| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 
 | package algs35;
import stdlib.*;
import java.util.Iterator;
import java.util.SortedMap;
import java.util.TreeMap;
/* ***********************************************************************
 *  Compilation:  javac ST.java
 *  Execution:    java ST
 *
 *  Sorted symbol table implementation using a java.util.TreeMap.
 *  Does not allow duplicates.
 *
 *  % java ST
 *
 *************************************************************************/
/**
 *  This class represents an ordered symbol table. It assumes that
 *  the keys are {@code Comparable}.
 *  It supports the usual <em>put</em>, <em>get</em>, <em>contains</em>,
 *  and <em>remove</em> methods.
 *  It also provides ordered methods for finding the <em>minimum</em>,
 *  <em>maximum</em>, <em>floor</em>, and <em>ceiling</em>.
 *  <p>
 *  The class implements the <em>associative array</em> abstraction: when associating
 *  a value with a key that is already in the table, the convention is to replace
 *  the old value with the new value.
 *  The class also uses the convention that values cannot be null. Setting the
 *  value associated with a key to null is equivalent to removing the key.
 *  <p>
 *  This class implements the Iterable interface for compatiblity with
 *  the version from <em>Introduction to Programming in Java: An Interdisciplinary
 *  Approach</em>.
 *  <p>
 *  This implementation uses a balanced binary search tree.
 *  The <em>put</em>, <em>contains</em>, <em>remove</em>, <em>minimum</em>,
 *  <em>maximum</em>, <em>ceiling</em>, and <em>floor</em> methods take
 *  logarithmic time.
 *  <p>
 *  For additional documentation, see <a href="http://algs4.cs.princeton.edu/35applications">Section 4.5</a> of
 *  <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
 */
public class ST<K extends Comparable<? super K>, V> implements Iterable<K> {
  private final TreeMap<K, V> st;
  /**
   * Create an empty symbol table.
   */
  public ST() {
    st = new TreeMap<>();
  }
  /**
   * Put key-value pair into the symbol table. Remove key from table if
   * value is null.
   */
  public void put(K key, V val) {
    if (val == null) st.remove(key);
    else             st.put(key, val);
  }
  /**
   * Return the value paired with given key; null if key is not in table.
   */
  public V get(K key) {
    return st.get(key);
  }
  /**
   * Delete the key (and paired value) from table.
   * Return the value paired with given key; null if key is not in table.
   */
  public V delete(K key) {
    return st.remove(key);
  }
  /**
   * Is the key in the table?
   */
  public boolean contains(K key) {
    return st.containsKey(key);
  }
  /**
   * How many keys are in the table?
   */
  public int size() {
    return st.size();
  }
  /**
   * Return an {@code Iterable} for the keys in the table.
   * To iterate over all of the keys in the symbol table {@code st}, use the
   * foreach notation: {@code for (K key : st.keys())}.
   */
  public Iterable<K> keys() {
    return st.keySet();
  }
  /**
   * Return an {@code Iterator} for the keys in the table.
   * To iterate over all of the keys in the symbol table {@code st}, use the
   * foreach notation: {@code for (K key : st)}.
   * This method is for backward compatibility with the version from <em>Introduction
   * to Programming in Java: An Interdisciplinary Approach.</em>
   */
  public Iterator<K> iterator() {
    return st.keySet().iterator();
  }
  /**
   * Return the smallest key in the table.
   */
  public K min() {
    return st.firstKey();
  }
  /**
   * Return the largest key in the table.
   */
  public K max() {
    return st.lastKey();
  }
  /**
   * Return the smallest key in the table {@code >= k}.
   */
  public K ceil(K k) {
    SortedMap<K, V> tail = st.tailMap(k);
    if (tail.isEmpty()) return null;
    else return tail.firstKey();
  }
  /**
   * Return the largest key in the table {@code <= k}.
   */
  public K floor(K k) {
    if (st.containsKey(k)) return k;
    // does not include key if present (!)
    SortedMap<K, V> head = st.headMap(k);
    if (head.isEmpty()) return null;
    else return head.lastKey();
  }
  /* *********************************************************************
   * Test routine.
   **********************************************************************/
  public static void main(String[] args) {
    ST<String, Integer> st = new ST<>();
    for (int i = 0; !StdIn.isEmpty(); i++) {
      String key = StdIn.readString();
      st.put(key, i);
    }
    for (String s : st.keys())
      StdOut.println(s + " " + st.get(s));
  }
}
 |