| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 
 | // Exercise 2.5.25 (Solution published at http://algs4.cs.princeton.edu/)
package algs12;
import stdlib.*;
//import java.util.Arrays;
import java.util.Comparator;
/* ***********************************************************************
 *  Compilation:  javac Point2D.java
 *
 *  Immutable point data type for points in the plane.
 *
 *************************************************************************/
public class Point2D implements Comparable<Point2D> {
  public static final Comparator<Point2D> X_ORDER = new XOrder();
  public static final Comparator<Point2D> Y_ORDER = new YOrder();
  public static final Comparator<Point2D> R_ORDER = new ROrder();
  public final Comparator<Point2D> POLAR_ORDER = new PolarOrder();
  public final Comparator<Point2D> ATAN2_ORDER = new Atan2Order();
  public final Comparator<Point2D> DISTANCE_TO_ORDER = new DistanceToOrder();
  private final double x;    // x coordinate
  private final double y;    // y coordinate
  // create a new point (x, y)
  public Point2D(double x, double y) {
    this.x = x;
    this.y = y;
  }
  // return the x-coorindate of this point
  public double x() { return x; }
  // return the y-coorindate of this point
  public double y() { return y; }
  // return the radius of this point in polar coordinates
  public double r() { return Math.sqrt(x*x + y*y); }
  // return the angle of this point in polar coordinates
  // (between -pi/2 and pi/2)
  public double theta() { return Math.atan2(y, x); }
  // return the polar angle between this point and that point (between -pi and pi);
  // (0 if two points are equal)
  private double angleTo(Point2D that) {
    double dx = that.x - this.x;
    double dy = that.y - this.y;
    return Math.atan2(dy, dx);
  }
  // is a->b->c a counter-clockwise turn?
  // -1 if clockwise, +1 if counter-clockwise, 0 if collinear
  public static int ccw(Point2D a, Point2D b, Point2D c) {
    double area2 = (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x);
    if      (area2 < 0) return -1;
    else if (area2 > 0) return +1;
    else                return  0;
  }
  // twice signed area of a-b-c
  public static double area2(Point2D a, Point2D b, Point2D c) {
    return (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x);
  }
  // return Euclidean distance between this point and that point
  public double distanceTo(Point2D that) {
    double dx = this.x - that.x;
    double dy = this.y - that.y;
    return Math.sqrt(dx*dx + dy*dy);
  }
  // return square of Euclidean distance between this point and that point
  public double distanceSquaredTo(Point2D that) {
    double dx = this.x - that.x;
    double dy = this.y - that.y;
    return dx*dx + dy*dy;
  }
  // compare by y-coordinate, breaking ties by x-coordinate
  public int compareTo(Point2D that) {
    if (this.y < that.y) return -1;
    if (this.y > that.y) return +1;
    if (this.x < that.x) return -1;
    if (this.x > that.x) return +1;
    return 0;
  }
  // compare points according to their x-coordinate
  private static class XOrder implements Comparator<Point2D> {
    public int compare(Point2D p, Point2D q) {
      if (p.x < q.x) return -1;
      if (p.x > q.x) return +1;
      return 0;
    }
  }
  // compare points according to their y-coordinate
  private static class YOrder implements Comparator<Point2D> {
    public int compare(Point2D p, Point2D q) {
      if (p.y < q.y) return -1;
      if (p.y > q.y) return +1;
      return 0;
    }
  }
  // compare points according to their polar radius
  private static class ROrder implements Comparator<Point2D> {
    public int compare(Point2D p, Point2D q) {
      double delta = (p.x*p.x + p.y*p.y) - (q.x*q.x + q.y*q.y);
      if (delta < 0) return -1;
      if (delta > 0) return +1;
      return 0;
    }
  }
  // compare other points relative to atan2 angle (bewteen -pi/2 and pi/2) they make with this Point
  private class Atan2Order implements Comparator<Point2D> {
    public int compare(Point2D q1, Point2D q2) {
      double angle1 = angleTo(q1);
      double angle2 = angleTo(q2);
      if      (angle1 < angle2) return -1;
      else if (angle1 > angle2) return +1;
      else                      return  0;
    }
  }
  // compare other points relative to polar angle (between 0 and 2pi) they make with this Point
  private class PolarOrder implements Comparator<Point2D> {
    public int compare(Point2D q1, Point2D q2) {
      Trace.draw ();
      double dx1 = q1.x - x;
      double dy1 = q1.y - y;
      double dx2 = q2.x - x;
      double dy2 = q2.y - y;
      if      (dy1 >= 0 && dy2 < 0) return -1;    // q1 above; q2 below
      else if (dy2 >= 0 && dy1 < 0) return +1;    // q1 below; q2 above
      else if (dy1 == 0 && dy2 == 0) {            // 3-collinear and horizontal
        if      (dx1 >= 0 && dx2 < 0) return -1;
        else if (dx2 >= 0 && dx1 < 0) return +1;
        else                          return  0;
      }
      else return -ccw(Point2D.this, q1, q2);     // both above or below
      // Note: ccw() recomputes dx1, dy1, dx2, and dy2
    }
  }
  // compare points according to their distance to this point
  private class DistanceToOrder implements Comparator<Point2D> {
    public int compare(Point2D p, Point2D q) {
      double dist1 = distanceSquaredTo(p);
      double dist2 = distanceSquaredTo(q);
      if      (dist1 < dist2) return -1;
      else if (dist1 > dist2) return +1;
      else                    return  0;
    }
  }
  // does this point equal y?
  public boolean equals(Object other) {
    if (other == this) return true;
    if (other == null) return false;
    if (other.getClass() != this.getClass()) return false;
    Point2D that = (Point2D) other;
    // Don't use == here if x or y could be NaN or -0
    if (Double.compare(this.x,that.x) != 0) return false;
    if (Double.compare(this.y,that.y) != 0) return false;
    return true;
  }
  // must override hashcode if you override equals
  // See Item 9 of Effective Java (2e) by Joshua Block
  private volatile int hashCode;
  public int hashCode() {
    int result = hashCode;
    if (result == 0) {
      result = 17;
      result = 31*result + Double.hashCode(x);
      result = 31*result + Double.hashCode(y);
      hashCode = result;
    }
    return result;
  }
  // convert to string
  public String toString() {
    return "(" + x + "," + y + ")";
  }
  // plot using StdDraw
  public void draw() {
    StdDraw.point(x, y);
  }
  // draw line from this point p to q using StdDraw
  public void drawTo(Point2D that) {
    StdDraw.line(this.x, this.y, that.x, that.y);
  }
  public static void main(String[] args) {
    Trace.run ();
    Point2D origin = new Point2D (0, 0);
    Point2D a = new Point2D (1, -1);
    Point2D b = new Point2D (-1, 1);
    
    StdOut.println (origin.POLAR_ORDER.compare (a, b));
    
    
//    args = new String[] { "20", "20", "100" };
//    
//    int x0 = Integer.parseInt(args[0]);
//    int y0 = Integer.parseInt(args[1]);
//    int N = Integer.parseInt(args[2]);
//
//    StdDraw.setCanvasSize(800, 800);
//    StdDraw.setXscale(0, 100);
//    StdDraw.setYscale(0, 100);
//    StdDraw.setPenRadius(.005);
//    Point2D[] points = new Point2D[N];
//    for (int i = 0; i < N; i++) {
//      int x = StdRandom.uniform(100);
//      int y = StdRandom.uniform(100);
//      points[i] = new Point2D(x, y);
//      points[i].draw();
//    }
//
//    // draw p = (x0, x1) in red
//    Point2D p = new Point2D(x0, y0);
//    StdDraw.setPenColor(StdDraw.RED);
//    StdDraw.setPenRadius(.02);
//    p.draw();
//
//
//    // draw line segments from p to each point, one at a time, in polar order
//    StdDraw.setPenRadius();
//    StdDraw.setPenColor(StdDraw.BLUE);
//    Arrays.sort(points, p.POLAR_ORDER);
//    for (int i = 0; i < N; i++) {
//      p.drawTo(points[i]);
//      StdDraw.show(100);
//    }
  }
}
 |