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Abstract

We are developing a secure programming language, M, that can be used for programming net-
worked spaces: dynamically extensible, multi-person, networked, persistent, distributed virtual worlds
(such as MUDs and MOOs)[Sar98]. Rather than design M from scratch, we are reusing as much of Java
technology as possible to ensure that the resulting language is extremely familiar to the mainstream
programmer. M features the use of (logic-variable style) promises and vats (cf the recently proposed
Java isolates, JSR 121) for (data-flow) concurrency (rather than the notorious Java threads), and
develops the idea of object-references as capabilities for fine grained authorization and access control
(within a collection of worlds running in a single JVM instance).

A central problem in capability programming is confinement. A (security) principal A may wish
to grant a capability c to a principal B only if s/he can be assured that while B can propagate c to
objects in its “private” state, B will not propagate c to any other publically reachable object (such
as another principal). The capability model has notoriously been held to be incapable of solving
this problem (e.g., [WBDF97]) because putatively B is free to send c to any object it has access to,
including other publically reachable objects.

We propose to solve this problem by requiring that M programmers use type annotations to
specify statically checkable constraints on the runtime object-reference graph. We identify the notion
of a neighborhood of an object (corresponding intuitively to the idea of private state of an object).
We provide a type annotation confined that statically approximates the neighborhood. The type-
checking rules guarantee that (1) an object has an incoming confined reference iff all its incoming
references are confined, (2) confined values (values stored at a confined type) can only propagate
through confined links, and (3) a confined object is reachable from at most one object (the root of
the neighborhood) that has an incoming non-confined link (i.e., is a “publically accessible” object).
The rules are rich enough to allow (the static approximation of) the neighborhood of an object to be
any kind of graph.

We introduce an additional annotation contained, and define type rules which allow contained

values to be propagated only through confined references. Thus an object o that receives an object s
through a contained argument of a method invocation (on a public reference to o) is prevented from
propagating s to any object that is not in o’s confined state, thus solving the confinement problem.

Finally, we motivate two other problems, the representation confinement problem and the authority
verification problem. We show that by introducing the notion of portals – confined objects that
may release public references to themselves, while ensuring that contained objects are not accessible
through these references – both of these problems can be solved.

1 Page 1 of 22



1 Introduction

There is a growing interest in the design and analysis of object-oriented capability-based languages [ea98]
as a basis for secure, persistent, distributed systems such as virtual worlds [Sar98].

Inspired by Carl Hewitt’s actors model of computation, such languages seek to take object languages
to an extreme of modularity. In such languages, objects are considered atomic, encapsulated bundles of
state (fields) and action (methods or messages).1 A capability is a reference to an object. The notion of
a subject from the security literature (i.e. a source of change in the system, “a program in execution”)
is identified with that of an object. Objects may create more objects. Each object is associated with a
programmer-specified public signature: the set of public actions that may be taken on the object.

The only operations available on objects are:

• Creation: A new object may be created, typically through a primitive operation (e.g. invocation of
a constructor)2.

• Storage: A capability may be stored in the field of another, or in a local variable (temporary storage
accessible to actions). Capabilities may be duplicated freely.

• Retrieval: A capability may be fetched from a field or a local variable.

• Transmission: A capability may be sent as an argument in an action performed on another object,
or returned as the result of an action.

• Execution: A capability may be used to invoke any method in the public signature of the object
referenced by the capability.

As a consequence of these operations, a fundamental property of the capability model is (in Mark
S. Miller’s words) connectivity begets connectivity: the only way that an object p may acquire a reference r
to an object o is (a) by creating o (b) by receiving r as an argument in a method (constructor) invocation,
(c) by receiving r as the return value of a method invocation. Note what is ruled out:

1. It is not possible for an object to manufacture a reference to another object from a “built-in” type
(such as integer or string) – no such operation is provided.

2. No primitive operation is provided that will take one capability and transform it into another
unrelated one (e.g. via pointer arithmetic).

3. Other than this, there are no “static designators for objects” (cf Java’s System.out, i.e. code
designators for specific objects. Thus “code” cannot name a capability (other than one for the
“current object”).3

In the capability model, everything is an object. For instance, system resources (such as files, streams,
sockets) are encapsulated as (certain kinds of) objects, references to which may be handed out as needed.
Security principals (entities on whose behalf actions are performed) are also internalized as objects; new
security principals may be created on the fly. The intuitive notion of authority (i.e. the capacity to
perform an action, or the ability of a subject to access a resource [MYS03]) may therefore be identified
with possession of an object reference.

As [MYS03] points out, such systems satisfy the following properties:

1In the capability model, the emphasis is on modularity and encapsulation, rather than on code-sharing and reuse. Thus
some aspects of the traditional object-oriented computation model, such as inheritanc and dispatch polymorphism are not
emphasized.

2Disposal may be performed by garbage collection; we do not assume any specific primitives for this purpose.
3Note that in Java super is a designator for the same object as this, though it is interpreted differently in the context

of method invocation.
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• No Designation without Authority: Designating a resource always conveys its corresponding au-
thority.

• Dynamic Subject Creation: Objects may create more objects – the universe of subjects is open-
ended.

• Subject-Aggregated Authority Management: Instead of resources determining which subjects may
access them (e.g. through an access control list), subjects accumulate authorities (capabilities).

• No ambient authority: Subjects must select an authority when performing an access.

• Composability of Authorities: Resources are also subjects, and may, in turn, possess authority to
use other resources, and to dynamically create resources.

• Access-controlled delegation channels: An access relationship betwen two subjects X and Y is
required in order for X to pass an authority (for perfoming some actions) to Y .

Capability-based systems have a very rich history, going back at least to work at CMU and Cambridge
in the 1960s [WLP75,NW77]. From a programming language point of view, a major source of attraction
is the cleanliness of the computation model. The fundamental property of capabilities may be termed
the “Possession is the Law” property: Any object with a reference to another may invoke the operations
in its public signature. No other “approval” is needed. If you have it, you can use it.

1.1 Problems with capabilities

1.1.1 Capability confinement problem

On the face of it, capability-based systems are well-suited to providing a clean framework for secure
computation. However, a fundamental problem (originally described in [Lam73] and usually attributed
in the context of capabilities to [Boe84,KL87]) has surfaced. Boebert showed in [Boe84] that in an
“unmodified capability system” one of the requirements of the DoD security policy, namely the “?-
property” could not hold. The example adapted to our current setting is as follows:

Example 1.1 (Information Leakage) Suppose there exist two objects low and high. Both of them
are instances of classes which implement the ReadWrite interface:

public interface Read {

Object read();

}

public interface Write {

void write(Object o);

}

public interface ReadWrite extends Read, Write {}

Suppose Alice, an object representing a person with a low security clearance, has been given read
and write capabilities on low (lowReader and lowWriter), and write capability on high (highWriter).

Conversely, Bob, an object representing a person with a high security clearance has been given read
and write capabilities on high (highReader and highWriter), and read capabilities on low(lowReader).

For the ?-property to hold, it must not be possible for Bob to get access to lowWriter – for then Bob
is in a position to leak secrets from high to low.4

In a capability system such as Java however, the following sequence of actions will result in this
violation:

4Symmetrically, it should not be possible for Alice to get access to highReader.
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// Alice

lowWriter.write( lowWriter );

// Bob

Object secret = highReader.read();

Writer trapdoor = (Writer) lowReader.read();

trapdoor.write( secret);

Intuitively, Bob is able to “read” data at a lower classification; but this data is actually a capability,
so Bob, by being in possession of it, can exercise it, thus performing a prohibited action.

[KL87] interpretes this result as showing that “designs in which the access rights are checked upon
access but are not modified upon capability copying” cannot enforce the ?-property. [WBDF97] states:

[. . . ] an important issue is confinement of privileges [Lam73]. It should not generally be
possible for one program to delegate a privilege to another program (that right should also be
mediated by the system). This is the fundamental flaw in an unmodified capability system;
two programs which can communicate object references can share their capabilities without
system mediation. This means that any code which is granted a capability must be trusted
to care for it properly. In a mobile code system, the number of such trusted programs is
unbounded. Thus, it may be impossible to ever trust a simple capability system. [. . . ]

Fundamentally, extended capability systems must either place restrictions on how capabilities
can be used, or must place restrictions on how capabilities can be shared. Some systems, such
as ICAP [Gon89], make capabilities aware of “who” called them; they can know who they
belong to and become useless to anyone else. The IBM System/38[BTR80]associates optional
access control lists with its capabilities, accomplishing the same purpose. Other systems
use hardware mechanisms to block the sharing of capabilities [KH84]. For Java, any such
techniques would be problematic. To make a capability aware of who is calling it, a certain
level of introspection into the call stack must be available. To make a capability object
unshareable, you must either remove its class from the name space of potential attackers,
or block all communication channels that coul dbe used for an authorized program to leak it
(either blocking all inter-program memory-sharing or creating a complex system of capability-
sharing groups).

Another concrete manifestation of this problem is provided by the following example.

Example 1.2 (Confining Room) Consider a programmable virtual world server. A person (e.g. Alice)
may connect using a client, authenticate, and be associated with an object in the server (e.g., Alice)
serving as a representation of the person within the world. People may enter (chat) rooms. A room
maintains a list of all objects in the room. Whenever a person says something in the room, this text is
communicated to all objects in the room.

Thus, on entering, a person p provides the room with a capability, say tell(p) that allows the room
to communicate text to the person. We now desire that it should be possible for the compiler to verify,
through type-checking, that the room will not propagate tell(p) to any other player. It should be
possible to do this even if the room is “owned” by a player, say Charlie, inimical to Alice, and the code
for the room is defined by Charlie. How shall this be done?

In this paper we present an extremely simple and general approach to this problem by exploiting the
idea of static typing.

Our approach. Our basic insight is that the local state of an object can be defined intrinsically on
purely graph-theoretical terms – as the neighborhood n(o) of the object o. Intuitively, the neighborhood,
n(o) of an object o is the largest set of objects that can be reached from o and is not pointed to by any
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object that is not o or in n(o). We show that a simple, purely local, static type system can be defined
which approximates neighborhoods.

We introduce a distinction between free objects and confined objects. Intuitively, a free object is one
whose reference can be passed around freely between objects. All objects with a “public persona” (all
“world objects” [Sar98]) such as rooms, exits, chairs, tables, cars, player objects etc. that expect to move
freely between world objects should be created as free objects. Objects that are intended to stay confined
to the private state of an object should be created as confined objects. Objects created free remain free
throughout their life; objects created confined stay confined to the same neighborhood throughout their
life. (Though, in Section 5, we shall see how such objects may give out public references, thus becoming
portals, without violating neighborhood encapsulation.) Confined objects are allowed to propagate only
through confined links, i.e. links that point to objects in the neighborhood, thus preserving the integrity
of neighborhoods.

We will find it extremely convenient to label each object with an object. Free objects o are labeled
with o. Confined objects p are labeled with the root of the largest neighborhood containing p. A label
may be thought of as the value of a final field on the object. Thus labels must be established when the
object comes into being and cannot be changed or dropped. The programming language may well wish
to offer extra functionality to take advantage of this extra information, e.g. determining if two nodes are
in the same neighborhood. See Section 5.

On this basic notion it is then easy to define a notion of contained object: a contained object p is
a free object that is received by a free object o at a contained type, and can be propagated by o only
through its confined links. Thus it will stay confined to n(o).

Example 1.3 (Information leakage, revisited) We analyze Example 1.1 as follows. If it is desired
that Alice not be in a position to freely propagate lowWriter, then lowWriter must be given to Alice
at a contained type. Alice will then be forced to keep this reference internal to her private state, and
will be unable to communicate it to people like Bob. In terms of type-checking, we will see that in the
sequence:

// Alice

lowWriter.write( lowWriter );

// Bob

Object secret = highReader.read();

Writer trapdoor = (Writer) lowReader.read();

trapdoor.write( secret);

the very first statement will fail to typecheck – a contained argument lowWriter cannot be passed on a
method invoked on a contained reference (lowWriter).

Our solution described above will not allow Alice to share lowWriter with any free object. A
more general notion of containment, contained(k) would allow for an object to propagate from one one
neighborhood to another only if the second was able to demonstrate possession of the “key” k. (For
example, all entities at a given security clearance would posses the same key.) Such an approach is
currently under development and hence beyond the scope of this paper.

1.1.2 Representation confinement problem

The solution outlined above allows a free object o to maintain internal state. This internal state may not
be accessed by any other public object, except through o.

This situation can be quite limiting, however.

Example 1.4 (Vector iterators, [BLS03]) Consider the code for a class implementing a vector. Such
a class would like to keep in its internal state some representation of the elements in the vector, e.g. as
a linked list. Clearly the cells in the linked list should be considered confined to the vector. However, it
also becomes necessary to provide iterators to the outside world. Clearly references to iterators should
be able to propagate freely and yet iterators should have access to confined state (the linked list).
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Thus there is a need for portals: a portal for an object o is a public object that may access objects in
n(o). Like objects in n(o), a portal is labeled with o, and may receive references to objects in n(o) to store
in its local state. Unlike objects in n(o), a portal behaves like a free object, and may be communicated
to free objects. We will introduce type rules that guarantee that a portal can be a portal for a single
neighborhood. While there is some flexibility on what rules to introduce which allow a confined object
to become a portal, we choose a very simple rule that allows each object to use a static object designator
this for itself (as in languages such as Java) at a “free type”. Thus every confined object may, in
principle, become a portal for its neighborhood.

1.1.3 Authority verification problem

Another important reason for portals is that they may be used to solve the authority verification problem.
This problem is best illustrated with an example.

Example 1.5 (Verifying the source of an utterance) Consider Alice has entered a room programmed
by Charlie. Alice has no reason to trust Charlie. If Alice receives a message object from the room,
purporting to be from Bob, how is Alice to verify that indeed this message was created by Bob, and not
by Charlie masquerading as Bob?

Note that this problem is different from the authentication problem. Within the virtual world server,
a connection from some client will not be established to a person object until the client authenticates
(e.g. through some password mechanism, or digital certificates e.g. SPKI/SDSI). Once such a connection
has been established, and people objects in the world such as Alice are “animated”, the question arises
about how such an object can determine that a particular message that it has received was actually
created by Bob and by no one else.

The naive solution would be to provide a method on the message that returns the “authority” that
created the message. The authority would be some well-known object p(Bob) that “represents” Bob.
However, what is to prevent Charlie from launching a “man-in-the-middle” attack? Charlie may inter-
cept a message from Bob, invoke this method, obtain p(Bob), create another message (as an instance of
a class that Charlie has written) that establishes p(Bob) as the authority.

Portals provide a solution to this problem. Consider each message from Bob to be a portal on
n(p(Bob)). A receiver of the message may simply check the label on the message to verify the authority
for the message; by the rules for portals discussed above this authority cannot be faked.

1.2 Related work

[CDM01] provides a common framework for studying simulations between different mechanisms for access
control (capabilities, access control lists, trust management systems etc). In future work we hope to
explore how the model presented in this paper compares with the other models analyzed in their paper.

To our knowledge, no other paper has proposed a solution for this problem using static typing or
using the concept of neighborhood of an object. [Inc88] proposes the use of “factories” for capability
confinement. (This idea also appears as “constructors” in Eros [SSF99].) A factory may be described
as a trusted system initialized with some code (written by an untrusted builder) and data which may
possess only those capabilities that (a) are explicitly passed to it by the user, or (b) are “read-only”
(sensory capabilities), or (c) point to other factories (sub-contractors), or (d) are “holes”, capabilities to
trusted system services (e.g. compilers). In the framework of this paper, factories need not be assumed
as a primitive – factories are programmable. Indeed, each object is a factory in this sense. The concept
of “holes” is not needed because the object is incapable of passing contained information to any external
capability. Indeed, our proposal substantially extends factories: a factory (object) may be passed both
(a) capabilities to other services (e.g. Bob) as well as (b) capabilities that should be held locally. The
type system will guarantee that capabilities of the first type are not permitted to access capabilities of
the second type.
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There has been considerable related work on alias types and confinement types [MPH00,CNP01,BV01].
These papers are motivated from the representation confinement problem. In order to reason about
object-oriented code in a modular fashion, it is necessary that the behavior of an object be captured
accurately by its specification. Uses of that object can then be verified to be correct by using the
specification of the object, rather than the actual code for the object. However, modular reasoning is not
possible if the objects used in the representation (e.g. the cell objects internal to a vector) are allowed to
“leak” out of the object. Various approaches, such as ownership types have been devised for this problem.

We are still investigating the relationship of our approach to these approaches. Our preliminary
thinking is that our approach using neighborhoods and portals provides a simple and general solution
that does not rely on the imposition of an external structure (such as a tree of “owners”) on the object
reference graph. We believe that the fact that any reference from an object q to objects in n(o) must go
through a portal on n(o) will enable modular reasoning on objects. We also believe that object-based
mechanisms for protection are substantially more robust than code-based (e.g. package-based or inner-
class based) mechanisms because they allow code written by different authors at widely different times
to co-exist while respecting safety properties. Indeed, with other researchers we believe that for the sake
of robust programming types should be interfaces rather than classes; class identity (i.e. the name of
the class) should not be important. Such a view accomodates on-the-fly code construction for example –
while still insisting on type-safety to implement security. Finally, the simplicity of the notions presented
here speak to their generality – there are no issues with respect to making these work in languages with
subtyping or delegation or other forms of code-sharing (unlike some of the proposals mentioned above).

Finally, a very important closely related area of work that appears to be orthogonal to our approach is
the work on “bunched implication” logics [OP99,Rey02] of Reynolds, Pym, O’Hearn and their colleagues.
These logics allow for modular assertions and reasoning about the heap. In future work we hope to
exploit these logics and establish a connection with the present paper.

2 Object reference graph and neighborhoods

We start by considering the structure of the the object reference graph (ORG). At any state of the
computation, the current set of objects constitute a graph which has as nodes objects and as directed
edges references from one object to another. Each such object o is assumed to have an edge labeled this
pointing to itself, with type t(o).

How can such a graph evolve as computation progresses? Given the general discussion above, there
are but three basic operations (completely independent of the user program) identified in [MVPS00]:

insert(v,x): v inserts a new node x, and points to x. This corresponds to the execution of code that
creates a new object, and stores a reference to that newly created object in a field of v.

give(a, b, c): a “gives c to b” by adding b → c to E. This operation can be performed only if a → b
and a → c in E, and t(b) has a method that takes an argument that is assignment compatible with
t(c).

get(a, b, c): a “gets c from b” by adding a → c to E. This operation can be performed only if a → b
and b → c in E, and t(b) has a method with a return type assignment compatible with t(c).

A node q is said to be reachable from a node p if there is a (directed) path from p to q. If there is an
edge from p to q, we say that p points to q. The set of all objects reachable from o is called ?(o).

Why is there no delete operation? Let us address a natural question that arises at this point. Note
that we have not defined any operation for dropping a reference. For instance, any programming language
of interest will have a way by which fields can be assigned, thus overwriting the previous edge. We can
introduce this notion by adding the rule:
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delete(a, b): a drops a reference to b. (The new graph is the same as the old graph except that a
specified edge from a to b is deleted.)

Thus in practice the execution of a program will result in the object reference graph transforming
according to these four rules. Nevertheless, in this paper we shall only consider graphs obtained by using
the first three transformation rules as was done in [MVPS00]. The reason is that such graphs are much
easier to analyze and represent a conservative approximation of reachability in the actual runtime graph.
The graphs are much easier to analyze because edges are cumulative: an edge once introduced is never
forgotten. If we can establish that particular edges do not exist in any sequence of graphs obtained by
applying the first three transformation rules, then we are guaranteed that these edges do not exist even
if we could use the delete rule.

[MVPS00] shows that the accessibility problem for ORGs – is there an evolution of the current graph
such that a given object o can reach a given object p (given the public signatures of all the objects
concerned) – is decidable. In this paper we shall introduce extra statically analyzable structure that can
be used to ensure that particular kinds of edges will not arise at runtime.

Neighborhoods Is there any structure to the ORG which can help us with the confinement problem? A
natural question to ask here is: how does the “local state” of an object appear in the ORG? Consider a
Vector class which provides methods to add elements to a sequence and remove elements from a sequence.
It may perform its task by dynamically creating a list in which to store these elements. Intuitively, the
list cells represent the local state of the vector. They are created by the Vector to perform its task, and
their existence should really not be observable by any user of Vector.

Let us now consider the notion of neighborhood formally:

Definition 2.1 (Neighborhood) Given a ORG G, the neighborhood of an object o is the largest col-
lection of objects n(o) satisfying:

1. If p points to an object q ∈ n(o) then p = o or p ∈ n(o).

2. n(o) ⊆ ?(o)

We say that a collection of nodes N is a neighborhood if N = n(o) for some o. o is said to be a root for
the neighborhood. The reader may verify that there is no requirement that nodes in n(o) cannot point
to nodes outside n(o); indeed it is fairly common and routine for an object to hold an external capability
in its internal state.

The notion of neighborhoods is fairly fundamental and robust. Let us discuss a few of its relevant
properties.

First, there is a very simple way to determine the neighborhood of an object o, given an ORG G.
Consider ?(o), the set of all objects reachable from o. Throw out all objects in this set that are reachable
from nodes not in ?(o) ∪ {o}. The set that remains is n(o).

Note that the root of a neighborhood is not necessarily unique. Why? Say that a neighborhood N is
disconnected if it has no incoming edge from a node not in N ; otherwise say that it is connected. If N
is disconnected, it must contain all its roots. Conversely, if N does not contain one of its roots, then it
must be because the root has an incoming edge from a node not in N , and hence N is connected. In this
case it is easy to see that N has a unique root.

Proposition 2.1 A neighborhood is connected iff it does not contain its root. A connected neighborhood
has a single root.

In the following, we will mostly be concerned with connected neighborhoods.
The following properties of neighborhoods may be established in a simple fashion:
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Proposition 2.2 1. A neighborhood may be empty.

(An object may have no local state.)

2. If two neighborhoods intersect, then one is contained in the other.

Thus, neighborhoods may be nested.

3. A neighborhood N is contained in a different neighborhood N ′ iff it is connected and its root lies in
N ′.

4. Let N contain an object o. Then n(o) is contained in N .

We shall call this property the transitivity of neighborhoods.

3 confined annotations

To allow programs to exploit the notion of neighborhoods, we introduce confined structure.
We introduce a new kind of edge in the ORG, a confined edge. In the diagrams below, confined edges

will be colored green and labeled with “c”. Additionally, each node is labeled with a node, according
to the rules given below. (The edges that were present earlier will be called “free” edges, to distinguish
them from confined edges. They will be colored black and labeled with “f”.)

Within the context of a specific programming language such as Java, confined edges may be introduced
by introducing a type annotation, confined, for reference types. Thus, for every reference type T,
confined T will also be a type (and will be called a confined type). The type of fields, method arguments,
method returns, local variables, for-loop variables etc may be confined types.

public class Vector {

confined Cell head;

public void add(Object element) {

head = new Cell(element, head);

...

}

public Object get() {

if (head != null)

return head.element;

}

...

}

Definition 3.1 (Confined edge Transformation Rules) The following transformation rules are pro-
vided for confined edges:

Confined creation: Let a(o) be a node. Create a new node b(o) and add an confined edge from a(o)
to b(o).

b(o) will be a confined node.

Free creation: Let a(o) be a node. Create a new node b(b) and add a normal edge from a(o) to b(b).

b(b) will be a free node. Below, we will shorten the designator b(b) to just b.

Free Give: Let a(o) be a node, with a confined or free edge to a node c(o). Let a(o) point to b. Then
add a normal edge from c(o) to b.

This corresponds to sending a free object in a method invocation on a confined or free object.
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Free Get: Let a(o) be a node, with a confined or free edge to a node c(o). Let c(o) point to b. Then
add a normal edge from a(o) to b.

This corresponds to receiving a free object in a method invocation on a confined object.

Confined Give: Let a(o) be a node, with a confined edge to a node c(o). Let a(o) have a confined edge
to b(o). Then add a confined edge from c(o) to b(o).

This corresponds to giving a confined object in a method invocation on a confined object.

Confined Get: Let a(o) be a node, with a confined edge to a node c(o). Let c(o) have a confined edge
to b(o). Then add a confined edge from a(o) to b(o).

This corresponds to receiving a confined object in a method invocation on a confined object.

See Figure 2 for a pictorial representation of these rules. The rules include the “basic rules” defined
in Figure 1.

Note what is not allowed: a confined edge cannot be used to access a node and return it as the result
of a method call on a free reference, or send it in as an argument of a method call on a free reference.

Figure 1: Transformation rules for simple graphs

In the following, let G be the one-point, zero-edge graph whose single node a0 is labeled with a0.

Lemma 3.1 Let the sequence G = G0, G1, G2, . . . describe an evolution of the graph according to the
rules above. Then in any graph Gn if there is a confined edge from a node a(o) to a node b(p), then o = p.

Proof 3.1 By induction on n. There is nothing to show in the base case. There are three cases in the
inductive case, one for each rule that introduces a confined edge. The result follows immediately, using
the transitivity of equality in the give and get cases.
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Figure 2: Transformation rules for graphs with confined edges
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Lemma 3.2 (Isolation of free and confined nodes) Let the sequence G = G0, G1, G2, . . . describe
an evolution of the graph according to the rules above. Then for any n, if a node in Gn has an incoming
confined edge, then all its incoming edges are confined.

Proof 3.2 By induction on n.

Theorem 3.3 (Labels capture neighborhoods) Let the sequence G = G0, G1, G2, . . . describe an
evolution of the graph according to the rules above. Then for any n, if a node a is labeled with the object
o in Gn then a ∈ n(o) ∪ {o}.

Proof 3.3 By induction on n.
The base case is obvious – G0 has a single node a0 labeled with a0, and hence the result follows.
Consider the proposition is true for graph Gn−1. Let Gn be obtained from Gn−1 by applying some

rule.
The only rules that introduce new nodes are “free creation” and “confined creation”. The label of a

freely created node is itself, so the condition is satisfied. The label of a newly created confined node b is
the label of its creator a. Since b is newly created, there are no other references to it, and hence b ∈ n(a).
We have to show that b ∈ n(o)∪{o}. But by inductive hypothesis, either a ∈ n(o) or a = o. In the former
case, by transitivity of neighborhoods b ∈ n(o). In the latter case, the result follows because b ∈ n(a).

Consider now that Gn was obtained by applying one of the other four rules. We must show that if
p ∈ n(o) in Gn−1, then p ∈ n(o) in Gn. The only situation we need to be concerned about is if an edge
is added to p from outside the neighborhood. But by previous lemmas if p is inside a neighborhood, it
cannot have an incoming free edge, and if it has an incoming confined edge then it must be from a node
in the same neighborhood. Therefore the step used in getting to Gn cannot add an incoming edge to p
from outside its neighborhood.

Thus a node o is created as either a free node (label equals o) or a confined node (label different from
o). Once created as a confined node, it stays a confined node forever.

Do the nodes labeled by o capture precisely n(o)? No. Consider for example that o may create a free
node p and then not communicate a reference to p to any other node. Now p is in n(o), but is labeled with
p, not o. On usual computability grounds, one cannot expect the neighborhood to be captured statically.

4 contained annotations

Above we have described type-checking rules that ensure that values statically asserted to lie in the
neighborhood of an object will in fact at runtime lie in the neighborhood of the object. Now we show
how we can allow a reference to a free object to enter a neighborhood with the static guarantee that the
reference will not leave the neighborhood.

We introduce a new kind of edge in the ORG, a contained edge. In the diagrams below, confined
edges will be colored purple and labeled with “t”.

Within the context of a specific programming language such as Java, contained edges may be intro-
duced by introducing the type annotation confined for reference types. Thus, for every reference type
T, contained T will also be a type (and will be called a contained type). The types of fields, method
arguments, method returns, local variables, for-loop variables etc may be contained types.

public class Cell {

contained Object car;

confined Cell cdr;

public Cell( contained Object car, confined Cell cdr ) {

this.car = car;
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this.cdr = cdr;

}

public contained Object car() {

return car;

}

public confined Cell cdr() {

return cdr;

}

...

}

We now discuss the transformation rules for contained edges. For the sake of later proofs, we annotate
such edges with a set of objects and their labels. Intuitively, the set captures the nodes through which
this particular edge has propagated.

Definition 4.1 (Contained edge Transformation Rules) To the rules of the previous section we
add:

Contained Give: Let a(o) be a node with a free or contained edge to a node c(q). Let a(o) have a free
reference to b(p). Then add a contained edge from c(q) to b(p), annotated with the set {c(q)}.
This corresponds to sending a free object in a method invocation on a free or contained object, and
having the object be received at a contained type.

Contained Get: Let a(o) be a node with a free or contained edge to a node c(q). Let c(q) point to b(p).
Then add a contained edge from a(o) to b(p), annotated with the set {a(o)}.
This corresponds to receiving a value (b) at a contained type as the result of a method invocation
on a free or contained object. The receiver must ensure that the value remains contained to its
neighborhood.

Give on a Confined Ref: Let a(o) be a node, with a confined edge to a node c(q). Let a(o) have a
free, contained or confined edge to b(p). Then add an edge from c(q) to b(p) with the same label.
If the edge from a(o) to b(p) is contained and has label s, then the edge from c(q) to b(p) should
have label s ∪ {c(q)}.

Get on a Contained Ref: Let a(o) be a node, with a confined edge to a node c(q). Let c(q) have a
free, confined or contained edge to b(p). Then add an edge from a(o) to b(p) with the same label.
If the edge from c(q) to b(p) is contained and has label s, then the edge from a(o) to b(p) should
have label s ∪ {a(o)}.

See Figure 3 for a pictorial representation of these rules, together with the previous rules.
Note what is not possible to do: A confined object a cannot be given to a contained reference b – for

the neighborhoods of the two are different. Neither can a contained reference b return a confined object
a – for this object is confined within the neighborhood of b, not the current object. For similar reasons,
a contained object cannot be given another contained object, and a contained object cannot return a
contained object.

Theorem 4.1 (Confinement theorem) Let the sequence G = G0, G1, G2, . . . describe an evolution of
the graph according to the rules above. Then for any graph Gn, if there is a contained edge from a node
a(o) to a node b(q) labeled with s, then the label of each object in s is o.

Futhermore there is no graph transformation that depends on a contained edge from a node a(o) to a
node b(p) to introduce an edge into b(p) other than a contained edge.
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Figure 3: Transformation rules for graphs with contained edges
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Proof 4.1 The first assertion is easily proved by induction on n, using the previous theorem. The second
assertion follows from inspection of the transformation rules. Note that it implies that if a(o) has a free
edge into c(q), and c(q) has a contained edge to b(p), it is not possible for a(o) to use that edge to get an
edge into b(p).

Thus, contained references propagate only within the neighborhood in which they were created. Since
Bob has a different label from the room (because both are different free objects), Bob cannot get the
reference directly. Bob cannot obtain that reference through a free edge into room because a contained
reference cannot enable any other kind of reference to be generated into its target. Thus Alice can be
assured that Bob will not be able to obtain a reference to Alice as a result of the contained reference to
Alice being provided to the room.

4.1 Room example revisited.
Let us set up a little object structure to make the problem clearer. Let Alice and Bob be instances of a
class Player. Let room be an instance of the class Room. Player has the following public method that
may be used by others to communicate with it:

public void receive( final Message m)

Typically, Message will have a method (String toString()) which returns a text version of the message
suitable for display on a screen. Message will also have a method (Authority getAuthority()) which
will return an Authority that unimpeachably identifies a public name for the entity responsible for
creating the message.5

Room has a method that allows a player to enter the room; on successful entry, a capability (SayRights)
to perform certain actions is returned. A player may leave the room at any time, when the player leaves
the room, its SayRight is revoked.

public SayRights Room.enter( final Player p) throws EntranceDenied

public void Room.leave( final Player p)

public void SayRights.say( final Message m)

The say method behaves thus. The room should throw a RevokedCapabilityException if the
authority for the message is not in the room. Otherwise it should communicate the message to all the
players in the room, using their receive method.

How might the room misbehave? The room may fail to deliver a message. We shall not address this
problem in this paper – it corresponds to trying to prove some liveness properties of the room code. We
are interested in making sure, however, that the room does not cheat, that is, communicate the Player
object to third parties (objects which are, intuitively, “not in the rooom”). For, such a third party may
then spam the player – sending unwanted communications through the receive method.

We may use confined/contained as follows. The public signature of the Room object is:

public SayRights Room.enter( final contained Player p) throws EntranceDenied

public void Room.leave( final contained Player p)

Example 4.1 (Room code) Here is the relevant code fragment for the room:

confined Collection occupants = new TreeSet();

public SayRights enter(final contained Player p) {

occupants.add(p); // Collection takes a contained arg here.

}

public void leave(final contained Player p) {

occupants.remove(p);

5The programming techniques necessary to define Authority in M will be discussed in the next section.
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}

public void say(final Message m) {

if (! (occupants.contains( (contained Player) m.getAuthority() )))

throw new RevokedCapabilityException();

for (confined Iterator i = occupants.iterator(); i.hasNext();) {

((contained Player) i.next()).receive( m );

}

}

Here we assume the following signatures:

confined Iterator Collection.iterator()

contained Object Iterator.next()

void Collection.add( contained Object r)

void Collection.remove( contained Object r)

5 Portals

Let us now consider the notion of multi-neighborhoods:

Definition 5.1 (Multi-neighborhood) Given a ORG G, the neighborhood of a set s of objects is the
largest collection of objects n(s) satisfying:

1. If p points to an object q ∈ n(s) then p ∈ s ∪ n(s).

2. n(s) ⊆ ?(s)

(Note that n(∅) is forced to be ∅ by the second condition.)
We say that the set s is the set of portals (or roots) for the neighborhood n(s). A multi-neighborhood

is also sometimes called a disjunctive neighborhood because the nodes in the neighborhood are required
to be reachable from only one of the roots. Note that the notion of neighborhoods for singleton sets is
identical to that for single objects. As before, nodes in n(s) may point to nodes outside n(s).

How shall we exploit multi-neighborhoods? It should be clear that we do not want an operation that
can combine two neighborhoods to provide a third neighborhood containing the two. For this would mean
that neighborhoods could not be used for containment. For instance, Alice may enter a room believing
that references to Alice stay confined in the neighborhood of the room. But if this room later merges
with Bill, Bill will now have access to that reference.

Instead we will explore the idea that a unitary neighborhood may add more portals over time. To
this end, we define:

Definition 5.2 (Generated Neighborhoods) Given an ORG G, we say that a neighborhood n(s) is
generated by an object o ∈ s if all the objects in s are labeled by o. The objects in s are called portals; o
is called the root of the neighborhood.

Thus in a generated neighborhood each portal other than the generator can be thought of as a confined
node in the neighborhood of the generator that “escaped”, i.e., managed to have an incoming free edges
from a node outside the neighborhood.
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What rule shall we introduce to allow confined nodes to escape? Many solutions are possible. A
particularly simple solution is to introduce the This rule.6

Definition 5.3 (This Transformation Rule) Let a(o) be a node. Add a free edge from a(o) to a(o).

In a language such as Java, the use of the static object designator this may be seen as resulting
in application of this transformation rule. With the addition of this rule, every confined object has the
ability to “leak” itself, e.g. by sending this as an argument into a method call on an external capability.

The collected rules are shown in Figure 4.
With this addition to the rule-set, it should be clear that Lemma 3.1 continues to hold. Lemma 3.2

does not hold; the nodes for which it does not hold are, by definition, portals.

Theorem 5.1 (Labels capture neighborhoods and portals) Let the sequence G = G0, G1, G2, . . .
describe an evolution of the graph according to the rules above. For any n and object o ∈ Gn, let p(o)
(the portals of o) denote the set of all objects labeled with o that have incoming free edges. Then if a node
a is labeled with the object o in Gn then a ∈ n(p(o)) ∪ p(o) ∪ {o}.

Proof 5.1 By induction on the length of the sequence.
The base case is obvious – G0 has a single node a0 labeled with a0.
Consider the proposition is true for graph Gn−1. Let Gn be obtained from Gn−1 by applying some

rule.
The only rules that introduce new nodes are “free creation” and “confined creation”. The label of a

freely created node is itself, so the condition is satisfied. The label of a newly created confined node b is
the label of its creator a. Since b is newly created, there are no other references to it, and hence b ∈ n(a).
We have to show that b ∈ n(p(o))∪p(o)∪{o}. But by inductive hypothesis, in Gn−1 either a ∈ n(p(o)) or
a ∈ p(o) or a = o. In the first, by transitivity of neighborhoods b ∈ n(p(o)). In the second case, b ∈ n(a)
and a ∈ p(o) implies b ∈ n(p(o)). In the third case, b ∈ n(o), hence b ∈ n(p(o)).

Consider now that Gn was obtained by applying one of the other rules. We must show that if a is in
n(p(o)) ∪ p(o) ∪ {o} in Gn−1, then so is it in Gn. Clearly, “being o” is a stable property, as is being a
portal for o (the application of no rule can change that).

Now assume that a is in n(p(o)) in Gn−1. It is easy to see that the only way that a might not be in
n(p(o)) in Gn is if it has an incoming free edge added to it in Gn from a node outside n(p(o))∪p(o)∪{o}.
But then it is in p(o) in Gn, and we are done.

Theorem 5.2 (Confinement theorem) Let the sequence G = G0, G1, G2, . . . describe an evolution of
the graph according to the rules above. Then for any graph Gn, if there is a contained edge from a node
a(o) to a node b(q) labeled with s, then the label of each object in s is o.

Futhermore there is no graph transformation that depends on a contained edge from a node a(o) to a
node b(q) to introduce an edge into b(q) other than a contained edge.

The proof is unchanged from before.
Thus, contained references propagate only within the neighborhood in which they were created, and

its portals. Since Bob has a different label from the room (because both are different free objects), Bob
cannot get the reference directly. Bob cannot obtain that reference through a free edge into room because
a contained reference cannot enable any other kind of reference to be generated into its target. Thus
Alice can be assured that Bob will not be able to obtain a reference to Alice as a result of the contained
reference to Alice being provided to the room.

6Another rule that could be used is to allow typecasting from a confined edge to a free edge. That is, if there is a
confined edge from a(o) to b(p), add a free edge from a(o) to b(p).
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Figure 4: Transformation rules for graphs with contained edges
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6 Conclusions and future work

Several issues remain to be explored. The notion of Object Reference Graph seems to provide a convenient,
simple, abstract setting within which to explore type annotations devoid of the inessential clutter that
arises once a specific syntactic context (e.g. Java) is chosen. It may make sense to augment this notion
with a “temporary computational context” (e.g. the current stack frame) in order to model some other
aspects of execution.

We believe that the space of useful annotations based on the ORG deserves significant further study.
For instance, several other useful annotations may be defined to support patterns of capability program-
ming:

1. The sole annotation may be used to specify that this variable contains the sole reference to this
object. This is one way that objects created outside a neighborhood could be added to that
neighborhood.

2. The flow annotation may be used to specify that an object reference passed at that type may not
be stored in object fields. Thus it may be stored only in local variables, or passed as a parameter
at a flow type to other method invocations, or returned at flow type from a method invocation.

3. The opaque annotation may be used to specify that an object reference may not have any methods
invoked on it. The reference may be stored in fields, retrieved from fields and communicated through
give/get actions. Storage classes such as vectors and cells often treat their input items in this way.

4. The other(o) annotation on a type, where o is a final variable of that type, may be used to
constrain values passed at that type to be other than o. This is of particular importance when it is
necessary to specify that a method body does not propagate this in a method call, or return this.
(The corresponding type would be annotated with other(this).)

On a different front, other methods for defining protection domains in Java, such as stack walking
[WAF00], should be examined and compared with the scheme proposed in this paper.

Finally, as mentioned in the related work section, the considerable recent literature on the “rep
confinement” problem needs to be related to the present work.

Acknowledgements. We wish to thank the many members of the e-lang mailing list for their interest
in the topic of this paper.
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A Rules for type-checking confined/contained extensions to Java

In this section we provide more conventional type rules for confined and contained type annotations
as an extension of the Java type rules. We shall not formally justify these rules with respect to the ORG
system presented in this paper, leaving that for future work.

1. The LHS of an assignment is a variable of confined type iff the RHS is an expression of assignment-
compatible confined type or an constructor invocation of assignment-compatible type.7

2. A method invocation expression p.m(v1, ..., vn) is of type contained T iff

(a) p is an expression of confined type and m is declared to return at a contained type assignment-
compatible with T, or,

(b) p is an expression of free or contained type and m is declared to return at a free type assignment-
compatible with T.

3. A method (or constructor) invocation expression p.m(e1, ..., en) is syntactically correct iff

(a) p is of free or contained type, all the ei are of free type, and all of the arguments in the
definition of m are of contained or free types

(b) p is of confined type, and an ei is of contained (confined) (free) type iff the declared class
for p specifies that the corresponding argument of m is of an assignment-compatible contained
(confined) (free) type.

Note that Case 3a covers two important cases. Method invocations on an object p of a contained type
are allowed, as long as all information passed in is free.

Second, method invocation on an object p of free type may pass a free value in an argument declared
to be of contained type. The receiving object will confine this value to its neighborhood.

The second case allows a free reference to enter a protection domain, under the static guarantee that
it cannot leave that domain. And it highlighs why we need to distinguish confined from contained. It is
not ok for p to be a free type and an argument to be defined at a confined type – for the method body for
p expects to see an object in n(p) in that argument . . . and the current object cannot have any reference
to an object in n(p) because it holds a free reference to p.

Conditions for the other kinds of statements in Java may be defined in an analogous fashion. For
instance,

1. In any class T , the expression this is assumed to be of free type T .

2. If a method m is declared to return a confined (contained) type, then all return expressions in its
body must return arguments at an assignment-compatible confined (contained) type. Conversely,
if in return t, t is of a confined (contained) type, then the method must declare that it returns
(an assignment compatible) confined (contained) type respectively.

3. A classcast (confined T) t ((contained T) t) is type-correct statically iff t is an expression of
a confined (contained) type. The compiler may then replace this classcast by the runtime cast to
T.

4. An t instanceof confined T (t instanceof contained T) is type-correct iff t is statically de-
clared to be of a confined (contained) type. The expression is treated at runtime as if it were the
expression t instanceof T.

These rules are easy to check locally, on a per class basis, as an integral part of Java’s type-checking
algorithm.

7An object is created confined iff the corresponding constructor invocation occurs in a confined context.
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