
 *
 *************************************************************************/
public class XSparseMatrix {
  private final int N;                 // N-by-N matrix
  private final SparseVector[] rows;   // the rows, each row is a sparse vector
  // initialize an N-by-N matrix of all 0s
  public XSparseMatrix(int N) {
    this.N  = N;
    rows = new SparseVector[N];
    for (int i = 0; i < N; i++) rows[i] = new SparseVector(N);
  }
  // put A[i][j] = value
  public void put(int i, int j, double value) {
    if (i < 0 || i >= N) throw new Error("Illegal index");
    if (j < 0 || j >= N) throw new Error("Illegal index");
    rows[i].put(j, value);
  }
  // return A[i][j]
  public double get(int i, int j) {
    if (i < 0 || i >= N) throw new Error("Illegal index");
    if (j < 0 || j >= N) throw new Error("Illegal index");
    return rows[i].get(j);
  }
  // return the number of nonzero entries (not the most efficient implementation)
  public int nnz() {
    int sum = 0;
    for (int i = 0; i < N; i++)
      sum += rows[i].nnz();
    return sum;
  }
  // return the matrix-vector product b = Ax
  public SparseVector times(SparseVector x) {
    if (N != x.size()) throw new Error("Dimensions disagree");
    SparseVector b = new SparseVector(N);
    for (int i = 0; i < N; i++)
      b.put(i, rows[i].dot(x));
    return b;
  }
  // return C = A + B
  public XSparseMatrix plus(XSparseMatrix B) {
    XSparseMatrix A = this;
    if (A.N != B.N) throw new Error("Dimensions disagree");
    XSparseMatrix C = new XSparseMatrix(N);
    for (int i = 0; i < N; i++)
      C.rows[i] = A.rows[i].plus(B.rows[i]);
    return C;
  }
  // return a string representation
  public String toString() {
    String s = "N = " + N + ", nonzeros = " + nnz() + "\n";
    for (int i = 0; i < N; i++) {
      s += i + ": " + rows[i] + "\n";
    }
    return s;
  }
  // test client
  public static void main(String[] args) {
    XSparseMatrix A = new XSparseMatrix(5);
    SparseVector x = new SparseVector(5);
    A.put(0, 0, 1.0);
    A.put(1, 1, 1.0);
    A.put(2, 2, 1.0);
    A.put(3, 3, 1.0);
    A.put(4, 4, 1.0);
    A.put(2, 4, 0.3);
    x.put(0, 0.75);
    x.put(2, 0.11);
    StdOut.println("x     : " + x);
    StdOut.println("A     : " + A);
    StdOut.println("Ax    : " + A.times(x));
    StdOut.println("A + A : " + A.plus(A));
  }
}
 |