| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 
 | package algs24;
import stdlib.*;
import java.util.Iterator;
import java.util.NoSuchElementException;
/* ***********************************************************************
 *  Compilation:  javac MinPQ.java
 *  Execution:    java MinPQ < input.txt
 *
 *  Generic min priority queue implementation with a binary heap.
 *
 *  % java MinPQ < tinyPQ.txt
 *  E A E (6 left on pq)
 *
 *  We use a one-based array to simplify parent and child calculations.
 *
 *************************************************************************/
/* Modified by jriely@cs.depaul.edu */
public class XFixedMinPQ<K extends Comparable<? super K>> implements Iterable<K> {
  private final K[] pq;                    // store items at indices 1 to N
  private int N;                       // number of items on priority queue
  private final int MAXN;
  /** Create an empty priority queue with the given initial capacity, using the given comparator. */
  @SuppressWarnings("unchecked")
  public XFixedMinPQ(int initCapacity) {
    MAXN = initCapacity;
    pq = (K[]) new Comparable[initCapacity + 1];
    N = 0;
  }
  /** Is the priority queue empty? */
  public boolean isEmpty() { return N == 0; }
  /** Is the priority queue full? */
  public boolean isFull()  { return N == MAXN; }
  /** Return the number of items on the priority queue. */
  public int size() { return N; }
  /**
   * Return the smallest key on the priority queue.
   * Throw an exception if the priority queue is empty.
   */
  public K min() {
    if (isEmpty()) throw new Error("Priority queue underflow");
    return pq[1];
  }
  /** Add a new key to the priority queue. */
  public void insert(K x) {
    if (isFull()) throw new Error("Priority queue overflow");
    // add x, and percolate it up to maintain heap invariant
    pq[++N] = x;
    swim(N);
    //assert isMinHeap();
  }
  /**
   * Delete and return the smallest key on the priority queue.
   * Throw an exception if the priority queue is empty.
   */
  public K delMin() {
    if (N == 0) throw new Error("Priority queue underflow");
    exch(1, N);
    K min = pq[N--];
    sink(1);
    pq[N+1] = null; // avoid loitering and help with garbage collection
    //assert isMinHeap();
    return min;
  }
  /* *********************************************************************
   * Helper functions to restore the heap invariant.
   **********************************************************************/
  private void swim(int k) {
    while (k > 1 && greater(k/2, k)) {
      exch(k, k/2);
      k = k/2;
    }
  }
  private void sink(int k) {
    while (2*k <= N) {
      int j = 2*k;
      if (j < N && greater(j, j+1)) j++;
      if (!greater(k, j)) break;
      exch(k, j);
      k = j;
    }
  }
  /* *********************************************************************
   * Helper functions for compares and swaps.
   **********************************************************************/
  private boolean greater(int i, int j) {
    return pq[i].compareTo(pq[j]) > 0;
  }
  private void exch(int i, int j) {
    K swap = pq[i];
    pq[i] = pq[j];
    pq[j] = swap;
  }
  // is pq[1..N] a min heap?
  private boolean isMinHeap() {
    return isMinHeap(1);
  }
  // is subtree of pq[1..N] rooted at k a min heap?
  private boolean isMinHeap(int k) {
    if (k > N) return true;
    int left = 2*k, right = 2*k + 1;
    if (left  <= N && greater(k, left))  return false;
    if (right <= N && greater(k, right)) return false;
    return isMinHeap(left) && isMinHeap(right);
  }
  /* *********************************************************************
   * Iterator
   **********************************************************************/
  /**
   * Return an iterator that iterates over all of the keys on the priority queue
   * in ascending order.
   * <p>
   * The iterator doesn't implement {@code remove()} since it's optional.
   */
  public Iterator<K> iterator() { return new HeapIterator(); }
  private class HeapIterator implements Iterator<K> {
    // create a new pq
    private final XFixedMinPQ<K> copy;
    // add all items to copy of heap
    // takes linear time since already in heap order so no keys move
    public HeapIterator() {
      copy = new XFixedMinPQ<>(size());
      for (int i = 1; i <= N; i++)
        copy.insert(pq[i]);
    }
    public boolean hasNext()  { return !copy.isEmpty();                     }
    public void remove()      { throw new UnsupportedOperationException();  }
    public K next() {
      if (!hasNext()) throw new NoSuchElementException();
      return copy.delMin();
    }
  }
  private void showHeap() {
    for (int i = 1; i <= N; i++)
      StdOut.print (pq[i] + " ");
    StdOut.println ();
  }
  /**
   * A test client.
   */
  public static void main(String[] args) {
    XFixedMinPQ<String> pq = new XFixedMinPQ<>(100);
    StdIn.fromString ("10 20 30 40 50 - - - 05 25 35 - - - 70 80 05 - - - - ");
    while (!StdIn.isEmpty()) {
      StdOut.print ("pq:  "); pq.showHeap();
      String item = StdIn.readString();
      if (item.equals("-")) StdOut.println("min: " + pq.delMin());
      else pq.insert(item);
    }
    StdOut.println("(" + pq.size() + " left on pq)");
  }
}
 |