| 
001002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 
 | package algs12;
import stdlib.*;
/* ***********************************************************************
 *  Compilation:  javac Complex.java
 *  Execution:    java Complex
 *
 *  Data type for complex numbers.
 *
 *  The data type is "immutable" so once you create and initialize
 *  a Complex object, you cannot change it. The "final" keyword
 *  when declaring re and im enforces this rule, making it a
 *  compile-time error to change the .re or .im fields after
 *  they've been initialized.
 *
 *  % java Complex
 *  a            = 5.0 + 6.0i
 *  b            = -3.0 + 4.0i
 *  Re(a)        = 5.0
 *  Im(a)        = 6.0
 *  b + a        = 2.0 + 10.0i
 *  a - b        = 8.0 + 2.0i
 *  a * b        = -39.0 + 2.0i
 *  b * a        = -39.0 + 2.0i
 *  a / b        = 0.36 - 1.52i
 *  (a / b) * b  = 5.0 + 6.0i
 *  conj(a)      = 5.0 - 6.0i
 *  |a|          = 7.810249675906654
 *  tan(a)       = -6.685231390246571E-6 + 1.0000103108981198i
 *
 *************************************************************************/
public class Complex {
  private final double re;   // the real part
  private final double im;   // the imaginary part
  // create a new object with the given real and imaginary parts
  public Complex(double real, double imag) {
    re = real;
    im = imag;
  }
  // return a string representation of the invoking Complex object
  public String toString() {
    if (im == 0) return re + "";
    if (re == 0) return im + "i";
    if (im <  0) return re + " - " + (-im) + "i";
    return re + " + " + im + "i";
  }
  // return abs/modulus/magnitude and angle/phase/argument
  public double abs()   { return Math.hypot(re, im); }  // Math.sqrt(re*re + im*im)
  public double phase() { return Math.atan2(im, re); }  // between -pi and pi
  // return a new Complex object whose value is (this + b)
  public Complex plus(Complex b) {
    Complex a = this;             // invoking object
    double real = a.re + b.re;
    double imag = a.im + b.im;
    return new Complex(real, imag);
  }
  // return a new Complex object whose value is (this - b)
  public Complex minus(Complex b) {
    Complex a = this;
    double real = a.re - b.re;
    double imag = a.im - b.im;
    return new Complex(real, imag);
  }
  // return a new Complex object whose value is (this * b)
  public Complex times(Complex b) {
    Complex a = this;
    double real = a.re * b.re - a.im * b.im;
    double imag = a.re * b.im + a.im * b.re;
    return new Complex(real, imag);
  }
  // scalar multiplication
  // return a new object whose value is (this * alpha)
  public Complex times(double alpha) {
    return new Complex(alpha * re, alpha * im);
  }
  // return a new Complex object whose value is the conjugate of this
  public Complex conjugate() {  return new Complex(re, -im); }
  // return a new Complex object whose value is the reciprocal of this
  public Complex reciprocal() {
    double scale = re*re + im*im;
    return new Complex(re / scale, -im / scale);
  }
  // return the real or imaginary part
  public double re() { return re; }
  public double im() { return im; }
  // return a / b
  public Complex divides(Complex b) {
    Complex a = this;
    return a.times(b.reciprocal());
  }
  // return a new Complex object whose value is the complex exponential of this
  public Complex exp() {
    return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im));
  }
  // return a new Complex object whose value is the complex sine of this
  public Complex sin() {
    return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im));
  }
  // return a new Complex object whose value is the complex cosine of this
  public Complex cos() {
    return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im));
  }
  // return a new Complex object whose value is the complex tangent of this
  public Complex tan() {
    return sin().divides(cos());
  }
  // a static version of plus
  public static Complex plus(Complex a, Complex b) {
    double real = a.re + b.re;
    double imag = a.im + b.im;
    Complex sum = new Complex(real, imag);
    return sum;
  }
  // sample client for testing
  public static void main(String[] args) {
    Complex a = new Complex(5.0, 6.0);
    Complex b = new Complex(-3.0, 4.0);
    StdOut.println("a            = " + a);
    StdOut.println("b            = " + b);
    StdOut.println("Re(a)        = " + a.re());
    StdOut.println("Im(a)        = " + a.im());
    StdOut.println("b + a        = " + b.plus(a));
    StdOut.println("a - b        = " + a.minus(b));
    StdOut.println("a * b        = " + a.times(b));
    StdOut.println("b * a        = " + b.times(a));
    StdOut.println("a / b        = " + a.divides(b));
    StdOut.println("(a / b) * b  = " + a.divides(b).times(b));
    StdOut.println("conj(a)      = " + a.conjugate());
    StdOut.println("|a|          = " + a.abs());
    StdOut.println("tan(a)       = " + a.tan());
  }
}
 |