
< > - +

Automata Theory and Formal Grammars: Lecture 2

Deterministic and Nondeterministic Finite Automata

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 2 – p.1/38

< > - +

Deterministic and Nondeterministic Finite Au-
tomata

Last Time

Sets Theory (Review?)

Logic, Proofs (Review?)

Words, and operations on them: w1 ◦ w2, w
i, w∗, w+

Languages, and operations on them: L1 ◦ L2, L
i, L∗, L+

Today

Deterministic Finite Automata (DFAs) and their languages

Closure properties of DFA languages (the product construction)

Nondeterministic Finite Automata (NFAs) and their languages

Relating DFAs and NFAs (the subset construction)

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 2 – p.2/38

< > - +

Fibonacci as a Recursively Defined Set

The nth Fibonacci number f(n):

f(0) = 0

f(1) = 1

f(n) = f(n− 1) + f(n− 2), for n ≥ 2

As a recursively defined set (relation)

F0 = ∅

Fi+1 = {〈0, 0〉, 〈1, 1〉}

∪















〈n, fn1
+ fn2

〉

∣

∣

∣

∣

∣

〈n1, fn1
〉 ∈ Fi and

〈n2, fn2
〉 ∈ Fi and

n = n1 + 1 = n2 + 2















Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 2 – p.3/38

< > - +

Fibonacci as a Recursively Defined Set

F0 = ∅

Fi+1 = {〈0, 0〉, 〈1, 1〉}

∪















〈n, fn1
+ fn2

〉

∣

∣

∣

∣

∣

〈n1, fn1
〉 ∈ Fi and

〈n2, fn2
〉 ∈ Fi and

n = n1 + 1 = n2 + 2















For example:

F0 = ∅

F1 = {〈0, 0〉, 〈1, 1〉}

F2 = {〈0, 0〉, 〈1, 1〉, 〈2, 1〉}

F3 = {〈0, 0〉, 〈1, 1〉, 〈2, 1〉, 〈3, 2〉}

F4 = {〈0, 0〉, 〈1, 1〉, 〈2, 1〉, 〈3, 2〉, 〈4, 3〉}

F5 =

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 2 – p.4/38

< > - +

Conventions

Σ is an arbitrary alphabet. (In examples, Σ should be clear from

context.)

The variables a–e range over letters in Σ.

The variables u–z range over words over Σ∗.

The variables p–q range over states in Q.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 2 – p.5/38

< > - +

Recall

For any string w and language L:

w ◦ ε = w = ε ◦ w (1)

L ◦ {ε} = L = {ε} ◦ L (2)

L∗ = {ε} ∪ L ◦ L∗
(3)

L∗ is closed with respect to concatenation, for any L:

if u ∈ L∗ and v ∈ L∗ then u ◦ v ∈ L∗

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 2 – p.6/38

< > - +

Finite Automata

... are “machines” for recognizing languages!

They process input words a symbol at a time.

An “accept light” flashes if the symbols read in so far are “OK”.

0 1 1 0 ···

Accept

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 2 – p.7/38

< > - +

Formal Definition of Finite Automata

b

ab

a
a

b

a,b1

2 3

000 1

2 3

Definition A finite automaton (DFA) is a quintuple 〈Q,Σ, q0, δ, A〉

where:

Q is a finite non-empty set of states;

Σ is an alphabet;

q0 ∈ Q is the start state;

δ : Q× Σ → Q is the transition function; and

A ⊆ Q is the set of accepting (final) states.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 2 – p.8/38

< > - +

DFA Acceptance

Given a DFA M = 〈Q,Σ, q0, δ, A〉 and word w ∈ Σ∗:

M should accept w if in processing w a symbol at a time, M goes

to an accepting state.

To formalize this we define a function

δ∗ : Q× Σ∗ → Q

δ∗(q, w) should be the state reached from q after processing w.

How to define δ∗?

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 2 – p.9/38

< > - +

Example of δ∗

b

ab

a
a

b

a,b1

2 3

000 1

2 3

δ∗(0, aab) = δ∗(δ(0, a), ab) = δ∗(2, ab)

= δ∗(δ(2, a), b) = δ∗(3, b)

= δ∗(δ(3, b), ε) = δ∗(1, ε)

= 1

What is δ∗(0, abaa)?

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 2 – p.10/38

< > - +

Definition of δ∗

Definition Let M = 〈Q,Σ, q0, δ, A〉 be a DFA. Then δ∗ : Q× Σ∗ → Q is

defined recursively:

δ∗(q, w) =







q if w = ε

δ∗(δ(q, a), w′) if w = aw′ and a ∈ Σ

δ∗(q, w) = q′ if q′ the state reached by processing w, starting from q.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 2 – p.11/38

< > - +

Language of a Finite Automaton

A DFA accepts a word if it reaches an accepting state after

“consuming” the word.

Definition Let M = 〈Q,Σ, q0, δ, A〉 be a DFA.

M accepts w ∈ Σ∗ if δ∗(q0, w) ∈ A.

L(M) = {w ∈ Σ∗ | M accepts w } is the language accepted by M .

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 2 – p.12/38

< > - +

Example: DFA for {w ∈ {0, 1}∗ | w ends in 01 }

3

0

2

00

0

1

1

0

1

C

A

B

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 2 – p.13/38

< > - +

Example: DFA for Valid Binary Numbers

Must contain at least one digit.

No leading 0s.

Portions c©2000 Rance Cleaveland c©2004 James Riely Automata Theory and Formal Grammars: Lecture 2 – p.14/38

	Deterministic and Nondeterministic Finite Automata
	Fibonacci as a Recursively Defined Set
	Fibonacci as a Recursively Defined Set
	Conventions
	Recall
	Finite Automata
	Formal Definition of Finite Automata
	DFA Acceptance
	Example of $delta ^*$
	Definition of $delta ^*$
	Language of a Finite Automaton
	Example: DFA for $setof {w in singset {0,1}^*}{w ;	extnormal {ends in}; 01}$
	Example: DFA for Valid Binary Numbers
	DFA Languages

