SE547: Lecture 5

Overview

Types for protocols
Types for secrecy
Cryptyc
Types for authenticity
Types for protocols

What is a type system? Why?

What do the types for the lambda-calculus look like?

What might types for the pi-calculus look like?

What might types for the spi-calculus look like?
Types for protocols

History:

Pi-calculus sorting (Milner)

Pi-calculus typing (Pierce and Sangiorgi, ...)

Spi-calculus types for secrecy (Abadi and Blanchet)

Spi-calculus types for authenticity (Gordon and Jeffrey)
Types for protocols

Take the pi-calculus:

\[P, Q, R ::= \\
0 \\
out x y; P \\
in x (y); P \\
P | Q \\
!P \\
new (x); P \]
Types for protocols

Add lists of messages as primitives:

\[
P, Q, R ::= \\
0 \\
\text{out } M N; P \\
\text{in } M (y); P \\
P \mid Q \\
!P \\
\text{new } (x); P \\
\text{split } L \text{ is } (x, y); P \\
\]

\[
L, M, N ::= \\
x \\
() \\
(M,N)
\]
Types for protocols

Allow bad states:

\[P, Q, R ::= \]
\[... \]
\[\text{FAIL} \]

with dynamic semantics:

\[\text{split (} \, L \, \text{)} \, \text{is} \, (x,y); \, P \rightarrow \text{FAIL} \, \ (L \, \text{not of the form} \, (M,N)) \]
\[\text{out} \, L \, N; \, P \rightarrow \text{FAIL} \, \ (L \, \text{not of the form} \, c) \]
\[\text{in} \, L \, (x); \, P \rightarrow \text{FAIL} \, \ (L \, \text{not of the form} \, c) \]

A process is safe if there is no \(Q \) such that \(P \rightarrow^* Q \mid \text{FAIL} \).
Types for protocols

Are the following safe?

1. out c d; 0
2. out c (); 0
3. out () d; 0
4. out () (); 0
5. in c (x); out x (); 0
6. in c (x); out x (); 0 | out c (d); 0
7. in c (x); out x (); 0 | out c (); 0
Types for protocols

Add types:

\[S, T, U ::= \]
\[\text{chan } (T) \]
\[() \]
\[(T,U) \]

(Recall \(\Gamma \) is a lookup table of types for variables \(x:T \).)

Rules for messages saying when \(\Gamma \vdash M : T \) is true:

1. If \(x:T \in \Gamma \) then \(\Gamma \vdash x : T \)
2. \(\Gamma \vdash () : () \)
3. If \(\Gamma \vdash M : T \) and \(\Gamma \vdash N : U \) then \(\Gamma \vdash (M,N) : (T,U) \)

What are the matching type rules for processes saying when \(\Gamma \vdash P : \text{ok} \) is true?
Types for protocols

Can we find types for c and d which make the following ok?

1. out c d; 0
2. out c (); 0
3. out () d; 0
4. out () (); 0
5. in c (x); out x (); 0
6. in c (x); out x (); 0 | out c (d); 0
7. in c (x); out x (); 0 | out c (); 0
Types for protocols

Results:

1. Type safety: if $\Gamma \vdash P : \text{ok}$ then $\text{FAIL} \notin P$.
2. Subject reduction: if $\Gamma \vdash P : \text{ok}$ and $P \rightarrow Q$ then $\Gamma \vdash Q : \text{ok}$

Plug these together and we get that well-typed processes are safe!
Types for protocols

Example RPC call:

```
!in rpc (return, arg); ... out return result; 0
new (return); out rpc (return, arg); in return (result); ...
```

What types do we give `rpc`, `return` to get this to typecheck?

Assume `arg:Arg` and `result:Result`.
Types for protocols

Add message tags:

\[P, Q, R ::= \]
\[\ldots \]
\[\text{case } L \text{ is inl}(x) \quad P \text{ is inr}(y) \quad Q \]

\[L, M, N ::= \]
\[\ldots \]
\[\text{inl}(M) \]
\[\text{inr}(M) \]

Dynamic semantics:

\[\text{case } L \text{ is inl}(x) \quad P \text{ is inr}(y) \quad Q \rightarrow \text{FAIL} \]
\[(L \text{ not of the form inr}(M) \text{ or inr}(N)) \]
Types for protocols

Add types for message tags:

\[S, T, U ::= \]

\[\ldots \]

\[T + U \]

1. If \(\Gamma \vdash M : T \) then \(\Gamma \vdash \text{inl} (M) : T+U \)

2. If \(\Gamma \vdash N : U \) then \(\Gamma \vdash \text{inr} (N) : T+U \)

What is the matching rule for case?
Types for protocols

What types can we give to c, d, e, x, y and z here:

Example | out c (inl($fred$)); out c (inr($wilma$)); 0

where:

Example =
 !in c (x);
 case x is inl(y)
 out d (y); 0
 is inr(z)
 out e (z); 0

(Assume $fred$:Boy and $wilma$:Girl.)
Types for secrecy

Types for spi are different from types for pi, because:

1. We care about dishonest agents (not just honest agents).
2. We care about robust safety, not just safety.
3. Dishonest agents don’t play by the type rules.

The type system for pi does not give us robust safety, because of attackers who don’t play by the type rules.

Example =
 !in c (x);
 case x is inl(y)
 out d (y); 0
 is inr(z)
 out e (z); 0

This process is safe, but not robustly safe. (What is the attacker?)
Types for secrecy

Introduce a new untrusted type for the dishonest agents:

\[S, T, U ::= \]

\[\ldots \]

\[\text{Un} \]

satisfying opponent typability:

1. If \(x:\text{Un} \in \Gamma \) for every \(x \in M \) then \(\Gamma \vdash M : \text{Un} \).
2. If \(x:\text{Un} \in \Gamma \) for every \(x \in P \) then \(\Gamma \vdash P : \text{ok} \)

We switch off the type system when we hit type Un.

In particular, \(\vdash \text{FAIL} : \text{ok} \), unsurprising, since attackers don’t play ball with types!
Types for secrecy

Introduce a new trusted type of private secrets:

\[S, T, U ::= \]

... Private

In particular, we have:

\[\text{net} : \text{Un}, s : \text{Private} \n\not\in \text{out net (s)}; 0 : \text{ok} \]
Types for secrecy

We use crypto to keep secrets!

\[P, Q, R ::= \]
\[\quad \ldots \]
\[\quad \text{decrypt } M \text{ is } \{ x \}_N; P \]

\[L, M, N ::= \]
\[\quad \ldots \]
\[\quad \{ M \}_N \]

Is this example robustly safe for secrecy of \(s \)?

Example_1 = new (key); !Sender | !Receiver
Sender = out net \{ s \}_{key}; 0
Receiver = in net \{ x \}_{key}; 0
Types for secrecy

We use crypto to keep secrets!

\[P, Q, R ::= \]
\[\ldots \]
\[\text{decrypt } M \text{ is } \{ x \}_N; P \]

\[L, M, N ::= \]
\[\ldots \]
\[\{ M \}_N \]

Is this example robustly safe for secrecy of \(s \)?

Example_2 = new \((key)\); !Sender | !Receiver | !Oracle
Sender = out net \(\{ s \}_\text{key}; 0 \)
Receiver = in net \(\{ x \}_\text{key}; 0 \)
Oracle = in net \(\{ x \}_\text{key}; \text{out net } (x); 0 \)
Types for secrecy

Types for crypto:

\[S, T, U ::= \]

\[\ldots \]

\[\text{Key } (T) \]

Typing encryption:

1. If \(\Gamma \vdash M : T \) and \(\Gamma \vdash N : \text{Key } (T) \) then \(\Gamma \vdash \{ M \}_N : \text{Un.} \)

What is the matching rule for decrypt?
Types for secrecy

What types do we give for s, x and key here:

Example = new (key); !Sender | !Receiver | !Oracle
Sender = out $net \{ s \}_{key} \}; 0
Receiver = in $net \{ x \}_{key} \}; 0

Why doesn’t this typecheck:

Oracle = in $net \{ x \}_{key} \}; out net (x); 0
Types for secrecy

Result:

If \(\text{net : Un, s : Private} \vdash P : \text{ok} \)
then \(P \) is robustly safe for secrecy of \(s \).
Cryptyc

Cryptyc (Gordon and Jeffrey) is a spi-calculus based protocol verification tool, based on type-checking.

To run cryptyc:

 java -jar cryptyc.jar filename

for example:

 java -jar cryptyc.jar secrecy.cry

produces output:

 Type checked OK!

but if you uncomment the oracle, you get:

 Type error!
Cryptyc

Cryptyc syntax is like the pi-calculus, but it uses a client-server model.

This is just syntax sugar:

server S at A is $(\text{socket:Socket}) \{ P \}$
client C at B is $\{ \text{establish } S \text{ at } A \text{ is (socket : Socket); Q} \}$

translates into pi as:

$$\text{!input } S@A (\text{socket:Socket}); P \mid \text{new (socket : Socket); output } S@A (\text{socket}); Q$$

The action is in the types, for example:

type MyKey = Key (Private);

says a lot about this protocol!

Cryptyc also supports Struct and Union types.
Types for authenticity

Authenticity is declared using correspondences:

\[A \text{ begins (Sender sent } M) \]
\[(1) \quad A \rightarrow B: \{ M \}Kab \]
\[B \text{ ends (Sender sent } M) \]

Recall, this protocol is not robustly safe. (Why not?)

Example is coded in Cryptpyc as fail-auth.cry.

Solution: nonce challenges!
Types for authenticity

We need to track the effect of a process: these are the ends without matching begins.

What are the effect of the following:

1. begin hello; end hello; 0
2. begin hello; end world; 0
3. end hello; end world; 0
4. end hello; begin hello; 0
Types for authenticity

Calculating the effect for straight-line code is easy:

\[es, fs, gs ::= \]
\[\text{end } L_1, \ldots, \text{end } L_n \]

1. If \(\Gamma \vdash P : [es] \) then \(\Gamma \vdash \text{end } L; P : [es + \text{end } L] \)
2. If \(\Gamma \vdash P : [es] \) then \(\Gamma \vdash \text{begin } L; P : [es - \text{end } L] \)
3. \(\Gamma \vdash 0 : [] \)

Which of these have empty effect?

1. begin \textit{hello}; end \textit{hello}; 0
2. begin \textit{hello}; end \textit{world}; 0
3. end \textit{hello}; end \textit{world}; 0
4. end \textit{hello}; begin \textit{hello}; 0

Revisit \texttt{fail-auth.cry}.
Types for authenticity

Types for nonces (simplified: the real thing makes sure each nonce is only used once):

\[S, T, U ::= \]
\[\ldots \]
\[\text{Nonce (} es \text{)} \]

with:

1. If \(\Gamma \vdash M : \text{Un} \) and \(\Gamma \vdash N : \text{Nonce (} es \text{)} \) and \(\Gamma \vdash P : [fs] \)
 then \(\Gamma \vdash \text{check } M \text{ is } N; P : [fs - es] \)

Still doesn’t quite work: fail-simple2.cry.
Types for authenticity

Need to allow nonces to start at type Un, then later on be converted to Nonce type:

\[P, Q, R ::= \]
\[\ldots \]
\[\text{cast } N \text{ is } (x : \text{Nonce}(es)); P \]

at run-time this is a no-op:

\[\text{cast } N \text{ is } (x : \text{Nonce}(es)); P \rightarrow P[N/x] \]

but when we type-check, we make sure we can justify the effect!

1. If \(\Gamma \vdash N : \text{Un} \) and \(\Gamma, x:\text{Nonce}(es) \vdash P : [fs] \)
then \(\Gamma \vdash \text{cast } N \text{ is } (x:\text{Nonce}(es)); P : [fs + es] \)

Hooray, now it works: simple.cry.
Types for authenticity

Result:

If \(\text{net} : \text{Un} \vdash P : [] \)
then \(P \) is robustly safe for authenticity.

Usual collection of examples is bundled with the Cryptyc tool...
Next week

Midterm.