Typing Correspondence Assertions for Cryptographic Protocols (Work in Progress)

Andrew D. Gordon, Microsoft Research
Alan Jeffrey, DePaul University
Overview

- Introduction
- Example
- Traces and correspondence assertions
- Type system
- Conjectures (hopefully to become theorems soon!)
- Conclusions
Background

Ensuring safety and security properties of cryptographic protocols is hard! There is a large literature, including:

- Modal logics such as BAN logic, checked by hand (Burrows, Abadi and Needham).

- Process equivalence such as testing equivalence, checked by hand (Abadi and Gordon) and (Schneider)

- Model checking can automate either of these techniques to verify finite-state systems (Lowe) and (Clarke, Jha and Marrero).
Contributions of this work

The new contributions of this work are:

- Instrumenting spi-calculus programs with correspondence assertions to validate security properties.

- Using a type/effect system to ensure that assertions never fail.

- A novel type for nonces, which records the trust information a nonce carries.

Using this technique on examples seems to be much easier than previous spi-calculus techniques.
Insecure example

Informal description:

\[\text{Sender} \rightarrow \text{Receiver} : \{M\}_K \]

Formal description of principals:

\[\text{Sender}(\text{net}, K) \overset{\Delta}{=} \text{Receiver}(\text{net}, K) \overset{\Delta}{=} \]
\[\text{repeat} \]
\[\text{repeat} \]
\[\text{new}(M); \]
\[\text{inp net}(C); \]
\[\text{out net}(\{M\}_K) \]
\[\text{decrypt } C \text{ is } \{M\}_K; \]

Formal description of system:

\[\text{System}(\text{net}) \overset{\Delta}{=} \]
\[\text{new}(K); (\text{Sender}(\text{net}, K) \mid \text{Receiver}(\text{net}, K)) \]
Insecure example cont.

Informal description of safety property:

\[\text{Sender} \rightarrow \text{Receiver} : \{M\}_K \]

Receiver believes Sender sent \(M \)

Instrument protocol with assertions:

\[
\begin{align*}
\text{Sender}(\text{net},K) & \triangleq \\
\text{repeat} & \\
\text{new}(M); & \\
\text{allow} & (\text{Sender sent } M); \\
\text{out net}(\{M\}_K) & \\
\end{align*}
\]

\[
\begin{align*}
\text{Receiver}(\text{net},K) & \triangleq \\
\text{repeat} & \\
\text{inp net}(C); & \\
\text{decrypt } C & \text{ is } \{M\}_K; \\
\text{assert} & (\text{Sender sent } M) \\
\end{align*}
\]

Then check the safety property:

Every \textit{assert } M \textit{ has a matching allow } M

This is an example of a correspondence assertion (Woo and Lam).
Traces

To formalize correspondence assertions, we record the *traces* of a system, for example:

- One trace of `assert M` is `assert M`.
- One trace of `allow M; assert M` is `allow M, assert M`.
- One trace of `new(x); allow x; assert x` is `gen x, allow x, assert x`.
- One trace of `decrypt \{M\}_K` is `\{x\}_K; assert x` is `assert M`.
- One trace of `System(net)` is `gen M, allow (Sender sent M), assert (Sender sent M)`.
Safety

Define:

- A trace s is a correspondence iff for every M, the number of assert Ms in s is less than or equal to the number of allow Ms in s.

- A process P is safe iff every trace of P is a correspondence.

System(net) is safe, e.g. the following trace is a correspondence:

\[\text{gen } M, \text{ allow (Sender sent } M), \text{ assert (Sender sent } M) \]
Robust safety

Define:

- A process P is *robustly safe* iff for every assert-free opponent process O, the process $P \mid O$ is safe.

$\text{System}(\text{net})$ is *not* robustly safe, due to replay attacks:

$$\text{Attacker}(\text{net}) \equiv \Delta$$

$$\text{inp net}(C) ; \text{out net}(C) ; \text{out net}(C)$$

One trace of $\text{System}(\text{net}) \mid \text{Attacker}(\text{net})$ is:

$$\text{gen } M, \text{ allow (Sender sent } M\text{), assert (Sender sent } M\text{), assert (Sender sent } M\text{)}$$

This trace is not a correspondence, so $\text{System}(\text{net})$ is not robustly safe.
Fixed example

Informal description:

$$\text{Receiver} \rightarrow \text{Sender} : N$$
$$\text{Sender} \rightarrow \text{Receiver} : \{M, N\}_K$$

Formal description:

$$\text{Sender}(\text{net}, K) \triangleq$$
\begin{align*}
\text{repeat} \\
\text{inp \ net}(N); \\
\text{new}(M); \\
\text{allow (Sender sent } M); \\
\text{out \ net}(\{M, N\}_K)
\end{align*}

$$\text{Receiver}(\text{net}, K) \triangleq$$
\begin{align*}
\text{repeat} \\
\text{new}(N); \\
\text{out \ net}(N); \\
\text{inp \ net}(C); \\
\text{decrypt C is } \{M, N'\}_K; \\
\text{check } N' \text{ is } N; \\
\text{assert (Sender sent } M)
\end{align*}
Types

- \(Ch (T) \) is a channel type for communicating \(T \).
- \(Nonce [assert M] \) is a nonce type which allows \(assert M \) safely.
- \(Key (T) \) a symmetric key type for encrypting and decrypting plaintext \(T \) and cyphertext \(Un \).
- \(Un \) is type of untrusted data.

for example:

\[
\begin{align*}
&\text{Network} \triangleq Ch (Un) \\
&\text{MyNonce} (M) \triangleq Nonce [assert (\text{Sender sent } M)] \\
&\text{MyKey} \triangleq Key (M : Msg, N : MyNonce (M))
\end{align*}
\]

Type theorists may note the use of dependent records.
Fixed example cont.

Type-safe receiver:

\[
\text{Receiver}(\text{net}:\text{Network}, K:\text{MyKey}) \triangleq \\
\text{repeat} \\
\text{new}(N:\text{Un}); \\
\text{out net}(N); \\
\text{inp net}(C:\text{Un}); \\
\text{decrypt } C \text{ is } \{M:\text{Msg}, N':\text{MyNonce } (M)\}_K; \\
\text{check } N' \text{ is } N; \\
\text{assert (Sender sent } M) \\
\]

where:

\[
\text{Network} \triangleq \text{Ch } (\text{Un}) \\
\text{MyNonce } (M) \triangleq \text{Nonce } [\text{assert (Sender sent } M)] \\
\text{MyKey} \triangleq \text{Key } (M : \text{Msg}, N : \text{MyNonce } (M))
\]
Fixed example cont.

Almost type-safe sender:

\[
\text{Sender}(\text{net} : \text{Network}, K : \text{MyKey}) \overset{\Delta}{=} \\
\text{repeat} \\
\text{inp net}(N : \text{Un}); \\
\text{new}(M : \text{Msg}); \\
\text{allow (Sender sent } M); \\
\text{out net} (\{M, N\}_K)
\]

where:

\[
\text{Network} \overset{\Delta}{=} \text{Ch} (\text{Un}) \\
\text{MyNonce } (M) \overset{\Delta}{=} \text{Nonce} \ [\text{assert } (\text{Sender sent } M)] \\
\text{MyKey} \overset{\Delta}{=} \text{Key } (M : \text{Msg}, N : \text{MyNonce } (M))
\]

but \(\{M, N\}_K\) doesn’t typecheck, because \(N : \text{Un}\).
Fixed example cont.

We add type-casting into the language:

\[
\text{Sender}(\text{net}:\text{Network}, K: \text{MyKey}) \triangleq \\
\text{repeat} \\
\quad \text{inp net}(N: \text{Un}); \\
\quad \text{new}(M: \text{Msg}); \\
\quad \text{allow} (\text{Sender sent } M); \\
\quad \text{cast } N \text{ is } (N': \text{MyNonce } (M)); \\
\quad \text{out net}(\{M, N'\}_K)
\]

where:

\[
\text{Network} \triangleq \text{Ch } (\text{Un}) \\
\text{MyNonce } (M) \triangleq \text{Nonce } [\text{assert } (\text{Sender sent } M)] \\
\text{MyKey} \triangleq \text{Key } (M : \text{Msg}, N : \text{MyNonce } (M))
\]

At run-time \text{cast } N \text{ is } (x:T); P \text{ becomes } P\{x \leftarrow N\}.

Effect system

The type system calculates the effect of a process P:

- if P has effect $[\text{assert } M]$ then P may assert M without allowing it first.

- if P has effect $[\text{nonce } N]$ then P may uses N as a nonce.

For example:

- $\text{assert } M;\text{assert } M'$ has effect $[\text{assert } M,\text{assert } M']$

- $\text{allow } M;\text{assert } M;\text{assert } M'$ has effect $[\text{assert } M']$

- $\text{check } N' \text{ is } N;\text{assert } M$ has effect $[\text{nonce } N]$

- $\text{new}(N:Un);\ldots\text{check } N' \text{ is } N;\text{assert } M$ has effect $[]$

where $N : Un$ and $N' : \text{Nonce} [\text{assert } M]$
Effect system

The interesting rules for calculating the effect of \(P \) are:

- *assert* \(M \) has effect \([assert M]\).

- If \(P \) has effect \([es, assert M]\)
 then *allow* \(M;P \) has effect \([es]\)

- If \(P \) has effect \([es]\)
 then *cast* \(M \) is \((x:Nonce [fs]); P \) has effect \([es, fs]\)

- If \(P \) has effect \([es, fs]\) and \(N' : Nonce [fs] \)
 then *check* \(N' \) is \(N;P \) has effect \([es, nonce N]\).

- If \(P \) has effect \([es, nonce x]\)
 then *new* \((x:T); P \) has effect \([es]\).
Fixed example cont.

The effect of $\text{Sender}(\text{net}, K)$ is calculated:

\[
\text{Sender}(\text{net}:\text{Network}, K: \text{MyKey}) \triangleq \begin{array}{l}
\text{repeat} \\
\quad \text{inp net}(N: \text{Un}); \\
\quad \text{new}(M: \text{Msg}); \\
\quad \text{allow (Sender sent } M); \\
\quad \text{cast } N \text{ is } (N': \text{MyNonce } (M)); \\
\quad \text{out net}(\{M, N'\}_K)} \end{array}
\]

where:

\[
\text{Network} \triangleq Ch (\text{Un})
\]
\[
\text{MyNonce } (M) \triangleq \text{Nonce [Sender sent } M]
\]
\[
\text{MyKey} \triangleq \text{Key } (M: \text{Msg}, N: \text{MyNonce } (M))
\]
Fixed example cont.

\[
\text{Receiver}(\text{net:Network}, K: \text{MyKey}) \triangleq \ni
\begin{align*}
&\text{repeat} \\
&\text{new}(N: \text{Un}); \\
&\text{out net}(N); \\
&\text{inp net}(C: \text{Un}); \\
&\text{decrypt } C \text{ is } \{M: \text{Msg}, N': \text{MyNonce } (M)\}_K; \\
&\text{check } N' \text{ is } N; \\
&\text{assert } (\text{Sender sent } M) \}\{\text{assert } \ldots\}\} [\text{nonce } N] \\
\end{align*}
\]

where:

\[
\text{Network} \triangleq \text{Ch } (\text{Un}) \\
\text{MyNonce } (M) \triangleq \text{Nonce } [\text{Sender sent } M] \\
\text{MyKey} \triangleq \text{Key } (M: \text{Msg}, N: \text{MyNonce } (M))
\]
Conjectures

We are currently working on proving:

- If P has empty effect then P is safe.

- If P has empty effect, and P only has free variables of type $Ch(Un)$ then P is robustly safe.

Most of the work is in place, the proof is a subject reduction result.
Contributions

We have annotated the spi-calculus with correspondence assertions.

We have provided a type/effect system for the annotated processes, which guarantees that assertions will never fail.

Verifying a 7-message protocol took Abadi and Gordon 2-3 person months with existing spi methods. It took Gordon an afternoon using ours.

To Do

Prove the conjectures!

Examples (how much of Kerberos can we verify?).

Deal with partially trusted attackers.