
 
 
 
 
 

Dynamic Aspect-Oriented Security Policy Enforcement 
 

Mark S. Nichols 
nichols_ms@hotmail.com 

SE 547 Foundations of Computer Security 
 
 
 
 

Abstract
 
There are many approaches to utilizing aspect-oriented (AO) languages and techniques for the 
purpose of introducing security into applications.  The cross-cutting nature of security has been 
well documented and therefore the benefit of implementing security using AO techniques 
logically follows.  Authentication, authorization, auditing, logging, etc. are obvious activities that 
can easily be introduced via aspects.  This paper will propose the possibility of utilizing aspect-
oriented components combined with Execution Monitoring [1] techniques to dynamically 
generate and enforce security policies within applications. 
 
 

Introduction

Secure application development is an ever present problem with numerous possible solutions.  
Embedding validation and security code directly into the application to monitor progress is an 
obvious and proven solution.   The problem with this approach is that it introduces so-called 
“nonfunctional code” (code not adding to the overall purpose of the application) intertwined 
within the business rules.  Also, the structural differences between application logic and security 
logic invariably causes design and development issues[2].  The alternative proposed by this paper 
is to utilize aspect-oriented extensions to weave the security features into existing business logic.  
As part of the overall solution is a dynamic policy generator that allows for the easy addition and 
modification of policies and an Execution Monitor (EM) [1] to create a flexible and effective 
security policy enforcement mechanism. 

Developing a secure application requires analysis of all possible situations or instructions that 
may generate an exploitable security lapse.  It isn’t always feasible to predict all possibilities and 
create a secure environment that withstands the test of time.  Inevitably, additional restrictions or 
policies must be introduced to the application to reinforce the embedded security.  The 
introduction of new restrictions or policies can be problematic.  The difficulties lie in locating the 
appropriate instructions and inserting the new commands that will effectively detect security 
violations and stop the execution. 

This paper will discuss a possible approach toward introducing policy enforcement through a 
combination of a policy engine written in a standard programming language along with the 
weaving of security checks into an application through the use of an aspect-oriented language.  

 Page 1 of 17 



Java was chosen for the development of the application code and the security engine.  AspectJ 
was chosen as the aspect-oriented language.  This is not to say that the techniques herein could 
not be done with other languages.  On the contrary, the techniques described below could be 
added to other languages and environments with similar results.  The point of this research is to 
show what can be done and the general effectiveness of combining aspect-oriented techniques 
with standard application development to provide application-level security. 

 
Outline of this Paper 
 
Section 1 discusses the approach taken for the research around implementing security policies 
utilizing aspect-oriented language extensions.  Section 2 defines the requirements of Schneider’s 
Execution Monitor [1] which is the type of evaluation engine implemented in this research.  In 
section 3 an example application with its security requirements is described which will be the 
basis for the actual application developed.  The actual project implementation is laid out in 
section 4 showing the Java class library structure and methods.  Section 5 looks at the aspect side 
of the research including a high-level view of how aspects are used to facilitate application 
security.  Detailed explanations of each of the required aspect files are shown in section 6.  A 
sample run of the code described in this paper is shown in section 7 which shows the policies 
intercepting a violation.  The project assumptions listed in section 8 define the requirements and 
limitations of the approach proposed by this paper.  Finally, section 9 summarizes the research 
and results obtained. 
 

1.  Approach 

The objective of this paper is to show the possibility of utilizing a combination of techniques to 
build security policy enforcement into an arbitrary application without embedding the security 
components directly into the application code.  There are several major software components 
included in the project: the application (business rules), a finite state automaton providing a 
portion of the requirements for an “Execution Monitor” [1] and lastly, aspect-oriented 
components for building the security automaton and an intercepting method proxy for predicating 
method calls to verify the safety of the calls. 

Java is used as the base programming language for the application and security automaton code.  
AspectJ is used as the extension to Java for the aspect-oriented components including the building 
of automata representing security policies, initiating the intersection of multiple policy automata 
and providing the ability to intercept application execution information required for security 
validation.  In the case of example application, method calls (captured through reflection) were 
used as input for the security validation checks performed by the execution monitor.  This is not a 
requirement or limitation of the approach.  Rather, it is just the method chosen for the example.  
Other forms of input could be equally valid and used in other implementations. 

For demonstration purposes, an example implementation will be shown that performs a series of 
tasks including specialized method calls.  These method calls, individually, do not constitute 
security violations.  Rather, it is certain combinations of the calls that have been defined as 
security risks.  The combinations include performing the method calls in a particular order and we 
must stop the application if that method call order is detected.   
 

 Page 2 of 17 



Detection of the combinations is ineffective through static analysis since the order of method call 
may depend on dynamic data input, GUI interactions, etc.  Therefore, a dynamic detection 
scheme is indicated.  Utilizing a finite state machine to track the application state has been shown 
to be an effective tool for this type of requirement.  This is the basis for the detection scheme 
employed by this paper. 
  
 
 
2.  Execution Monitor (EM): 
 
Schneider described an Execution Monitor (EM) [1] to be a class of enforcement mechanisms 
that monitors execution steps of some system (target) and terminates the target’s execution if it is 
about to violate the security policy being enforced.  For purposes of clarification, it is important 
to note the definition of a security policy that will be used within this paper.  Schneider initially 
identifies a broad definition for a security policy stating that a target S satisfies security policy P 
if and only if P(Σs) equal true.  He further defines a security property to be a set of executions 
where each element is evaluated individually to determine inclusion in the set and not by other set 
members.  He then determined that a policy must be a property to be enforceable via EM.  
Therefore, as this paper describes enforcement of security policies, it can be assumed that the 
term policy refers to a security policy that is also a security property. 
 
Now that a policy that can be enforced by an execution monitor has been defined, it is necessary 
to reiterate the traits and requirements of an execution monitor also defined by Schneider.  
  
Requirements of Execution Monitor enforceability: 
1)  A security policy P that can be enforced by EM must be specified by a predicate in the form: 

( ) ( )( )σσ ΡΠ∈∀ΠΡ
)

::  
 

2) Prefix Closed:  ( )( )( )στψστψτ ′Ρ¬∈∀⇒′Ρ¬−∈′∀
))

:)(:   In other words, once a security 
property is violated, the execution cannot be made “right” through any additional set of execution 
steps. 
 
3) Rejection over a finite period:  [ ]( )( )( )iPiP ...:)(: σσψσ ′¬∃⇒′¬∈∀   For all executions 
that fail, they will fail in a finite number of instructions. 
 
The execution monitor described in this paper does satisfy all three requirements.  First, the finite 
state machine determines, through a predicate verification, if the next proposed instruction is safe 
or invalid.  Second, once a violation is determined, a violation exception is thrown and execution 
stops – no additional instructions can make the violation “right” again.  Third, a violation is 
determined prior to the execution of the invalid instruction (finite sequence of instructions). 
 
 
3.  Example Security Development: 
 
We start by identifying the overall application requirements (i.e., business rules) along with the 
security requirements.  It is noted that during the course of operation, the application needs to be 
able to read from and write data to secure data locations.  To facilitate these requirements, a 
specialized functional package and class will be used that provides the needed data reading and 
writing capabilities along with the necessary authentication methods.  It is this package that must 
be tracked and validated whenever calls are made to the methods contained in it.  Again, it is 

 Page 3 of 17 



particular sequences to these methods not necessarily the individual calls themselves that are of 
interest and may cause security violations. 
 
Identified security risks / policies to implement: 

1. The application may write data using the specialized methods but once a read method is 
called, no more writes can be allowed. 

2. There is a very high risk data area such that; if a single read command has been issued, 
no more reads from that area can be allowed. 

 
Looking at the first security requirement, the policy requires that the application in its initial state 
(State 0) may perform any operation until a read instruction (of any kind) occurs.  Once a read 
operation takes place, the application shifts to state 1 and is limited to any operation except a 
write of any kind.  This policy disallows the possibility of reading sensitive data and then writing 
it to a separate un-secure location.  The structure of this policy is demonstrated using a finite state 
automaton illustrated in Figure 1.   
 
 

 

!Write* 

1 

Read*
!Read* 

0 

Figure 1 – “no write after read” policy automaton. 
 
 
Notice the ornamentation on each of the transition labels.  The labels may take any combination 
in the following form: 

[!]methodname[*] 
 
Since this implementation is concerned with particular method calls, “methodname” is the name 
of the method of interest.  It can take on all of the same characteristics as a legal Java method 
name.  Note: unlike java, all of the string comparisons performed while looking for matches are 
case insensitive.  (e.g., Read will match Read, read, etc.)  The optional prefix “!” indicates that a 
match will take place with any command that does not match the method name.  (e.g., !Read will 
match Readfile, write, print, process, etc.)  The suffix “*” is a wildcard that indicates a match 
occurs on any method name that begins with the characters listed.  (e.g., Read* will match Read, 
read, readfile, readSecure, etc.)  Combinations of the prefix and suffix can also be indicated.  
(e.g., !Read* will match write, print, process but will not match read or readfile).   
 

 Page 4 of 17 



The prefix and suffix combinations allow the policy designer greater flexibility in the design of 
the transitions between states in the policy automaton.  Groups of method calls can be targeted in 
a policy rather than creating complex policies that identify each method call individually. 
 
The prefix/suffix capability introduces an interesting issue when there are multiple transition 
paths within the current state.  Note that this is a very likely situation.  Inadvertent matches can 
occur if the match evaluation is done “out of order”.  For example, suppose the current state 
contains two possible transitions: 
 

1. !write 
2. read 

 
Then, a “read” instruction is intercepted by the execution monitor and evaluated; the first 
transition test with “!write” will result in a match.  This is in error since an exact match exists in 
the second transition.  Therefore, a priority of evaluation must exist with possible transitions.  
There are four possible prefix/suffix combinations and they are listed in the appropriate 
evaluation priority: 
 

1. Exact match (no prefix/no suffix) 
2. “!” prefix and exact match (no suffix) 
3. Wildcard “*” match with no prefix  
4. “!” prefix and wildcard “*” 
5. No match – Failure (Stop Application)  

 
The priority of evaluation is enforced by appropriate positioning of the transition within the 
transition list during the process of creating a state.  The higher the priority, the higher the 
transition is placed in the transition list.  Using this method, the list can be evaluated in a top-
down fashion and the first match will also be the most valid match. 
 
Now that the first policy has been designed it is time to design the second policy.  The second 
policy is designed to restrict the reading of data from a specialized secure location to a single 
read.  Once data is read from this location, no more data may be retrieved from it in a single 
application execution.  The same limitation of restricting writes of any kind must stay in effect.  
In fact, that limitation is even more important given the situation of reading from a location in 
memory deemed to be especially “sensitive”. 
 
 

 Page 5 of 17 



 

!ReadSecure 
or 

!Write 

3 

ReadSecure
!ReadSecure 

2 

Figure 2 – “single ReadSecure allowed” policy automaton. 
 
 
Figure 2 illustrates the automaton designed to enforce the policy of limiting the access of 
sensitive data to a single read.  The second policy must to be “combined” with the first policy and 
introduced into the execution monitor to enforce the new restrictions.  This could be done in any 
one of several different ways.  The first way is by manually calculating a new automaton that 
describes the two policies.  This method introduces the greatest chance of error and is the most 
brittle and inflexible to change.  The second is to create a list of the policy automata and track the 
state of each automaton separately.  During each evaluation, each automaton in the list would be 
evaluated from front to back.  If any one of the automata fails then the application must be 
stopped.  This method allows a greater degree of flexibility than the first option but creates a very 
difficult environment to manage and track.  A third, more desirable, solution is to dynamically 
intersect all of the policy automata creating a single “master” automaton that can be easily 
tracked in the execution monitor.  Another benefit of this approach is that the policies can be 
modified (added to/reduced) and the new updated automaton will be generated dynamically. 
 
Figure 3 illustrates the resulting “master” automaton once the policies shown in Figure 1 and 
Figure 2 are intersected.  This also shows the n * m nature of automaton intersection.  There are 2 
states in the first automaton (Figure 1) and there are 2 states in the second (Figure 2).  The 
resulting intersected automaton contains 2 * 2 or 4 total states.   
 
 

 Page 6 of 17 



 
Figure 3 – Intersection of “no write after read” and  

!ReadSecure 
!ReadSecure or 

“single ReadSecure allowed” policy automata. 
 
 
At this time any additional policies could be added to the application in the same manner. 
 
 
4.  Actual Implementation: 
 
The previous example describes how security policies are identified and combined.  Next, the 
actual implementation created for this paper will be illustrated.  The components created to for 
this research can be divided into two major parts.  The first component is the policy builder and 
the second is the Execution Monitor.  Both components are built using a combination of Java 
objects and aspects using AspectJ.   
 
As was stated before, a finite state automaton is used as the tracking mechanism for the security 
policies.  The structure of the automaton is discussed first.   
 
 
Specifications of the Finite State Automata Java objects: 
 
The finite state machine built for this paper utilizes the standard 5-tuple approach (Q, Σ, q0, δ, A) 
where: 

• Q is a set of states which are added individually to the automaton 
• Σ is an alphabet which can be an alphanumeric label with an optional “!” and/or “*” 
• q0 is the start state which defaults to the first state added to the automaton but may be 

manually set to any existing state in the automaton 
• δ : Q x Σ → Q is a transition function that is calculated by attempting to match the 

current instruction step label with the possible transitions in the current state 
• A ⊆ Q is the set of accepting states which, by definition, must be a state existing in the 

automaton 
 

ReadSecure 

or !Write 
!Write 

0,2 

1,2 1,3 

!ReadSecure 
Read* Read*or 

!Read* 

ReadSecure 
0,3 !ReadSecure 

or 
!Write 

 Page 7 of 17 



Figure 4 is the class diagram describing the design of the finite state automaton built to support 
this paper’s execution monitor. 
 
 

 
Figure 4 – Policy automaton class diagram. 

 
 
This class diagram shows the structure of the Automaton and the method used for monitoring the 
execution of an application.  The Automaton (IAutomaton) is given a name and is made up of 0..n 
states (IState).  The name is not a functional component of the automaton.  It exists solely for 
identifying the automaton.  The name is helpful during debugging and logging purposes.  The 
main method used by the execution monitor is “IState step(String stepLabel)”.  The step method 
is the predicate through which all current step validations are made.  If the step is evaluated to be 
safe, a new state (IState) is returned which becomes the new current state.  If the step is deemed 
invalid/illegal an exception “InvalidAutomatonStepException” is thrown and processing ceases. 
 
A state is made up of a single name or label (ISet) and 0..n transitions (ITransition) to a resulting 
state.  The state label is used to define the individual state.  The internal structure of ISet is that of 
a mathematical set.  That is, it provides the following set functionality:  
 

• intersect 
• union 
• disjoint 
• isMember 

 
It was beneficial to treat the labels of the states as a set.  As policies are built and combined or 
intersected, searching for appropriately matched states, creating new composite state labels, etc. 
were facilitated by the set functionality.  For example, in creating the new intersected “master” 
automaton, the names of the states are the various iterations of set member combinations.  Figure 
1 automaton had the states {0, 1}.  Figure 2 had the states {2, 3}.  Figure 3 shows the four 
resulting unions of the state members: {{0, 2}, {1, 2}, {0, 3}, {1, 3}} 
 
Finally, a transition (ITransition) is made up of a transition label (ITransitionLabel) and a 
reference to a resulting state (IState).  The transition label contains the information necessary to 
validate the predicate ‘step’ (described above).  It maintains a pair of flags that identify the 
existence of prefix “!” and suffix “*” along with the string used in matching the current execution 
step.  The transitions are held in a list inside a state object.  The positional order in that list 
dictates the priority of evaluation when a new step is evaluated.   
 

 Page 8 of 17 



The automaton objects provide the necessary functionality for creating states and automata and it 
also provides the necessary Execution Monitor “engine” for evaluating the predicate steps.  It 
does not, however, provide a mechanism for injecting itself into an application.  Hard coding calls 
directly into application code is an option but not very ideal.  As described by the next section, 
utilizing aspect-oriented techniques does provide the capability that we require while keeping 
modularity at its highest. 
 
 
5.  High-level View of Security Aspects and Modular Policy Insertion 
 
 
We now have in place the objects that will provide the EM functionality.  The next step is to 
weave the EM functionality into an application.   
 
There are 4 AspectJ/Java code files necessary for this implementation to operate. 

• Policy aspects – One file per security policy 
• PolicyBase.java – abstract aspect (required by the policy aspects) 
• SecurityBuilderMonitor – Creates security policies / Proxy for intercepted methods 
• SecurityBase.java – abstract aspect (required by SecurityBuilderMonitor) 

 
The first step is to look at how a policy is built and “added” to the application security. 
 
Figure 4 below demonstrates how a set of policies are created and added to the master policy 
automaton by simply including the policies (java source files) to the compilation.  It also shows 
the interception of method calls in the application by the Execution Monitor contained in the 
security aspects. 
 
1.  A joinpoint is triggered by the execution of main() initiating the creation of the 
SecurityBuilderMonitor aspect.   
 
2.  Upon completing the creation of the SecurityBuilderMonitor aspect, the run() method (defined 
in the SecurityBase aspect) is called.  A joinpoint in each of the security policy aspects is 
triggered by the run() method.  This causes the “waterfall” creation of all of the policy aspects.  
Note: in the diagram the policies are shown as Policy1 through PolicyN but the order in which the 
policies are created does not matter. 
 
3.  A joinpoint in the SecurityBuilderMonitor aspect intercepts all of the interesting calls made by 
the application.  The intercepted calls are passed to the execution monitor where the predicate is 
called to determine if the current method call is valid or illegal.  If the method call is valid, 
control is passed to it and execution continues.  If the call is illegal, an exception is thrown and 
execution is halted. 
 
 

 Page 9 of 17 



 
Figure 5 – High-level view of policy building  

and method interception. 
 
 
6.  Policy Aspects 

 
Below is an example of the code for the “no write after read” policy aspect depicted in Figure 1.  
The code shows how an individual security policy automaton object is built within AspectJ code.  
The resulting object represents a single security policy which can then be intersected with other 
policies to create the final “master” state machine that tracks the progress of the application.  It 
may be somewhat confusing since the only component coded in this aspect is the constructor.  
However, because the policy aspects inherit from PolicyBase, the constructor is all that is needed 
to effectively create a policy.  The PolicyBase aspect will be reviewed later. 
 
 

 Page 10 of 17 



 
Figure 6 – Individual Policy Aspect.  This example aspect 

builds the “no read after write” policy.   

aspect PolicyReadWrite extends PolicyBase issingleton() {
 
 PolicyReadWrite() {    // aspect constructor 
   
  // (Step 1) provide a name for the policy 
  namePolicy("PolicyReadWrite"); 
   
  // (Step 2) Create 2 security policy states    
  _factory.makeStates( 2 ); 
   
  // (Step 3) Create the transition objects 
  //       (assignToState, "trans label", transToState) 
  _factory.makeTransition(0,  "!read*",   0); 
  _factory.makeTransition(0,  "read*",   1); 
  _factory.makeTransition(1,  "!write*",   1); 
   
  // (Step 4) Call the intersection routine in PolicyBase (abstract 
  // aspect) it creates the policy automaton and intersects  
  // with the any exist
  doIntersection(); 

ing automata 

 }  
} 

 
In looking at the AspectJ code, the purpose of (Step 1) “namePolicy” is just to give the automaton 
a textual name.  The name is not used in the operation of the execution monitor.  However, it is 
useful during testing and debugging.  (Step 2) creates all of the states contained in the automaton 
in a single statement by providing (as a parameter) the total number of states for this automaton.    
Each state created is given a unique integer name starting with 0.  Although this means multiple 
automata will contain states with identical names, the intersection process corrects this situation 
by internally renaming states to avoid the obvious conflicts.  This extra internal processing allows 
the policy automata to be created individually without knowledge of any other policies.  (Step 3) 
requires a separate call to create each individual transition.  The parameters identify the state 
object to assign the new transition to, the transition label used to determine which transition to 
follow when a step is executed and the new current state if the transition is followed.  Finally, 
(Step 4) send the newly created policy automaton to be intersected with the main “master” 
automaton.  If this is the first policy, it is merely stored as the master.  If a policy already exists, 
the newly created policy is intersected with the “master” policy creating a new “master”.  This 
completes the creation of the security policy. 
 
One thing to reiterate at this point is this implementation operates under the assumption that the 
automata created for security policies must be deterministic.  However, the method described 
above for creating an automaton allows for the possibility for creating non-deterministic 
automata.  Care must be taken while designing and building the policies to ensure the proper 
determinism.  No validation code currently exists in the class structure for detecting non-
deterministic transitions. 
 
 
PolicyBase 
 
As was stated earlier, each of the policies must inherit from the PolicyBase aspect.  PolicyBase is 
required for two reasons.  The first reason is because of standard object-oriented methodology.  
All of the common code has been removed from the policy aspect leaving only code that will 

 Page 11 of 17 



differ from policy to policy.  The second reason is to create a reusable aspect that will ensure that 
the appropriate code is called during the initialization phase of the application startup. 
 
 

 
Figure 7 – The PolicyBase abstract aspect. 

abstract aspect PolicyBase {
  
 static IAutomaton _policyAutomaton; 
 static AutomatonFactory _factory; 
 static String _policyName; 
  
 // PolicyBase Constructor 
 public PolicyBase() { 
  _factory = AutomatonFactory.getFactory(); 
  _policyAutomaton = null; 
  _policyName = null; 
 } 
  
 // No work is performed in this jpinpoint.  It exists to make  
 // the aspect instantiate 
 before() : execution(* SecurityBase.run()) {} 
 
 // This method is used by the subaspect to help it intersect 
 // with the 'master' policy automaton. 
 static void doIntersection() {  
 
  _policyAutomaton = _factory.makeAutomaton(_policyName);   
   
  SecurityBuilderMonitor.intersect(_policyAutomaton); 
 } 
  
 // This method gives the policy a name that can be used for  
 // display or debugging purposes 
 static void namePolicy(String policyName) { 
  _policyName = policyName; 
 } 
} 

 
 
There is a single joinpoint in PolicyBase that triggers off of the execution of the run() method that 
is defined in the SecurityBase abstract aspect.  Note: SecurityBase is discussed later.  No work is 
performed in this joinpoint.  It exists solely for the purpose of causing all aspects that inherit from 
PolicyBase to instantiate when the SecurityBase.run() method is called.  This is interesting 
because it allows the individual policy aspects to be coded, instantiated and bound to the 
application without the application having any direct or indirect knowledge of the policies.   
 
There are two methods in the PolicyBase aspect that are inherited and used by the policy aspects.  
namePolicy allows the policy aspect to give the policy a textual name.  The name is not 
functionally required but is helpful during testing and debugging for display purposes.   The 
doIntersection method is where the most work occurs during the creation of a policy.  This is the 
point where the builder class takes all of the information provided to it by a policy aspect and 
actually builds a policy automaton.  The resulting automaton is then passed to the 
SecurityBuilderMonitor aspect through the intersect method.  If this is the first automaton to be 
passed in then its reference is merely copied and the automaton becomes the “master”.  If a 
master automaton already exists, then the newly created policy is intersected with the existing 
master and a new master is created.   

 Page 12 of 17 



SecurityBuilderMonitor 
 
The SecurityBuilderMonitor aspect contains the code necessary to trigger creation of all of the 
individual policies.  It also has the “around” joinpoint that acts as a proxy for intercepting all of 
the method calls that the application has identified as potential security risks. 
 
The aspect begins by creating a joinpoint that looks for the application’s main() method.  This 
will cause the aspect to instantiate through the constructor.  The constructor then calls the run() 
method (defined in the SecurityBase abstract aspect).  The run() method does not perform any 
work, it exists only to give the policy aspects a target for their joinpoints. 
 
 

 
Figure 8 - SecurityBuilderMonitor 

public aspect SecurityBuilderMonitor extends SecurityBase issingleton() { 
 
 SecurityBuilderMonitor() { 
  run();  // This is the run() method intercepted by PolicyBase 
 } 
  
 before() : execution( public static void *.main(String[])) { } 
 
 // The pointcut that identifies the methods to intercept  
 pointcut interceptedIOCalls() : execution(* IORoutines.*(..)); 
  
 // This is the Proxy that intercepts the method calls 
 Object around() throws Exception : interceptedIOCalls() { 
 
  Object returnValue = null; 
   
  // get the method name through aspect reflection 
  String methodName = thisJoinPoint.getSignature().getName(); 
   
  if (_policyAutomaton == null) { 
   returnValue =  proceed(); 
  } else { 
   try { 
    // Here, the predicate is called to verify the method call 
    _policyAutomaton.step(methodName); 
     
    System.out.println("method " + methodName + " permitted to execute"); 
  
    // The method is validated, allow it to continue 
    returnValue =  proceed(); 
    
   } catch (securePolicyManager.InvalidAutomatonStepException e) { 
    // Here, the method is deemed illegal an exception is thrown 
    System.out.println("\t>>> " + methodName +  
     " was rejected by the security monitor" + 
     "\n\t\t and was not allowed to execute"); 
     
    throw new securePolicyManager.InvalidAutomatonStepException(); 
   } 
  } 
  return returnValue; 
 } 
} 

 

 Page 13 of 17 



SecurityBase 
 
The last piece of code to look at is the abstract aspect SecurityBase shown below in Figure 8.  
SecurityBase avails several key features to SecurityBuilderMonitor.  The “master” automaton is 
declared and held here in the _policyAutomaton variable.  The intersect method is provided to 
handle the combining of security automata.  Finally, the run() command is declared.  The purpose 
of the run() method is documented above. 
 
 

 
Figure 9 – SecurityBase abstract aspect. 

public abstract class SecurityBase { 
  
 protected static IAutomaton _policyAutomaton; 
 protected static boolean securityWarningShown = false; 
 
 SecurityBase() { 
  _policyAutomaton = null; 
 } 
  
 // Process policy automata intersection 
 static void intersect(IAutomaton newPolicy) { 
  if (_policyAutomaton == null) 
   _policyAutomaton = newPolicy; 
  else { 
   _policyAutomaton = _policyAutomaton.intersect(newPolicy); 
  } 
 } 
  
 // run() is the Trigger for policies to construct policies and intersect 
 protected void run() {}; 
} 

 
 
7.  Sample Run 
 
The code printout below was the routine used to test the execution monitor and the policies.  
Although the routine does not perform any real work, it does work well to validate the fact that 
the policy automaton properly catches violations during execution.  Note: “routines” is a variable 
referencing the class that the security policies are validating.   
 

 
Figure 10 – Test code 

 public void testRun() { 
  System.out.println("\n============> Test Run <=============="); 
  try { 
   routines.setUserID("mark"); 
   routines.write(); 
   routines.writeFile(); 
   routines.readSecure(); 
   routines.getFileWrites(); 
   routines.setUserID("sam"); 
   routines.readSecure(); 
   routines.writeFile(); 
  } catch (Exception e) { 
   System.out.println("\nSecurity system detected a violation:\n\t" +  
     e.getMessage()); 
   System.out.println("Application Exiting"); 
   System.exit(1); 
  } 
 } 

 

 Page 14 of 17 



As can be seen below in figure 11, the methods are called, then captured by the execution monitor 
“proxy” and validated by the master policy automaton.  This run occurred while the “no write 
after read” and the “single ReadSecure allowed” policies were in effect.  Here, two readSecure 
method calls were attempted and the second call caused the exception and the halting of the 
application. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
8
 
A
p

 
 

 

============> Test Run <============== 
 
Method Called: setUserID 
method setUserID permitted to execute 
 
Method Called: write 
method write permitted to execute 
 
Method Called: writeFile 
method writeFile permitted to execute 
 
Method Called: readSecure 
method readSecure permitted to execute 
 
Method Called: getFileWrites 
method getFileWrites permitted to execute 
 
Method Called: setUserID 
method setUserID permitted to execute 
 
Method Called: readSecure 
 >>> readSecure was rejected by the security monitor 
   and was not allowed to execute 
 
Security system detected a violation: 
 Security violation while attempting to execute method: readSecure 
Application Exiting 
Figure 11 – Test Run 

.  Project Assumptions 

s is with all projects and research there are certain assumptions that must be identified and in 
lace.  These assumptions were necessary for the reasons listed. 
• Trusted Computing Base – Since the “secure-ness” of the weaving process is 

outside the scope of this research, it is assumed that no additional security risk is 
incurred through the use of an aspect-oriented language (in this case AspectJ). 

• The security policies required by the application are enforceable through an 
Execution Monitor.  In the test application, method calls (by name) were 
predicated indicating validity or failure. 

• The security policy automata need to be deterministic.  No validation checks are 
performed to ensure that all state transitions are unique and deterministic. 

• The security policy automata are valid.  No validation checks are performed to 
ensure the states and transitions do, in fact, create a valid automaton. 

• The security policy automata are viable.  No conflict checking is performed 
during the creation and intersection of policy automata.   

Page 15 of 17 



9.  Summary 
 
The proposed solution in this paper uses the unique capabilities of aspect-oriented language 
extensions to weave an effective, modular, non-intrusive security policy enforcement mechanism 
into an application.  Using this technique, an application can be developed without the need to 
intertwine security related code directly into the functional body or business rules of the 
application – greatly increasing modularity.  Security policies can be designed, developed and 
even tested individually. 
 
The individual policies (deterministic finite state automata) can be added, modified and removed 
dynamically, that is, without directly referencing them in an application.  Adding and removing a 
policy is just a matter of including a policy aspect in the build list during compilation.  Also, 
policies are built dynamically during the startup of the application creating a single “master” 
automaton that can easily be tracked as the application executes.  
 
The proposed solution described in this paper has been shown to be relatively easy to implement 
and flexible.  The enhanced capabilities provided by aspects are a key component to that ease and 
flexibility.  Although the Execution Monitor alone could be added to an application to facilitate 
security, the exciting benefits are achieved through exploiting the weaving and interception 
abilities provided by an aspect-oriented environment. 
 
Additional Proposed Work 
 

• The work done on this example does lack a few nice to have checks and balances.  There 
is no validation checks implemented that would discover redundant or invalid transitions.  
Also, there can be cases where duplicate transitions may result during the intersection of 
automata.  Although this does not affect the results of the predicate, space utilization and 
program efficiency may be positively effected.  

 
• As for the secure-ness of aspect-oriented languages, it is unknown if the standard 

methods used in weaving functionality introduces opportunities for security exploitation.  
A study that identifies if or when the aspect weaving mechanism can be considered part 
of the trusted computing base would be necessary to reinforce the viability of utilizing an 
aspect-oriented language for security enforcement such as the solution proposed by this 
paper. 

 
• It would also be interesting to transfer this approach over to languages other than Java 

and AspectJ to see how the different environments compare. 
 

 Page 16 of 17 



References

[1] Fred B Schneider.  Enforceable security policies.  ACM Transactions on Information and 
Systems Security, 3(1):30-50, February 2000. 

[2] B. De Win, W. Joosen and F. Piessens.  Developing secure applications through aspect-
oriented programming. Aspect-Oriented Software Development, Addison Wesley, pages 
633-650, 2005. 

 

 

 

 Page 17 of 17 


