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Automata Theory and Formal Grammars: Lecture 2

Deterministic and Nondeterministic Finite Automata
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Deterministic and Nondeterministic Finite Au-
tomata

Last Time

Sets Theory (Review?)

Logic, Proofs (Review?)

Words, and operations on them: w1 ◦ w2, w
i, w∗, w+

Languages, and operations on them: L1 ◦ L2, L
i, L∗, L+

Today

Deterministic Finite Automata (DFAs) and their languages

Closure properties of DFA languages (the product construction)

Nondeterministic Finite Automata (NFAs) and their languages

Relating DFAs and NFAs (the subset construction)
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Fibonacci as a Recursively Defined Set

The nth Fibonacci number f(n):

f(0) = 0

f(1) = 1

f(n) = f(n− 1) + f(n− 2), for n ≥ 2

As a recursively defined set (relation)

F0 = ∅

Fi+1 = {〈0, 0〉, 〈1, 1〉}
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Fibonacci as a Recursively Defined Set

F0 = ∅

Fi+1 = {〈0, 0〉, 〈1, 1〉}

∪















〈n, fn1
+ fn2

〉

∣

∣

∣

∣

∣

〈n1, fn1
〉 ∈ Fi and

〈n2, fn2
〉 ∈ Fi and
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For example:

F0 = ∅

F1 = {〈0, 0〉, 〈1, 1〉}

F2 = {〈0, 0〉, 〈1, 1〉, 〈2, 1〉}

F3 = {〈0, 0〉, 〈1, 1〉, 〈2, 1〉, 〈3, 2〉}

F4 = {〈0, 0〉, 〈1, 1〉, 〈2, 1〉, 〈3, 2〉, 〈4, 3〉}

F5 =
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Conventions

Σ is an arbitrary alphabet. (In examples, Σ should be clear from

context.)

The variables a–e range over letters in Σ.

The variables u–z range over words over Σ∗.

The variables p–q range over states in Q.
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Recall

For any string w and language L:

w ◦ ε = w = ε ◦ w (1)

L ◦ {ε} = L = {ε} ◦ L (2)

L∗ = {ε} ∪ L ◦ L∗
(3)

L∗ is closed with respect to concatenation, for any L:

if u ∈ L∗ and v ∈ L∗ then u ◦ v ∈ L∗
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Finite Automata

... are “machines” for recognizing languages!

They process input words a symbol at a time.

An “accept light” flashes if the symbols read in so far are “OK”.

0 1 1 0 ···

Accept
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Formal Definition of Finite Automata

b

ab

a
a
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a,b1

2 3

000 1

2 3

Definition A finite automaton (DFA) is a quintuple 〈Q,Σ, q0, δ, A〉

where:

Q is a finite non-empty set of states;

Σ is an alphabet;

q0 ∈ Q is the start state;

δ : Q× Σ → Q is the transition function; and

A ⊆ Q is the set of accepting (final) states.
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DFA Acceptance

Given a DFA M = 〈Q,Σ, q0, δ, A〉 and word w ∈ Σ∗:

M should accept w if in processing w a symbol at a time, M goes

to an accepting state.

To formalize this we define a function

δ∗ : Q× Σ∗ → Q

δ∗(q, w) should be the state reached from q after processing w.

How to define δ∗?
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Example of δ∗

b
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000 1
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δ∗(0, aab) = δ∗(δ(0, a), ab) = δ∗(2, ab)

= δ∗(δ(2, a), b) = δ∗(3, b)

= δ∗(δ(3, b), ε) = δ∗(1, ε)

= 1

What is δ∗(0, abaa)?
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Definition of δ∗

Definition Let M = 〈Q,Σ, q0, δ, A〉 be a DFA. Then δ∗ : Q× Σ∗ → Q is

defined recursively:

δ∗(q, w) =







q if w = ε

δ∗(δ(q, a), w′) if w = aw′ and a ∈ Σ

δ∗(q, w) = q′ if q′ the state reached by processing w, starting from q.
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Language of a Finite Automaton

A DFA accepts a word if it reaches an accepting state after

“consuming” the word.

Definition Let M = 〈Q,Σ, q0, δ, A〉 be a DFA.

M accepts w ∈ Σ∗ if δ∗(q0, w) ∈ A.

L(M) = {w ∈ Σ∗ | M accepts w } is the language accepted by M .
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Example: DFA for {w ∈ {0, 1}∗ | w ends in 01 }

3
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Example: DFA for Valid Binary Numbers

Must contain at least one digit.

No leading 0s.
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