Overview

Foundational calculi

Lambda-calculus

Equivalence

Derived forms
Foundational calculi

What is a foundational calculus?

What are some examples of foundational calculi?

Why are they interesting?
Foundational calculi

Most foundational calculi come with:

1) Syntax of core language.

2) Dynamic semantics of core language.

3) Derived forms.

What are these?
Foundational calculi

Many problems in computing are safety properties.

What is a safety property?

What are example safety properties?

What are example properties which are not safety properties?

How can we give a formal definition of a safety properties?
Lambda-calculus

What are the goals of the lambda-calculus?

History: Schönfinkel (1920’s), Church (1930’s), McCarthy (1950’s), Landin (1960’s), Scheme / Standard ML / Haskell / CAML / ... (1970’s-now).
Lambda-calculus

Assume a collection of variables $x, y, z...$ Core syntax:

$L, M, N ::=$

x

$M N$

$\lambda x. M$

What are these?

Note: no booleans, integers, while loops, etc. Is this worrying?

Also note: no threads, concurrency controls, etc. Is this worrying?
Lambda-calculus

Examples:

1. $\lambda x . x$
2. $\lambda y . y$
3. $\lambda y . x$
4. $\lambda x . \lambda y . x$
5. $\lambda x . \lambda y . y$
6. $\lambda y . \lambda x . y$
7. $(\lambda x . x)(\lambda y . y)$
8. $(\lambda x . x (\lambda y . y))$
9. $(\lambda x . x (\lambda y . y))(\lambda z . z)$
10. $(\lambda x . x x)(\lambda x . x x)$

Which of these ‘are the same program’? What does that mean?
Equivalence

Two notions of ‘are the same program’:

1. alpha-equivalence: ‘allowed to rename bound variables’.
2. beta-equivalence: alpha + ‘allowed to apply functions’.

Which of the examples are alpha-equivalent? Which are beta-equivalent?
Equivalence

Formalize alpha-equivalence...

Define \([M/x]N\) as ‘replace \(M\) for \(x\) in \(N\)’. Examples:

1. \([\lambda y . y / x](x)\)
2. \([\lambda z . z / x](x(\lambda y . y))\)
3. \([\lambda x . x x / x](x x)\)

Alpha-equivalence is generated by:

\[
(\lambda x . M) = (\lambda y . [y/x]M) \quad \text{when } y \text{ is fresh}
\]

Which of these are alpha-equivalent?

1. \(\lambda x . \lambda y . x\)
2. \(\lambda x . \lambda y . y\)
3. \(\lambda y . \lambda x . y\)
Equivalence

Formalize function application (jargon: beta-reduction) generated by:

\[(\lambda x. M) N \rightarrow ([N/x]M)\]

Examples:

1. \((\lambda x. x)(\lambda y. y)\)
2. \((\lambda x. x(\lambda y. y))\)
3. \((\lambda x. x(\lambda y. y))(\lambda z. z)\)
4. \((\lambda x. xx)(\lambda x. xx)\)
Equivalence

Beta-equivalence:

\[M =_{\beta} N \text{ whenever } \exists L . M \rightarrow^* L \text{ and } N \rightarrow^* L \]

Sanity checks:

\[M =_{\beta} M? \]

If \(M =_{\beta} N \) then \(N =_{\beta} M? \)

If \(L =_{\beta} M \) and \(M =_{\beta} N \) then \(L =_{\beta} N? \)
Derived forms

Booleans:

\[\text{True} = (\lambda x . \lambda y . x) \]
\[\text{False} = (\lambda x . \lambda y . y) \]
\[\text{if } L \{ M \} \text{ else } \{ N \} = (L M N) \]

Verify:

\[\text{if True} \{ M \} \text{ else } \{ N \} =_\beta M \]
\[\text{if False} \{ M \} \text{ else } \{ N \} =_\beta N \]
Derived forms

Pairs:

\((M, N) = (\lambda x . x M N)\)

\(\text{Fst} = \lambda z . z (\lambda x . \lambda y . x)\)

\(\text{Snd} = \lambda z . z (\lambda x . \lambda y . y)\)

Verify:

\(\text{Fst} (M, N) =_\beta M\)

\(\text{Snd} (M, N) =_\beta N\)

Similar codings for integers, lists, etc.
Derived forms

Recursion:

\[\text{fix } M = (\lambda x . M (x x)) (\lambda x . M (x x)) \]

Verify:

\[\text{fix } M =_\beta M (\text{fix } M) \]

Example:

\[\text{factorial} = \text{fix } \text{fact} \]
\[\text{fact} = (\lambda f . \lambda x . \text{if } (x < 2) \{ 1 \} \text{ else } \{ x * f (x - 1) \}) \]

Verify:

\[\text{factorial } 3 =_\beta 6 \]
Next week

Homework sheet 2.

Calculi for protocols: pi- and spi-calculus.