01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
package algs35;
import stdlib.*;
/* ***********************************************************************
 *  Compilation:  javac SparseMatrix.java
 *  Execution:    java SparseMatrix
 *
 *  A sparse, square matrix, implementing using two arrays of sparse
 *  vectors, one representation for the rows and one for the columns.
 *
 *  For matrix-matrix product, we might also want to store the
 *  column representation.
 *
 *************************************************************************/

public class XSparseMatrix {
  private final int N;                 // N-by-N matrix
  private final SparseVector[] rows;   // the rows, each row is a sparse vector

  // initialize an N-by-N matrix of all 0s
  public XSparseMatrix(int N) {
    this.N  = N;
    rows = new SparseVector[N];
    for (int i = 0; i < N; i++) rows[i] = new SparseVector(N);
  }

  // put A[i][j] = value
  public void put(int i, int j, double value) {
    if (i < 0 || i >= N) throw new Error("Illegal index");
    if (j < 0 || j >= N) throw new Error("Illegal index");
    rows[i].put(j, value);
  }

  // return A[i][j]
  public double get(int i, int j) {
    if (i < 0 || i >= N) throw new Error("Illegal index");
    if (j < 0 || j >= N) throw new Error("Illegal index");
    return rows[i].get(j);
  }

  // return the number of nonzero entries (not the most efficient implementation)
  public int nnz() {
    int sum = 0;
    for (int i = 0; i < N; i++)
      sum += rows[i].nnz();
    return sum;
  }

  // return the matrix-vector product b = Ax
  public SparseVector times(SparseVector x) {
    if (N != x.size()) throw new Error("Dimensions disagree");
    SparseVector b = new SparseVector(N);
    for (int i = 0; i < N; i++)
      b.put(i, rows[i].dot(x));
    return b;
  }

  // return C = A + B
  public XSparseMatrix plus(XSparseMatrix B) {
    XSparseMatrix A = this;
    if (A.N != B.N) throw new Error("Dimensions disagree");
    XSparseMatrix C = new XSparseMatrix(N);
    for (int i = 0; i < N; i++)
      C.rows[i] = A.rows[i].plus(B.rows[i]);
    return C;
  }


  // return a string representation
  public String toString() {
    String s = "N = " + N + ", nonzeros = " + nnz() + "\n";
    for (int i = 0; i < N; i++) {
      s += i + ": " + rows[i] + "\n";
    }
    return s;
  }


  // test client
  public static void main(String[] args) {
    XSparseMatrix A = new XSparseMatrix(5);
    SparseVector x = new SparseVector(5);
    A.put(0, 0, 1.0);
    A.put(1, 1, 1.0);
    A.put(2, 2, 1.0);
    A.put(3, 3, 1.0);
    A.put(4, 4, 1.0);
    A.put(2, 4, 0.3);
    x.put(0, 0.75);
    x.put(2, 0.11);
    StdOut.println("x     : " + x);
    StdOut.println("A     : " + A);
    StdOut.println("Ax    : " + A.times(x));
    StdOut.println("A + A : " + A.plus(A));
  }

}