
Lectures on
Proof-Carrying Code

Peter Lee
Carnegie Mellon University

Lecture 3 (of 3)
June 21-22, 2003

University of Oregon

2004 Summer School on Software Security

Acknowledgments

George Necula

Frank Pfenning

Karl Crary

Zhong Shao

Bob Harper

Recap

Yesterday we

• formulated a certification problem

•defined a VCgen
• this necessitated the use of (untrusted)

loop invariant annotations

• showed a simple prover

•briefly discussed LF as a
representation language for
predicates and proofs

Continuing…

Today we continue by describing
how to obtain the annotated
programs via certifying compilation

An example of certifying compilation

public class Bcopy {
public static void bcopy(int[] src,

int[] dst)
{

int l = src.length;
int i = 0;

for(i=0; i<l; i++) {
dst[i] = src[i];

}
}

}

Proof rules
(excerpts)

1. Standard syntax and rules for first-order logic.

/\ : pred -> pred -> pred.
\/ : pred -> pred -> pred.
=> : pred -> pred -> pred.
all : (exp -> pred) -> pred.

pf : pred -> type.

truei : pf true.
andi : {P:pred} {Q:pred} pf P -> pf Q -> pf (/\ P Q).
andel : {P:pred} {Q:pred} pf (/\ P Q) -> pf P.
ander : {P:pred} {Q:pred} pf (/\ P Q) -> pf Q.

…

Syntax of
predicates.

Type of valid proofs,
indexed by predicate.

Inference rules.

Proof rules
(excerpts)

2. Syntax and rules for arithmetic and equality.

= : exp -> exp -> pred.
<> : exp -> exp -> pred.

eq_le : {E:exp} {E':exp} pf (csubeq E E') ->
pf (csuble E E').

moddist+: {E:exp} {E':exp} {D:exp}
pf (= (mod (+ E E') D) (mod (+ (mod E D) E') D)).

=sym : {E:exp} {E':exp} pf (= E E') -> pf (= E' E).
<>sym : {E:exp} {E':exp} pf (<> E E') -> pf (<> E' E).

=tr : {E:exp} {E':exp} {E'':exp}
pf (= E E') -> pf (= E' E'') -> pf (= E E'').

“csuble” means ≤ in
the x86 machine.

Proof rules for arithmetic

Note that we avoid the need for a
sophisticated decision procedure for
a fragment of integer arithmetic

Intuitively, the prover only needs to
be as “smart” as the compiler

Arithmetic

Note also that the “safety critical”
arithmetic (i.e., array-element
address computations) generated
by typical compilers is simple and
highly structured

• e.g., multiplications only by 2, 4, or 8

Human programmers, on the other
hand, may require much more
sophisticated theorem proving

Proof rules
(excerpts)

3. Syntax and rules for the Java type system.
jint : exp.
jfloat : exp.
jarray : exp -> exp.
jinstof : exp -> exp.

of : exp -> exp -> pred.

faddf : {E:exp} {E':exp}
pf (of E jfloat) ->
pf (of E' jfloat) ->
pf (of (fadd E E') jfloat).

ext : {E:exp} {C:exp} {D:exp}
pf (jextends C D) ->
pf (of E (jinstof C)) ->
pf (of E (jinstof D)).

Java typing rules in the TCB

It seems unfortunate to have
Java types here, since we are
proving properties of x86
machine code

More to say about this shortly…

Proof rules
(excerpts)

4. Rules describing the layout of data structures.
aidxi : {I:exp} {LEN:exp} {SIZE:exp}

pf (below I LEN) ->
pf (arridx (add (imul I SIZE) 8) SIZE LEN).

wrArray4: {M:exp} {A:exp} {T:exp} {OFF:exp} {E:exp}
pf (of A (jarray T)) ->
pf (of M mem) ->
pf (nonnull A) ->
pf (size T 4) ->
pf (arridx OFF 4 (sel4 M (add A 4))) ->
pf (of E T) ->
pf (safewr4 (add A OFF) E).

This “sel4” means
the result of reading
4 bytes from heap M
at address A+4.

Compiling model rules in the TCB

It is even more unfortunate to
have rules that are specific to a
single compiler here

Though it does tend to lead to
compact proofs

More to say about this shortly…

Proof rules
(excerpts)

5. Quick hacks.

nlt0_0 : pf (csubnlt 0 0).
nlt1_0 : pf (csubnlt 1 0).
nlt2_0 : pf (csubnlt 2 0).
nlt3_0 : pf (csubnlt 3 0).
nlt4_0 : pf (csubnlt 4 0).

Inevitably, “unclean”
things are sometimes put
into the specification...

How do we know that it is right?

Back to our example

public class Bcopy {
public static void bcopy(int[] src,

int[] dst)
{

int l = src.length;
int i = 0;

for(i=0; i<l; i++) {
dst[i] = src[i];

}
}

}

Unoptimized loop body

L11 :
movl 4(%ebx), %eax
cmpl %eax, %edx
jae L24

L17 :
cmpl $0, 12(%ebp)
movl 8(%ebx, %edx, 4), %esi
je L21

L20 :
movl 12(%ebp), %edi
movl 4(%edi), %eax
cmpl %eax, %edx
jae L24

L23 :
movl %esi, 8(%edi, %edx, 4)
movl %edi, 12(%ebp)
incl %edx

L9 :
ANN_INV(ANN_DOM_LOOP,

%LF_(/\ (of rm mem) (of loc1 (jarray jint)))%_LF,
RB(EBP,EBX,ECX,ESP,FTOP,LOC4,LOC3))
cmpl %ecx, %edx
jl L11

Bounds check on src.

Bounds check on dst.

Note: L24 raises the ArrayIndex exception.

Stack Slots

Each procedure will want to use
the stack for local storage.

This raises a serious problem
because a lot of information is lost
by VCGen (such as the value)
when data is stored into memory.

We avoid this problem by
assuming that procedures use up
to 256 words of stack as registers.

Unoptimized code is easy

As we saw previously in the sample
program Dynamic, in the absence
of optimizations, proving the safety
of array accesses is relatively easy

Indeed, in this case it is reasonable
for VCgen to verify the safety of the
array accesses

Optimized target code

L7:
ANN_LOOP(INV = {

(csubneq ebx 0),
(csubneq eax 0),
(csubb edx ecx),
(of rm mem)},
MODREG = (EDI,EDX,EFLAGS,FFLAGS,RM))
cmpl %esi, %edx
jae L13
movl 8(%ebx, %edx, 4), %edi
movl %edi, 8(%eax, %edx, 4)
incl %edx
cmpl %ecx, %edx
jl L7
ret

L13:
call __Jv_ThrowBadArrayIndex

ANN_UNREACHABLE
nop

L6:
call __Jv_ThrowNullPointer

ANN_UNREACHABLE
nop

ANN_LOCALS(_bcopy__6arrays5BcopyAIAI, 3)
.text
.align 4
.globl _bcopy__6arrays5BcopyAIAI
_bcopy__6arrays5BcopyAIAI:

cmpl $0, 4(%esp)
je L6
movl 4(%esp), %ebx
movl 4(%ebx), %ecx
testl %ecx, %ecx
jg L22
ret

L22:
xorl %edx, %edx
cmpl $0, 8(%esp)
je L6
movl 8(%esp), %eax
movl 4(%eax), %esi

Optimized target code

L7:
ANN_LOOP(INV = {

(csubneq ebx 0),
(csubneq eax 0),
(csubb edx ecx),
(of rm mem)},
MODREG = (EDI,EDX,EFLAGS,FFLAGS,RM))
cmpl %esi, %edx
jae L13
movl 8(%ebx, %edx, 4), %edi
movl %edi, 8(%eax, %edx, 4)
incl %edx
cmpl %ecx, %edx
jl L7
ret

L13:
call __Jv_ThrowBadArrayIndex

ANN_UNREACHABLE
nop

L6:
call __Jv_ThrowNullPointer

ANN_UNREACHABLE
nop

ANN_LOCALS(_bcopy__6arrays5BcopyAIAI, 3)
.text
.align 4
.globl _bcopy__6arrays5BcopyAIAI
_bcopy__6arrays5BcopyAIAI:

cmpl $0, 4(%esp)
je L6
movl 4(%esp), %ebx
movl 4(%ebx), %ecx
testl %ecx, %ecx
jg L22
ret

L22:
xorl %edx, %edx
cmpl $0, 8(%esp)
je L6
movl 8(%esp), %eax
movl 4(%eax), %esi

VCGen requires
annotations in order to
simplify the process.

Optimized loop body

L7:
ANN_LOOP(INV = {

(csubneq ebx 0),
(csubneq eax 0),
(csubb edx ecx),
(of rm mem)},

MODREG = (EDI,EDX,EFLAGS,FFLAGS,RM))
cmpl %esi, %edx
jae L13
movl 8(%ebx, %edx, 4), %edi
movl %edi, 8(%eax, %edx, 4)
incl %edx
cmpl %ecx, %edx

Essential facts about
live variables, used
by the compiler to
eliminate bounds-
checks in the loop
body.

Loop invariants

One can see that the compiler
“proves” facts such as

• r ≠ 0

• r < r’ (unsigned)

• and a small number of others

The compiler deposits facts about
the live variables in the loop

Symbolic evaluation

In contrast to the previous
lecture, VCgen is actually
performed via a forward scan

This slightly simplifies the
handling of branches

The VCGen Process (1)
_bcopy__6arrays5BcopyAIAI:

cmpl $0, src
je L6
movl src, %ebx
movl 4(%ebx), %ecx
testl %ecx, %ecx
jg L22
ret

L22:

xorl %edx, %edx
cmpl $0, dst
je L6
movl dst, %eax
movl 4(%eax), %esi

L7: ANN_LOOP(INV = …

A0 = (type src_1 (jarray jint))
A1 = (type dst_1 (jarray jint))
A2 = (type rm_1 mem)
A3 = (csubneq src_1 0)
ebx := src_1
ecx := (sel4 rm_1

(add src_1 4))

A4 = (csubgt (sel4 rm_1
(add src_1 4)) 0)

edx := 0

A5 = (csubneq dst_1 0)
eax := dst_1
esi := (sel4 rm_1

(add dst_1 4))

The VCGen Process (2)

L7: ANN_LOOP(INV = {
(csubneq ebx 0),
(csubneq eax 0),
(csubb edx ecx),
(of rm mem)},

MODREG =
(EDI,
EDX,
EFLAGS,FFLAGS,RM))

cmpl %esi, %edx
jae L13

movl 8(%ebx,%edx,4), %edi

movl %edi, 8(%eax,%edx,4)
…

A3
A5
A6 = (csubb 0 (sel4 rm_1

(add src_1 4)))

edi := edi_1
edx := edx_1
rm := rm_2

A7 = (csubb edx_1 (sel4
rm_2 (add dst_1 4))

!!Verify!! (saferd4
(add src_1

(add (imul edx_1 4) 8)))

The Checker (1)

The checker is asked to verify that
(saferd4 (add src_1 (add (imul edx_1 4) 8)))

under assumptions
A0 = (type src_1 (jarray jint))
A1 = (type dst_1 (jarray jint))
A2 = (type rm_1 mem)
A3 = (csubneq src_1 0)
A4 = (csubgt (sel4 rm_1 (add src_1 4)) 0)
A5 = (csubneq dst_1 0)
A6 = (csubb 0 (sel4 rm_1 (add src_1 4)))
A7 = (csubb edx_1 (sel4 rm_2 (add dst_1 4))

The checker looks in the PCC for a
proof of this VC.

The Checker (2)

In addition to the assumptions, the
proof may use axioms and proof rules
defined by the host, such as

szint : pf (size jint 4)

rdArray4: {M:exp} {A:exp} {T:exp} {OFF:exp}
pf (type A (jarray T)) ->
pf (type M mem) ->
pf (nonnull A) ->
pf (size T 4) ->
pf (arridx OFF 4 (sel4 M (add A 4))) ->
pf (saferd4 (add A OFF)).

Checker (3)

A proof for

(saferd4 (add src_1 (add (imul edx_1 4) 8)))

in the Java specification looks like
this (excerpt):

(rdArray4 A0 A2 (sub0chk A3) szint
(aidxi 4 (below1 A7)))

This proof can be easily validated via
LF type checking.

Example: Proof excerpt
(LF representation)

ANN_PROOF(_6arrays6Bcopy1_MbcopyAIAI,
%LF_(andi (impi [H_1 : pf (of _p22 (jarray jint))]
(andi (impi [H_2 : pf (of _p23 (jarray jint))]
(andi (impi [H_3 : pf (of _p21 mem)]
(andi (impi [H_4 : pf (ceq (sub _p23 0))]
truei)
(andi (impi [H_5 : pf (cneq (sub _p23 0))]
(andi (rd4 (arrLen H_2 (nullcsubne H_5)) szint)
(andi (nullcsubne H_5)
(andi H_3
(andi H_1
(andi (impi [H_10 : pf (nonnull _p23)]
(andi (impi [H_11 : pf (of _p64 mem)]
(andi (impi [H_12 : pf (of _p65 (jarray jint))]
(andi (impi [H_13 : pf (cnlt (sub _p49 (sel4 _p21 (add _p23 4))))]
(andi H_11
truei))
(andi (impi [H_15 : pf (clt (sub _p49 (sel4 _p21 (add _p23 4))))]
(andi (rd4 (arrLen H_2 H_10) szint)
(andi (impi [H_17 : pf (cnb (sub _p49 (sel4 _p64 (add _p23 4))))]
truei)
(andi (impi [H_18 : pf (cb (sub _p49 (sel4 _p64 (add _p23 4))))]
(andi (rd4 (arrElem H_2 H_11 H_10 szint (ultcsubb H_18)) szint)
(andi (impi [H_20 : pf (ceq (sub _p65 0))]
truei)
(andi (impi [H_21 : pf (cneq (sub _p65 0))]
(andi (rd4 (arrLen H_12 (nullcsubne H_21)) szint)
(andi (impi [H_23 : pf (cnb (sub _p49 (sel4 _p64 (add _p65 4))))]
truei)
(andi (impi [H_24 : pf (cb (sub _p49 (sel4 _p64 (add _p65 4))))]
(andi (wr4 (arrElem H_12 H_11 (nullcsubne H_21) szint (ultcsubb H_24)) szint
(jintany (sel4 _p64 (add _p23 (add (mul _p49 4) 8)))))
(andi H_10
(andi (ofamem 1)
(andi H_12

Improvements

Implementation, in reality

Certifying
Prover

CPU

Code

ProofProof
Checker

VCgen+
ann’s

logic

VCgen+ in SpecialJ
Core VCGen (12,300 Loc)
• Symbolic evaluation
• Register file management
• Control-flow support

(jump, bcond, call, loop
handling)
• Stack-frame management
• Generic obj. file support

x86 (3300 Loc)
• decoding
• calling convention
• special-register

handling (FTOP)

ARM (1100 Loc)

DEC Alpha (1200 Loc)

M68k (2500 Loc)

COFF (700 Loc)
• parsing
• relocation

ELF (600 Loc)
• …

MS PE (700 Loc)
• …

Java (3800 Loc)

• .class metadata

parsing and checking

• exception handling

• annot. parsing and

processing

Indirect call (270 Loc)

Indirect jump (350 Loc)

Total: (x86+Java) = 20,000 Loc
C code!

The reality of scaling up

In SpecialJ, the proofs and
annotations are OK, but the
VCgen+ is

• complex, nontrivial C program

•machine-specific

• compiler-specific

• source-language specific

• safety-policy specific

http://www.docomo-kansai.co.jp/text/products/foma/sh2101v/image/body.jpg

A systems design principle

Separate policy from mechanism

One possible approach:

•devise some kind of universal
enforcement mechanism

Typical elements of a system

Untrusted Elements
• Safety is not compromised if these fail.
• Examples:

• Certifying compilers and provers

Trusted Elements
• To ensure safety, these must be right.
• Examples:

• Verifier (type checker, VCgen, proof checker)
• Runtime library
• Hardware

The trouble with trust

Security:
• A trusted element might be wrong.
• It’s not clear how much we can do about

this.
• We can minimize our contribution, but must

still trust the operating system.
• Windows has more bugs than any certified

code system.

The trouble with trust, cont’d

Extensibility:
•Everyone is stuck with the trusted
elements.

• They cannot be changed by
developers.

• If a trusted element is unsuitable to a
developer, too bad.

Achieving extensibility

Main aim:
• Anyone should be able to target our system

• Want to support multiple developers, languages,
applications.

But:
No single type or proof system is suitable for every

purpose. (Not yet anyway!)

Thus:

Don’t trust the type/proof system.

Foundational Certified Code

In “Foundational” CC, we trust
only:

1. A safety policy
• Given in terms of the machine

architecture.

2. A proof system
• For showing compliance with the

safety policy.

3. The non-verifier components
(runtime library, hardware, etc.)

Foundational PCC

We can eliminate VCGen by using a
global invariant on states, Inv(S)

Then, the proof must show:
• Inv(S0)
• ΠS:State. Inv(S) → Inv(Step(S))

• ΠS:State. Inv(S) → SP(S)

In “Foundational PCC”, by Appel and
Felty, we trust only the safety policy and
the proofchecker, not the VCgen

Other “foundational” work

Hamid, Shao, et al. [’02] define the
global invariant to be a syntactic
well-formedness condition on
machine states

Crary, et al. [’03] apply similar ideas
in the development of TALT

Bernard and Lee [’02] use temporal
logic specifications as a basis for a
foundational PCC system

What is the right safety policy?

Whatever the host’s
administrator wants it to be!

But in practice the question is not
always easy to answer…

What is the right safety policy?

Some possibilities:
• Programs must be semantically
equivalent to the source program
[Pnueli, Rinard, …]

•Well-typed in a target language
with a sound type system
[Morrisett, Crary, …]

•Meets a logical specification
(perhaps given in a Hoare logic)
[Necula, Lee, …]

Safety in SpecialJ

The compiled output of SpecialJ is
designed to link with the Java
Virtual Machine

JVM

Stack ADT

PCC binaryAWT native

Is it “safe” for this binary to “spoof” stacks?

Proof rules
(excerpts)

3. Syntax and rules for the Java type system.
jint : exp.
jfloat : exp.
jarray : exp -> exp.
jinstof : exp -> exp.

of : exp -> exp -> pred.

faddf : {E:exp} {E':exp}
pf (of E jfloat) ->
pf (of E' jfloat) ->
pf (of (fadd E E') jfloat).

ext : {E:exp} {C:exp} {D:exp}
pf (jextends C D) ->
pf (of E (jinstof C)) ->
pf (of E (jinstof D)).

Flexibility in safety policies

Memory safety seems to be
adequate for many applications

•But even this much is tricky to
specify

Writing an LF signature + VCgen,
or else rules for a type system,
only “indirectly” specifies the
safety policy

A language for safety policies

Linear-time 1st-order temporal logic
[Manna/Pnueli 80]

• identify time with CPU clock

An attractive policy notation

• concise: □(pc < 1000)

• well-understood semantics

• can express variety of security policies
• including type safety

Temporal logic PCC
[Bernard & Lee 02]

Encode safety policy (i.e., transition
relation for safe execution) formally in
temporal logic (following [Pnueli 77])

Prove directly that the program
satisfies the safety policy

Encode the PCC certificate as a logic
program from the combination of
safety policy and proof

TL-PCC

Certificate is encoded as a logic
program (in LF) that, when
executed, generates a proof

•The certificate extracts its own VCs

•Certificate specializes the VCgen,
logic, and annotations to the given
program

•The fact that the certificate does its
job correctly can be validated
syntactically

Engineering tradeoffs

The certificates in foundational
systems prove “more”, and hence
there is likely to be greater
overhead

Engineering tradeoffs in TL-PCC

Explicit security policies, easier to
trust, change, and maintain

No VC generator, much less C code

No built-in flow analysis

But: Proof checking is much slower

Proof checking time

Current prototype in naïve in
several ways, and should improve

Also represents one end of the
spectrum.

• Is there a “sweet spot”?

Necula/Lee 96 Bernard/Lee 02

A current question

Since we use SpecialJ for our
experiments, the certificates
provide only type safety

But, in principle, can now enforce
properties in temporal-logic

•How to generate the certificates?

Conclusions

PCC shows promise as a practical
code certification technology

Several significant engineering
hurdles remain, however

Lots of interesting future research
directions

Thank you!

	Lectures onProof-Carrying CodePeter LeeCarnegie Mellon University
	Acknowledgments
	Recap
	Continuing…
	An example of certifying compilation
	Proof rules(excerpts)
	Proof rules(excerpts)
	Proof rules for arithmetic
	Arithmetic
	Proof rules(excerpts)
	Java typing rules in the TCB
	Proof rules(excerpts)
	Compiling model rules in the TCB
	Proof rules(excerpts)
	How do we know that it is right?
	Back to our example
	Unoptimized loop body
	Stack Slots
	Unoptimized code is easy
	Optimized target code
	Optimized target code
	Optimized loop body
	Loop invariants
	Symbolic evaluation
	The VCGen Process (1)
	The VCGen Process (2)
	The Checker (1)
	The Checker (2)
	Checker (3)
	Example: Proof excerpt(LF representation)
	Implementation, in reality
	VCgen+ in SpecialJ
	The reality of scaling up
	A systems design principle
	Typical elements of a system
	The trouble with trust
	The trouble with trust, cont’d
	Achieving extensibility
	Foundational Certified Code
	Foundational PCC
	Other “foundational” work
	What is the right safety policy?
	What is the right safety policy?
	Safety in SpecialJ
	Proof rules(excerpts)
	Flexibility in safety policies
	A language for safety policies
	Temporal logic PCC[Bernard & Lee 02]
	TL-PCC
	Engineering tradeoffs
	Engineering tradeoffs in TL-PCC
	Proof checking time
	A current question
	Conclusions

