
Confidential Safety via Correspondence Assertions?

Radha Jagadeesan1, Alan Jeffrey2, Corin Pitcher1, and James Riely1

1 School of Computing, DePaul University
2 Bell Labs, Alcatel-Lucent

Abstract. We study confidential safety, a notion of secrecy that arises naturally
in adversarial systems. We provide a formal definition in the context of a concur-
rent while-language. We provide techniques for establishing confidential safety,
building on three ingredients: (1) We develop a novel view of correspondence
assertions that focuses on their confidentiality (in contrast to the traditional view
of correspondence assertions that uses their integrity to derive secrecy and au-
thentication properties of protocols). (2) We establish the confidentiality of a
correspondence assertion using techniques reminiscent of information flow, and
incorporating cryptography using confounders. (3) We prove protocols are confi-
dentially safe using techniques based on frame-bisimulation that exploit the non-
interference properties of well-typed programs.
Keywords: Language based security, static analysis, confidentiality.

1 Introduction

The focus of this paper is on a notion of secrecy that arises naturally in adversar-
ial systems. The general scenario is as follows: all agents, honest and otherwise,
agree on a space of possible values. An honest agent chooses one of these val-
ues, and aims to make sure that this particular choice is not guessable by the
adversary even in the context of a distributed protocol. We refer to this notion
as confidential safety. The following examples are motivational.

Example 1. Alice is a ticket granting service. The principals Bob, Charlie, etc.
first register with Alice. Following the standard network-as-opponent model, all
such communication is monitored by Mallory. So, the identities of all principals
are public and known to everyone. When a ticket is available, Alice chooses one
of the registered principals and sends mail to the chosen principal using an mail
server Sam.

Mallory is aware of the principals who are the possible targets of the mail
from Alice. Our aim is to ensure that Mallory cannot reliably reduce this space
of possibilities to a singleton and guess the identity of the recipient of the mail
from Alice. 2

? Radha Jagadeesan and Corin Pitcher were supported by NSF 0916741. James Riely was sup-
ported by NSF Career 0347542.

1

Example 2. Consider a scenario with a server Sam and an associated account-
ability appliance Alice. Principals such as Bob and Charlie interact with Sam
and perform operations (eg. database lookup and update). In order to establish
a logging framework used in accountability, Sam records the transactions of in-
terest with Alice who creates a log. Again, the opponent Mallory monitors all
communication.

Mallory knows the set of all possible operations that could have been in-
voked by Bob on Sam. Our aim is to ensure that Mallory cannot reliably reduce
this set to exactly guess the operations performed by Bob at the server Sam. 2

Our approach to establishing the confidential safety of a protocol is based
on a novel variation on correspondence assertions. Consider the traditional use
of correspondence assertions for authentication. Any agent (including dishonest
ones) can begin an authentication transaction. Authentication is performed by
honest agents who can perform end of a transaction. Such an end is correct if
it has a matching begin; the matching of the end to its corresponding begin
ensures that the honest agent has only performed a valid authentication. The
goal of protocol design is to maximize the number of correct ends. The primary
goal of static analysis in this setting is to make sure that all ends are correct.

The correctness of the authentication transaction can be viewed as arising
from the integrity of the correspondence assertion. Cryptographic methods often
play a crucial role in achieving this aim. In contrast, we achieve our aims by
ensuring the confidentiality of the correspondence assertion.

We view the honest agent as performing the begin of the transaction and the
attacker performs the end of the transaction, thus inverting the roles in the prior
use of correspondence assertions. For example, when Alice sends a message to
Bob via the server Sam, Alice performs begin(Alice,Bob). What the attacker
Mallory is trying to do is to deduce the target of the message from Alice. We
model this by Mallory performing an end(Alice,Bob). Thus, an honest agent
uses begins to indicate transactions that are intended to be non-guessable by
Mallory whereas Mallory uses ends to make an assertion about previous honest
agent messages. The correctness of an end is as before — an end is correct if
it has a matching begin. However, in contrast to the earlier uses of correspon-
dence assertions, the goal of protocol design now is to minimize the number of
correct ends. This ensures that the leakage of information from honest agents to
attackers is minimized. The goal of static analysis is to make sure that number
of correct opponent ends is zero, i.e., there is no leakage of information to the
attacker.

The first major contribution of this paper is the definition of confidential
safety of a protocol family using a novel view of correspondence assertions.
While our precise statement is in the context of a first-order concurrent impera-

2

tive language, we feel that the form of our definitions can be easily adapted to
different concurrent programming settings.

The second major contribution of this paper is an analysis to prove that a
protocol is confidentially safe. Perforce, this analysis utilizes the specific in-
frastructure of our underlying programming language. The building block of
our analysis is a type system developed along standard lines, blending elements
from Abadi (1999) and Smith (2006). We provide proof-principles and suffi-
cient conditions programs that are confidentially safe. The soundness of these
proof principles are established using the non-interference properties satisfied
by well-typed programs.

Rest of the paper. We informally develop our ideas in the next section. In Sec-
tions 4 and 6, we present the language and formally define confidential safety.
We prove confidential safety for the mail example in Section 7. This proof re-
lies on a typing system that establishes non-interference results. We describe the
typing system in Section 5.

2 Informal examples

In this section, we illustrate the basic idea of confidential safety informally with
the mail example.

Our programming model consists of first order imperative programs that
communicate via a shared tuple space. The messages of honest agents indi-
cate the intended receiver, and we assume that honest agents only take delivery
of messages that are intended for them. We follow the standard network-as-
opponent model. The adversary can view, duplicate, delete and create messages.
We use symmetric key cryptography and assume a Dolev-Yao model for cryp-
tography, rather than computational notions. An adversary can decrypt a cipher-
text only if they have access to the encryption key.

In this example, Sam is the mail server. For each participating principal a,
we assume there exists a shared key kAS between a and Sam. Three additional
principals are sufficient to illustrate the issue. Alice receives registrations from
the other principals. In a separate thread, Alice nondeterministically chooses
one of the registrants and sends a message to the chosen principal via Sam.

A: receive registrations
| x = choose one of registered principals

begin (A,x)
out (x,msg-body) to S

B,C: register with A

The begin assertion has no operational effect. Rather, it indicates a confiden-
tiality goal. The goal here is to hide the eventual recipient of the message.

3

A push mail server can be described as follows.

S: loop { inp (x,y) from z
out (z,y) to x }

An opponent, Mallory, is able to deduce the recipient of the mail from Alice
just by observing the target of the message from Sam. The system containing
the code for the four principals thus violates confidential safety. This type of
attack could be made much more difficult, if not impossible, by an onion-routing
scheme in the network between Sam and the recipient of the message.

In our development of this example, we focus instead on a pull-based mail
server; thus, each principal periodically queries Sam for mail. The first informal
description of such a mail server follows.

S: loop { inp req from z
case req of snd(x,y) => add (z,y) to mail[x]

rcv() => out mail[x] to z }

The system containing this server is also not confidentially safe. The vulner-
ability arises from the ability of the Opponent to observe the contents of the
message from Sam. Mallory can identify the recipient of Alice’s message by
looking for a non-empty response from the server for a rcv request, thus violat-
ing confidential safety.

The first attempt to fix this is to use cryptography to encrypt the message
contents.

A: receive registrations
| x = choose one of registered principals

begin (A,x)
out {snd(x,msg-body)}kAS to S

S: loop { inp req from z
k = key for z
case {req}k of snd(x,y) => add (z,y) to mail[x]

rcv() => out {mail[x]}k to z }

This attempt still leaks information, but for more subtle reasons. The attack pro-
ceeds in two phases. (1) Mallory sends a rcv request to Sam, masquerading
first as Bob and then as Charlie. This may be done in a run where these requests
happen before Alice sends her first mail. Thus Mallory learns the value of the
empty mail response when encrypted by Sam. (2) After this initial phase, Mal-
lory is able to deduce when a rcv response from Sam is empty, by comparing
the message to the ones previously captured.

This failure of confidential safety can be fixed by adding confounders (Abadi
1999) when encrypting.

S: loop { inp req from z
k = key for z

4

case {req}k of snd(x,y) => add (z,y) to mail[x]
rcv() => (new n) out {mail[x],n}k to z

The key property that we demand is that with this use of confounders, no good
process ever produces the same secret message twice. Thus, observing an en-
crypted message does not add to Mallory’s ability to deduce facts about future
messages. Later in the paper, we prove formally that this version of the protocol
is indeed confidentially safe.

Variations that address hiding the identity of the sender of a message are
also addressable in our framework, as are the protocols that aim to make both
the sender and the receiver of a message non-guessable for Mallory.

In these examples, it is important that Alice’s choice of recipient is nondeter-
ministic; otherwise Mallory can predict Alice’s choice. In our formal develop-
ment, we do not include nondeterministic choice as an operator in the language.
Instead we consider families (sets) of processes with similar behavior. To win,
the opponent must be able to succeed against each member of the family. For
example, we might have a family with two processes: one is the system in which
Alice sends to Bob and the other is the system in which Alice sends to Charlie.

The confidentiality property that is declared in the code must include some
information that the attacker cannot deduce. In the first examples above, confi-
dentiality failed because too much information was sent in the clear. Confiden-
tiality can also fail if the property is trivial. Consider a variant in which Alice
sends mail to all registered participants:

A: receive registrations
| for each x who is a registered principal

begin (A,x)
out {snd(x,msg-body)}kAS to S

This variant is not confidentially-safe. After Alice has sent a sufficient number of
messages, Mallory can deduce that Alice has sent mail to each of the registered
principals.

We develop our results using a concurrent imperative language. This allows
us to easily treat programs which manipulate secret data and then perform public
activities. Doing so in a process calculus requires explicit reasoning about the
types of continuations. For simplicity, we also do not allow multiple threads to
share the same store, and thus the code given above for Alice is not directly
expressible. This technicality is easily relaxed at the expense of more baroque
syntax or typing judgements.

5

3 Related work

Our definition of confidential safety is heavily influenced by the treatment of
secrecy in adversarial systems by Halpern and O’Neill (2008) that builds on
probabilistic non-interference Gray and Syverson (1992) and non-deducibility
on strategies Wittbold and Johnson (1990). In particular, our basic definition
can be seen as arising by eliding the probabilistic aspects of their analysis in
Section 4.4 of Halpern and O’Neill (2008) on secrecy in adversarial systems.
Rather than focussing on the secrecy of the choices made during the course of
the entire strategy guiding an agent, our definitions focus on the secrecy of the
initial choices made by the agent in the strategy.

The novelty of our work lies in the implementation of these ideas by com-
bining a traditional type-based analysis of non-interference with a variant of
correspondence assertions in the context of a specific programming language.

Correspondence assertions were introduced by Woo and Lam (1993). A
static analysis to validate correspondence assertions was introduced in Gordon
and Jeffrey (2003b). Honest agents do ends and these are statically validated by
the effects in the type system that track, accumulate and discharge begins/ends.
This led to type-based static validations of a variety of security protocols (Gor-
don and Jeffrey 2004, 2003a). As discussed in the introduction, in contrast to
this line of work, we take a non-standard view of correspondence assertions. In
our system, the adversary is the one trying to perform ends, whereas begins are
used to indicate which pieces of information need to be non-guessable. In con-
trast to the methods used in the works cited above, our methods are influenced
by those stemming from the study of information flow.

Information flow tries to make sure that untrusted programs do not leak in-
formation from high variables to low variables. In the classic framework of Den-
ning, this is a two point lattice (Denning 1976). For a comprehensive survey of
information flow research till 2003 see (Sabelfeld and Myers 2003). Volpano
et al. (1996) initiated type-based analysis for information flow. Cryptography
has been used to implement the program partitioning needed to realize informa-
tion flow (Fournet et al. 2009).

Our type system builds on the secure information flow type system for
singly-threaded imperative programs (Volpano et al. 1996), with cryptography (Smith
2006; Focardi and Centenaro 2008) and the spi-calculus type system for se-
crecy (Abadi 1999). Technically, our type system is very similar to that of
Abadi (1999) and Focardi and Centenaro (2008). As in (Abadi 1999; Focardi
and Centenaro 2008), our honest agents always encrypt using a confounder in
order to disable implicit information flows that may arise because of unintended
equality of ciphertexts. Thus, in contrast to Smith (2006) (but similar to (Abadi

6

1999; Focardi and Centenaro 2008)) we eschew the use of randomized cryp-
tography and the associated computational/probabilistic considerations in the
non-interference arguments.

4 A concurrent while language

We define the syntax and evaluation semantics for a simple concurrent while
language. Several standard details are relegated to the appendix.

Syntax. We assume disjoint sets of variables, x, y, z, names, a, b, c, k, m, n ref-
erences, p, and thread identifiers, t. We typically use names a, b, c for principals
and k for keys.

Terms, commands and processes are defined as follows.

M,N,L ::= m | unit (Base Val/Term)

| (M,N) (Product Val/Term)

| inl M | inr M (Sum Val/Term)

| {M}N (Cipher Val/Term)

| x (Variable Term)

| p (Reference Term)

|M==N (Equals Term)

| dec M with N (Decrypt Term)

P,Q ::= 0 (Zero Proc)

| P|Q (Parallel Proc)

| (νm)P (New Proc)

| t.Σ/A (Thread Proc)

| begun V (Begun Proc)

| ended V (Ended Proc)

| msg V (Message Proc)

A,B ::= skip (Skip Cmd)

| A; B (Sequence Cmd)

| p := M (Set Cmd)

| while M A (While Cmd)

| begin M (Begin Cmd)

| end M (End Cmd)

| out M (Output Cmd)

| inp (x); A (Input Cmd)

| {|M|}N as (x); A (Encrypt Cmd)

| split M as (x,y); A B
(Split Cmd)

| case M of inl(x1) => A1
inr(x2) => A2 B

(Case Cmd)

A term is closed if it contains no variables and no references. A term is a
value, V , W , if it is closed and contains no equality or decryption operators; that
is, it can be constructed without the last four productions above.

In (Input Cmd) and (Encrypt Cmd), x is bound with scope A. In (Split Cmd),
x and y are bound with scope A. In (Case Cmd), each xi is bound with scope Ai.
In (New Proc), m is bound with scope P.

For any syntax category, let fv return the set of free variables and let fn return
the set of free names. We say that a variable, name or reference is fresh if it does
not occur in the surrounding context, as understood by usage. We identify syntax
up to renaming of bound variables and names and write A{V/x} for the capture
avoiding substitution of V for x in A. We assume similar notation for substitution
of names for names and for substitution over other syntax categories.

7

A process P is well formed if no thread identifier occurs more than once in
P. Henceforth we assume that all processes are well formed.

Evaluation. A store is a map from references to values. Let Σ range over stores.
Write Σ , p:V for store extension. The partial function Σ(p) is defined to return
the image of p in Σ , if it exists.

The evaluation relation on terms (Σ/M ⇓ V) is defined in Figure 9, where
Σ/M ⇓ is defined as Σ/M ⇓V for some V .

The evaluation relation on processes (P→ Q) is defined in Figure 9. The
definition uses contexts, which are defined as follows.

C ::= [–] | (νm)C | C|P | P|C

Let� be the reflexive and transitive closure of (→)∪ (≡), where ≡ is a stan-
dardstructural equivalence (P≡ Q).

Discussion. Values include names, sums, products and ciphers. Terms addition-
ally include destructors for equality tests and decryption. Evaluation of terms is
total and side-effect free. Thus, decryption returns an option type. For example,
encrypting V and then decrypting with the same key results in inlV .

Reference names are not values; they cannot be stored in a reference or
communicated. Thread identifiers are not even terms; they are used only for
bookkeeping.

The command language combines three standard sets of features. The first
four command productions define a standard while language with assignment.

The final three productions in the syntax of commands include side effect-
ing or partial constructors and destructors for the term language. The random
encryption primitive creates a new confounder name, and so is included here.
The destructors for products and sums may fail if the value has the wrong shape.
We include a default case B so that execution does not get stuck.

The middle four productions, familiar from process calculi, provide cor-
respondence assertions and inter-thread communication. The remainder of the
process constructs can be found in the syntax of processes. For simplicity, we
do not include commands to create new names or threads.

The begin and end commands simply accumulate as begun and ended
processes; these have no operational affect, but are included to state expected
invariants.

We use a single global channel, or tuple space, for asynchronous commu-
nication between processes. Output adds a value to the tuple space and input
retrieves one. This communication model is very primitive. In examples, every
message sent will include name for the sender and receiver, and good processes

8

will ignore messages that are not intended for themselves (they do this by sim-
ply doing an out with the message that they inadvertently received). We de-
fine a shorthand for this below. This process language is ill-suited for reasoning
about progress, but is sufficient for reasoning about safety. Our results are robust
and continue to hold in languages with stronger communication primitives. This
communication model gives maximal power to opponents: an opponent may in-
tercept any message and honest agents have no way to detect that a message has
been intercepted.

Notational conventions. We adopt several notational conventions for examples.
We use indentation and parentheses to group terms, commands and processes.
We use tuples other than pairs.

We may write a random encryption command as a value. In this case . . .
{|M|}N . . . is implemented as {|M|}N as (x); . . . x . . . , where x is fresh.

We write true for inl unit and false for inr unit. We write if M then
A1 else A2 B to abbreviate case M inl(x1) => A1inr(x2) => A2 B when
neither xi occurs in Ai.

We use lists, which can be defined using recursive sum and product types.
We write nil for the empty list, and M::N for the list with head M and tail N.

We treat lists of pairs as maps. We write M[N] for the map lookup func-
tion, which returns inl(L) if M is a list containing the pair (N,L), and which
returns false otherwise. We write M[N 7→ L] for the map update function,
which returns a new map which is like M except for the pair with first element
N, whose second element is now L.

We use pattern matching syntax for case constructs and for input. For ex-
ample, inp(m,x);A is shorthand for the following, where y and z do not occur
free in A and p is fresh (ie, does not appear in A or the surrounding context).

p:=true;
while p { inp(y);

split y as (z,x);
if z==m then p:=false; A

else out y;
 out y }

The message is placed back on the network if it is not a pair whose first compo-
nent is the name m.

We drop default cases that do nothing. That is, we write split M as (x,y);
A to abbreviate split M as (x,y); A skip, and similarly for case and if.

We drop uninteresting thread identifiers and empty stores from threads, writ-
ing A|0, as shorthand for (t. /0/A)|0.

9

5 Typing for Non-Interference

In this section we define a type system for secure information flow in the pres-
ence of encryption, and establish a non-interference result for well-typed pro-
cesses.

Value types include secret types and the untrusted type Un. Values at secret
types cannot be sent over the untrusted network directly. However, encryption
yields ciphertext of an untrusted type Un that can be sent over the untrusted
network.

The syntax of secret types, σ , ρ , types, τ , and typing environments, E, is as
follows.

σ ,ρ ::= SecretUn (Secret Untrusted Type)

| Key σ (Key Type)

| σ +ρ (Sum Type)

| σ ×ρ (Product Type)

τ ::= σ | Un (Type)

E ::= /0 | E,x :τ | E,m :τ | E, t.p :τ (Environment)

The type Key σ is used to encrypt plaintext of type σ . The type SecretUn is
used to type terms that are untrusted but may be tainted by the information flow
analysis. Sum and product types may include any secret type.

We only consider environments E where there is at most one occurrence of
each variable, reference, or name. We treat the environment as unordered, and
as a function from variables, names, and reference/thread pairs to types.

The judgement E t̀M : τ states that a term M has type τ at thread t in en-
vironment E. When M contains no references, the thread t is irrelevant; in this
case, we write E `M : τ as a shorthand for (∃t)E t̀ M : τ .

The term typing rules are given in Figure 2. The typing rules can be broadly
classified into two groups: rules for data at secret types τ; and rules for data at
the untrusted type Un.

The rules for data at secret types ensure that if any data at a secret type is
read in a term, then the term’s type is also secret. In particular, decryption with
a secret key yields a sum type, which is in turn a secret, because successful
decryption potentially leaks information about which secret key is used for de-
cryption. Encryption with a secret key of type Key σ requires plaintext of type
σ ×SecretUn, where the SecretUn component is the confounder.

The Un rules are used for handling non-secret data and for typing arbitrary
opponent processes. A term of type Un can only read data from Un sources. The
type Un cannot occur as a component of a secret type. For example, Un×Un is

10

not syntactically valid, so pairing of data at Un results in the type Un. However,
a Un may be coerced to a SecretUn, turning it into a secret. This is important
because the secret type σ for the plaintext in Key σ does not range over Un,
and so data of type Un must be coerced to SecretUn before it is encrypted. This
means that upon decryption, the resulting plaintext will still be at SecretUn, and
can no longer be recovered at Un. Consequently, Un values cannot be encrypted
with a secret key, transmitted across the insecure network, and recovered at Un
after decryption.

This partitioning of Un from secret types is stricter than other spi-calculus
typing systems, such as (Abadi 1999).

We now turn to typing commands. Following the approach of (Volpano et al.
1996) for typing imperative programs, we assign a level to a well-typed com-
mand. Command types γ are as follows.

γ ::= CmdUn | CmdSec (Command Type)

The type CmdUn represents commands that may have written to references of
type Un and CmdSec represents commands that have only written to non-Un
types. The command, store and process typing judgements are given in Figures 3
and 1.

As in (Volpano et al. 1996), the application of a branching construct for
while loops, splitting a pair, or case analysis of a sum to a term of secret type
requires the commands in each branch to be typed at level Sec. This prevents
assignment to references of type Un. In addition, input and output commands
are typed at level Un, so input and output cannot occur in branches that depend
upon secret data.

Our command typing differs from the type system for a multi-threaded im-
perative language in (Smith and Volpano 1998) in that we permit while loops
with secret guards, albeit with a constraint that the loop must always terminate.

The typing rule for begin is more restrictive than required for the results of
this section. It is explained at the beginning of Section 6.

The following lemma guarantees that data used as a secret key is kept par-
titioned from untrusted data that may be known by the opponent. This property
is key to establishing non-interference.

Lemma 3. If E t̀ M : Un and E t̀ N : Key σ then M 6= N. 2

Finally, we note that processes using Un data can always be typechecked,
yielding an opponent typability property.

Lemma 4 (Opponent Typability). If the free variables, names, and reference/thread
pairs of a process P are in the domain of an environment E, and the range of E
is {Un}, then E ` P. 2

11

Non-Interference. We now establish a non-interference result that is in turn used
to establish confidential safety in the sequel.

We handle non-interference in an imperative setting with ciphertext using
an adaptation of the theory of framed bisimulation (Abadi and Gordon 1998).
Framed bisimulation provides a sound technique for reasoning about equiva-
lence of spi processes. The theory of a frame represents ciphertext released to
an opponent, or at Un in our setting. Theories are ordered sequences of triples,
defined by:

θ ::= /0 | θ ,({V}V ′,{W}W ′,σ)

Each component of the theory is required to be ciphertext, arising from encryp-
tion with secret keys. In order for a theory to be well-formed, the left hand
ciphertext may not appear elsewhere in the theory paired with anything other
than the right hand ciphertext (similarly for the right hand ciphertext). This is
formalized as the judgment E;θ ` �. The definition is a mutual induction with
the non-interference relation between terms, defined next.

(EMPTY WF THEORY)

E; /0 ` �
(NON-EMPTY WF THEORY)

{V1}V2 does not occur as LHS in θ

{V ′1}V ′2 does not occur as RHS in θ

E;θ `V1 ∼ V ′1 : σ ×SecretUn E;θ `V1 ∼ V ′2 : Key σ

E;θ ,({V1}V2,{V ′1}V ′2,σ) ` �

The judgement E;θ t̀ M ∼ M′ : τ , defined in Figure 4, states that terms are
related by the non-interference relation ∼ in the environment E and theory θ ,
where both terms have type τ at thread θ . When M and M′ have no references,
the thread θ is irrelevant, and we write E;θ ` M ∼ M′ : τ as a shorthand for
(∃θ)E;θ t̀ M ∼ M′ : τ .

Roughly, the non-interference relation relates either two arbitrary terms of
the same secret type σ , or two terms of Un if they are identical except for ci-
phertext subterms that are encrypted with a secret key. Ciphertext subterms are
required to be declared in the theory θ to ensure consistent usage throughout a
process, without leaking information that can be discovered by an opponent that
compares ciphertexts seen on the insecure network.

Intuitively, stores are related by the non-interference relation if they only
differ in the values at secret types, i.e., references of Un type have identical
values. The rules are defined in Figure 6.

The rules for commands in Figure 5 are similar to those of terms in the
sense that arbitrary well-typed commands with level Sec are related, and can

12

subsequently be coerced to be related at Un. The encryption command does
not reference the theory θ because of its evaluation behavior which generates a
fresh confounder. The remaining rules are for Un commands and require syn-
tactic identity for outermost constructors. The rules for processes in Figure 6 are
similar and straightforward.

Lemma 5 (Opponent Reflexivity). If the free variables, names, and reference/thread
pairs of a process P are in the domain of an environment E, and the range of E
is {Un}, then E; /0 ` P ∼ P. 2

Lemma 6 (Initial Process Reflexivity). If E ` P and P contains no existing ci-
phertext in terms then E; /0 ` P ∼ P. 2

Note that substitution into the theory is not necessary because the theory has
no free variables (only triples with ciphertext values).

Lemma 7 (Substitution). If E;θ ` V ∼ V ′ : τ and E,x :τ;θ ` P ∼ P′ then
E;θ ` P{V/x} ∼ P′{V ′/x}. 2

In proving non-interference we use that evaluation of terms never gets stuck
and always terminates (a property of the operational semantics due to default
branches), and that evaluation of commands of type Sec never gets stuck and
always terminates in skip because while loops at Sec are constrained to termi-
nate.

The non-interference theorem states that evaluation preserves ∼ relation-
ships. Since non-interference on processes permits the stores of each command
to be related by ∼ (as opposed to being syntactically identical) this result es-
tablishes non-interference for processes that differ only in the values of store
references with non-Un type. In particular, this ensures that using differing val-
ues in references of secret key type will not lead to observable differences in
references of Un type.

Theorem 8 (Non-Interference). Suppose dom(E) contains no variables. If

– E;θ ` P ∼ Q, and
– P� (ν~m)P′,

then there exist an environment E ′ such that dom(E ′) contains no variables, a
theory θ ′, a process Q′ and names~n such that

– E,E ′;θ ,θ ′ ` P′ ∼ Q′, and
– Q� (ν~n)Q′. 2

13

6 Confidential safety

In this section we define confidential safety and illustrate its properties via sev-
eral examples.

Write P ∈ C to mean C[0]≡ C′[P] for some C′.

Definition 9 (Safety). A program P is safe if whenever P�C[endedV] then
begunV ∈ C. 2

Define function erase on commands to replace begin and end subcom-
mands by skip. Define function erase(P) on processes to erase commands and
to replace begun and ended subprocesses by 0. So for example, erase(begunm | skip;endm)=
0 | skip;skip.

Let P range over sets (families) of processes. An opponent is a process that
is typed in an environment where all identifiers are assigned type Un.

Definition 10 (Confidential safety). A process family P is confidentially
safe for O if whenever P|O is safe for every P ∈P , then erase(P)|O is safe
for every P ∈P .

A process family P is confidentially safe (CS) if it is confidentially safe for
every begin-free opponent. 2

Intuitively, the definition says that the justification for an opponent end must
not come from the process family. We say that a process is begin-free if it
contains no begin or begun, and similarly for end-free processes. Note that
any begin-free, safe opponent can never reach an end. For end-free process
families, this leads to a simple alternative characterization.

Definition 11. A begin-free opponent O is successful against an end-free
family P if P|O is safe for every P ∈P and P|O� C[ended V] for some
P ∈P and some C and V . 2

Lemma 12. An end-free family P is CS iff it has no successful opponents. 2

Example 13. (1) Any family of processes in which no process performs a
begin is CS; this includes the empty set.

(2) The singleton family begin a is not CS. For example, the opponent
end a is safe when run against begin a, but not when run against erase(begin a)
= skip.

(3) The singleton family begin a | begin b is also not CS, as demonstrated
by the successful opponents end a, end b, and end a | end b.

The first example above is unsurprising since the family claims no confiden-
tiality. The second and third examples are also unsurprising, since these families
produce the same begins in all runs. 2

14

In the definition of CS, the process family allows nondeterminism outside
the system via initial conditions which are unknown to the opponent.

Example 14. The family consisting of the two process begin a and begin b is
CS. This family has no successful opponents. Different begins occur in different
runs, yet the opponent has no way to determine which begin has occurred. If
our language included nondeterministic choice3 the singleton family begin a�
begin b would be CS as well. 2

Confidentiality requires that there be something that the opponent cannot pre-
dict. In addition, it requires that this secret be maintained. In all of the examples
so far, secrecy is trivial, since the processes communicate nothing, and thus the
attacker has no information upon which to base an end. Moving toward more
realistic examples, let us consider processes that announce their begin. This is
similar to communication protocols in which the recipient of a message must be
sent in plaintext.

Example 15. The family comprising the two processes begin a; out a and
begin b; out b is not CS, as evidenced by the successful opponent is in (x);
end x. Assuming nondeterministic choice, the singleton begin a; out a� begin b;
out b is also not CS. 2

In this example, we regain CS by adding encryption with a secret key.

Example 16. The family comprising the two processes (νk) begin a; out {a}k
and (νk) begin b; out {b}k is CS. 2

In this case, encryption with a fresh key ensures that the attacker cannot dis-
tinguish the message containing a from that containing b. Frame bisimulation
(Abadi and Gordon 1998) provides a general framework for reasoning about
equivalence of processes using cryptography.

Although (νk) out {a}k is frame bisimilar to (νk) out {b}k, one must be
careful if messages may be sent more than once. (νk) out {a}k out {a}k is not
frame bisimilar to (νk) out {a}k out {b}k.

Example 17. The following variant family is not CS. The first process is (νk)
begin a; out {a}k out {b}k. The second process is (νk) begin b; out {b}k
out {b}k. A successful opponent need only receive all messages and then check
for equality. If the two messages sent are identical, then the opponent can end a,
otherwise the opponent can end b. 2

3 The standard encoding of A�B is (νm)(msg m | inp (m)A | inp (m)B), where m is fresh.
The encoding uses pattern matching, as described in Section 4. In isolation, this performs
nondeterministic choice, but an opponent can easily disrupt this interpretation. When placed
in parallel with inp (x); out x; out x, the process may perform both A and B.

15

To ensure that terms with different secrets are frame bisimilar, we require con-
founders (Abadi 1999).

In general, CS requires reasoning about information flow. In Section 7 we
present examples using the type system for establishing non-interference de-
scribed in Section 5.

7 Proving confidential safety

To establish that a process family is CS, it is not sufficient to show that the
members of the family are pairwise related by the non-interference relation ∼.
In addition, one must show that the begins performed by the processes differ
using a secret. To simplify the presentation, we fix the location of the secret,
insisting that every typable begin be a pair, whose first component has a secret
type.

We say that two processes have strongly different begins if whenever P�
(ν~m)(begun (m,V)|P′) and Q� (ν~n)(begun (n,W)|Q′) then m /∈ ~m and n /∈
~n and m 6= n. Note that the typing rules guarantee that begun-free processes with
strongly different begins will differ in a secret value.

Corollary 18. A process family P is confidentially safe if

– for every {P,Q} ⊆P we have E; /0 ` P ∼ Q for some E such that dom(E)
that contains no variables, and

– there exists {P,Q} ⊆P such that P and Q contain no begun subprocesses
and P and Q have strongly different begins.

PROOF. Noninterference guarantees that an opponent cannot distinguish mem-
bers of the family. The fact that family members have strongly different begins
ensures that any opponent that is successful against P will fail against Q (and
vica versa). 2

We first consider a simple mail server with one sender and two possible
recipients. The goal is to keep the message recipient confidential.

To improve readablity, we use some notational conventions. We underline
keywords and reserved words, write parameters in italics and write program
variables in slanted font. To make patterns more readable, we use some short-
hand. For requests sent to the server, let “get” represent “inl unit”, and let
“snd x” represent “inr x”. For acknowledgements sent from the server, let “ok”
represent “inl unit”, and let “mail x” represent “inr x”.

Server(s) is defined as follows, where the parameter s is the identity of the
server. The definition uses three references. keys is a map from principal names

16

to encryption keys. msgs is a map from principal names to lists of messages.
ack is the acknowledgement to be sent.

The parameter s is public, as is the variable x . The three references and all
other variables are given secret types. The code sends an acknowledgement to
every request, regardless of the result. The only useful information in an ac-
knowledgement, then, is in the payload, which is encrypted using a secret key.
Server(s) M= msgs := /0;

while true { inp (x,s,ctext);
case keys[x] of

false => skip
inl k => case (dec ctext with k) of

(get,_) => ack := mail msgs[x];
msgs := msgs[x 7→nil]

(snd(r,m),_) => ack := ok;
msgs := msgs[r 7→[(x,m)]]

out (s,x,{|ack|}(keys[x])) }

The loop guard has type Un and thus the loop has type CmdUn. In the body of
the loop, the decryption result is secret, and so the case over its contents must
be typed as CmdSec. The case assigns the secret reference ack, which is then
encrypted and sent out on the net using out. It is crucial both that the assignment
to ack be secret and that the encrypted output be public. The output must occur
outside the case construct. The typing rules allow CmdSec;CmdUn to be treated
as CmdUn. This is sound in our setting. Getting a similar result in a language
such as the spi calculus requires explicit typing rules for continuations.

Define the simple mail system as
System(x) M= (νkas)(νkbs)(νkcs) keys:[(a,kas),(b,kbs),(c,kcs)]/Server(s)

| r :x,m :m/Sender(a,s,kas)
| Receiver(b,s,kbs)
| Receiver(c,s,kcs)

where Sender and Receiver are defined below.
Sender(a,s,kas) is defined as follows, where a is the name of the sender, s

is the name of the server, and kas is a secret key known only to the server and
sender. a and s are public, whereas kas is secret. The secret references m and r
hold the message contents and the name of the recipient.
Sender(a,s,kas)

M= begin (r,a,m);
out (a,s,{|snd(r,m)|}kas);
inp (s,a,ctext);
case (dec ctext of kas) of (ok,_) => skip

(mail _,_) => error

Receiver(r,s,krs) is defined as follows, where r is the name of the receiver,
is the name of the server, and krs is a secret key known only to the server and
receiver. r and s are public, whereas kas is secret.

17

Receiver(r,s,krs)
M= while true { out (r,s,{|get|}krs);

inp (s,r,ctext);
case (dec ctext of krs) of

(ok,_) => error
(mail ms,_) =>

case ms of nil => skip
[(x,m)] => skip //end(r,x,m) }

The receiver can safely perform and end in the case that they receive mail. For
simplicity, we do not track legal effects in our type system, and thus the end
will not type here. Allowing such programs to type is straightforward, however,
following Gordon and Jeffrey (2004).

Proposition 19. The process family {System(b),System(c)} is CS.

PROOF. The result follows from Corollary 18, since the processes have strongly
different begins and System(b)∼ System(c), with r typed as SecretUn. 2

8 Conclusion

We have studied a notion of secrecy that arises naturally in adversarial systems.
Our notion of secrecy aims to capture the idea that the choice of a value from
a globally known collection of values by an honest agent is unguessable by an
adversary, even in the context of a distributed protocol. We called this notion
confidential safety and provided a formal definition using a novel variation of
correspondence assertions. We provided means to establish this property using
a mixture of information flow and frame-bisimulation techniques.

In future work, rather than demanding guaranteed success, we intend to ex-
plore probabilistic settings to formalize the possibilities of the adversary suc-
ceeding with a reasonable chance of success. Such an extension would incor-
porate probabilistic adversaries and enable us to consider computational-style
analysis that incorporate realistic models of randomized cryptography and re-
source bounds on the computation performed by the adversary.

Bibliography

M. Abadi. Secrecy by typing in security protocols. J. ACM, 46(5):749–786,
1999.

M. Abadi and A. D. Gordon. A bisimulation method for cryptographic proto-
cols. Nordic J. of Computing, 5(4):267–303, 1998.

D. E. Denning. A lattice model of secure information flow. Commun. ACM, 19
(5):236–243, 1976.

18

R. Focardi and M. Centenaro. Information flow security of multi-threaded dis-
tributed programs. In PLAS, pages 113–124. ACM, 2008.

C. Fournet, G. L. Guernic, and T. Rezk. A security-preserving compiler for
distributed programs: from information-flow policies to cryptographic mech-
anisms. In CCS, pages 432–441. ACM, 2009.

A. D. Gordon and A. Jeffrey. Authenticity by typing for security protocols.
Journal of Computer Security, 11(4):451–520, 2003a.

A. D. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic
protocols. Journal of Computer Security, 12(3-4):435–483, 2004.

A. D. Gordon and A. Jeffrey. Typing correspondence assertions for communi-
cation protocols. Theor. Comput. Sci., 300(1-3):379–409, 2003b.

I. Gray, J.W. and P. Syverson. A logical approach to multilevel security of
probabilistic systems. pages 164 –176, may 1992.

J. Y. Halpern and K. R. O’Neill. Secrecy in multiagent systems. ACM Trans.
Inf. Syst. Secur., 12(1), 2008.

A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
J. Selected Areas in Communications, 21(1):5–19, Jan. 2003.

G. Smith. Secure information flow with random assignment and encryption. In
FMSE, pages 33–44. ACM, 2006.

G. Smith and D. Volpano. Secure information flow in a multi-threaded impera-
tive language. In POPL, pages 355–364. ACM Press, 1998.

D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for secure flow
analysis. Journal of Computer Security, 4(2/3):167–188, 1996.

J. T. Wittbold and D. M. Johnson. Information flow in nondeterministic systems.
Security and Privacy, IEEE Symposium on, 0:144, 1990. ISSN 1540-7993.
doi: http://doi.ieeecomputersociety.org/10.1109/RISP.1990.63846.

T. Y. C. Woo and S. S. Lam. A framework for distributed authorization. In CCS,
pages 112–118, 1993.

(STORE)

∀p ∈ dom(Σ)∃τ.E(t.p) = τ and E t̀ Σ(p) : τ

E t̀ Σ

(ZERO PRC)

E ` 0

(CMD PRC)

E t̀ Σ E t̀ A : γ

E ` t.Σ/A

(MSG PRC)

E `V : Un
E ` msgV

(BEGUN PRC)

E `V : Un
E ` begunV

(ENDED PRC)

E `V : Un
E ` endedV

(NEW PRC)

E,m :τ ` P
E ` (νm)P

(PAR PRC)

E ` P E ` Q
E ` P|Q

Fig. 1. Store and Process Typing (E t̀ Σ) (E ` P)

19

(COERCE UN TERM)

E t̀ M : Un
E t̀ M : SecretUn

(VAR TERM)

E(x) = τ

E t̀ x : τ

(NAME TERM)

E(m) = τ

E t̀ m : τ

(UNIT TERM)

E t̀ unit : Un

(REF TERM)

E(t.p) = τ

E t̀ p : τ

(LEFT TERM)

E t̀ M : σ

E t̀ inl M : σ +ρ

(RIGHT TERM)

E t̀ M : ρ

E t̀ inr M : σ +ρ

(UN LEFT TERM)

E t̀ M : Un
E t̀ inl M : Un

(UN RIGHT TERM)

E t̀ M : Un
E t̀ inr M : Un

(PRODUCT TERM)

E t̀ M : σ E t̀ N : ρ

E t̀ (M,N) : σ ×ρ

(UN PRODUCT TERM)

E t̀ M : Un E t̀ N : Un
E t̀ (M,N) : Un

(CIPHER TERM)

E t̀ M : σ ×SecretUn E t̀ N : Key σ

E t̀ {M}N : Un

(UN CIPHER TERM)

E t̀ M : Un E t̀ N : Un
E t̀ {M}N : Un

(EQUALS TERM)

E t̀ M : σ E t̀ N : σ

E t̀ M==N : Bool

(UN EQUALS TERM)

E t̀ M : Un E t̀ N : Un
E t̀ M==N : Un

(DECRYPT TERM)

E t̀ M : SecretUn E t̀ N : Key σ

E t̀ dec M with N : (σ ×SecretUn)+SecretUn

(UN DECRYPT TERM)

E t̀ M : Un E t̀ N : Un
E t̀ dec M with N : Un

Fig. 2. Term Typing (E t̀ M : τ)

(COERCE SEC CMD)

E t̀ A : CmdSec
E t̀ A : CmdUn

(SKIP CMD)

E t̀ skip : CmdSec

(SEQUENCE CMD)

E t̀ A : γ E t̀ B : γ

E t̀ A; B : γ

(ASSIGN CMD)

E(t.p) = σ E t̀ M : σ

E t̀ p := M : CmdSec

(UN ASSIGN CMD)

E(t.p) = Un E t̀ M : Un
E t̀ p := M : CmdUn

(WHILE CMD)

E t̀ M : Bool E t̀ A : CmdSec
loop always terminates
E t̀ while M A : CmdSec

(UN WHILE CMD)

E t̀ M : Un E t̀ A : CmdUn
E t̀ while M A : CmdUn

(BEGIN CMD)

E t̀ M : σ E t̀ N : τ

E t̀ begin (M,N) : γ

(END CMD)

E t̀ M : τ

E t̀ end M : γ

(ENCRYPT CMD)

E t̀ M : σ E t̀ N : Key σ E,x :Un t̀ A : γ

E t̀ {|M|}N as (x); A : γ

(UN ENCRYPT CMD)

E t̀ M : Un E t̀ N : Un E,x :Un t̀ A : γ

E t̀ {|M|}N as (x); A : γ

(SPLIT CMD)

E t̀ M : σ ×ρ E,x :σ ,y :ρ t̀ A : CmdSec E t̀ B : CmdSec
E t̀ split M as (x,y); A B : CmdSec
(UN SPLIT CMD)

E t̀ M : Un E,x :Un,y :Un t̀ A : γ E t̀ B : γ

E t̀ split M as (x,y); A B : γ

(CASE CMD)

E t̀ M : σ +ρ E,x1 :σ t̀ A1 : CmdSec E,x2 :ρ t̀ A2 : CmdSec E t̀ B : CmdSec
E t̀ case M of inl(x1) => A1 inr(x2) => A2 B : CmdSec
(UN CASE CMD)

E t̀ M : Un E,x1 :Un t̀ A1 : γ E,x2 :Un t̀ A2 : γ E t̀ B : γ

E t̀ case M of inl(x1) => A1 inr(x2) => A2 B : γ

Fig. 3. Command Typing (E t̀ A : γ)

20

(SEC TERM REL)

E;θ ` � E t̀ M : σ E t̀ M′ : σ

E;θ t̀ M ∼ M′ : σ

(UN VAR REL)

E(x) = Un E;θ ` �
E;θ t̀ x ∼ x : Un

(UN NAME REL)

E(m) = Un E;θ ` �
E;θ t̀ m ∼ m : Un

(UN REF REL)

E(t.p) = Un E;θ ` �
E;θ t̀ p ∼ p : Un

(UN LEFT REL)

E;θ t̀ M ∼ M′ : Un
E;θ t̀ inl M ∼ inl M′ : Un

(UN RIGHT REL)

E;θ t̀ M ∼ M′ : Un
E;θ t̀ inr M ∼ inr M′ : Un

(UN PRODUCT REL)

E;θ t̀ M ∼ M′ : Un E;θ t̀ N ∼ N′ : Un
E;θ t̀ (M,N) ∼ (M′,N′) : Un

(CIPHER REL)

({M}N,{M′}N′,σ) ∈ θ E;θ ` �
E;θ t̀ {M}N ∼ {M′}N′ : Un

(UN CIPHER REL)

E;θ t̀ M ∼ M′ : Un E;θ t̀ N ∼ N′ : Un
E;θ t̀ {M}N ∼ {M′}N′ : Un

(UN EQUALS REL)

E;θ t̀ M ∼ M′ : Un E;θ t̀ N ∼ N′ : Un
E;θ t̀ M==N ∼ M′==N′ : Un

(UN DECRYPT REL)

E;θ t̀ M ∼ M′ : Un E;θ t̀ N ∼ N′ : Un
E;θ t̀ dec M with N ∼ dec M′ with N′ : Un

Fig. 4. Term Equivalence (E;θ t̀ M ∼ M′ : τ)

(SEC REL)

E;θ ` � E t̀ A : CmdSec E t̀ A′ : CmdSec
E;θ t̀ A ∼ A′ : CmdSec

(COERCE SEC REL)

E;θ t̀ A ∼ A′ : CmdSec
E;θ t̀ A ∼ A′ : CmdUn

(UN SEQUENCE REL)

E;θ t̀ A ∼ A′ : CmdUn E;θ t̀ B ∼ B′ : CmdUn
E;θ t̀ A; B ∼ A′; B′ : CmdUn

(UN ASSIGN REL)

E(t.p) = Un E;θ t̀ M ∼ M′ : CmdUn
E;θ t̀ p := M ∼ p := M′ : CmdUn

(UN WHILE REL)

E;θ t̀ M ∼ M′ : Un E;θ t̀ A ∼ A′ : CmdUn
E;θ t̀ while M A ∼ while M′ A′ : CmdUn

(UN BEGIN REL)

E;θ t̀ M ∼ M′ : τ

E;θ t̀ begin M ∼ begin M′ : CmdUn

(UN END REL)

E;θ t̀ M ∼ M′ : τ

E;θ t̀ end M ∼ end M′ : CmdUn
(UN OUT REL)

E;θ t̀ M ∼ M′ : Un
E;θ t̀ out M ∼ out M′ : CmdUn

(UN INP REL)

E,x :Un;θ t̀ A ∼ A′ : CmdUn
E;θ t̀ inp (x); A ∼ inp (x); A′ : CmdUn

(ENCRYPT REL)

E;θ t̀ M ∼ M′ : σ E;θ t̀ N ∼ N′ : Key σ E,x :Un;θ t̀ A ∼ A′ : CmdUn
E;θ t̀ {|M|}N as (x); A ∼ {|M′|}N′ as (x); A′ : CmdUn
(UN ENCRYPT REL)

E;θ t̀ M ∼ M′ : Un E;θ t̀ N ∼ N′ : Un E,x :Un;θ t̀ A ∼ A′ : CmdUn
E;θ t̀ {|M|}N as (x); A ∼ {|M′|}N′ as (x); A′ : CmdUn
(UN SPLIT REL)

E;θ t̀ M ∼ M′ : Un E,x :Un,y :Un;θ t̀ A ∼ A′ : CmdUn E;θ t̀ B ∼ B′ : CmdUn
E;θ t̀ split M as (x,y); A B ∼ split M′ as (x,y); A′ B′) : CmdUn
(UN CASE REL)

E;θ t̀ M ∼ M′ : Un E,x1 :Un;θ t̀ A1 ∼ A′1 : CmdUn E,x2 :Un;θ t̀ A2 ∼ A′2 : CmdUn E;θ t̀ B ∼ B′ : CmdUn
E;θ t̀ case M of inl(x1) => A1 inr(x2) => A2 B ∼ case M′ of inl(x1) => A′1 inr(x2) => A′2 B′ : CmdUn

Fig. 5. Command Equivalence (E;θ t̀ A ∼ A′ : γ)

21

(STORE REL)

dom(Σ) = dom(Σ ′) (∀p ∈ dom(Σ))E;θ t̀ Σ(p) ∼ Σ ′(p) : E(t.p)
E;θ t̀ Σ ∼ Σ ′

(ZERO PRC REL)

E;θ ` 0 ∼ 0

(CMD PRC REL)

E;θ t̀ Σ ∼ Σ ′ E;θ t̀ A ∼ A′ : γ

E;θ ` t.Σ/A ∼ t.Σ ′/A′

(MSG PRC REL)

E;θ `V ∼ V ′ : Un
E;θ ` msgV ∼ msgV ′

(BEGUN PRC REL)

E;θ `V ∼ V ′ : τ

E;θ ` begunV ∼ begunV ′

(ENDED PRC REL)

E;θ `V ∼ V ′ : τ

E;θ ` endedV ∼ endedV ′

(NEW PRC REL)

m /∈ fn(θ) E,m :τ;θ ` P ∼ P′

E;θ ` (νm)P ∼ (νm)P′

(PAR PRC REL)

E;θ ` P ∼ P′ E;θ ` Q ∼ Q′

E;θ ` P|Q ∼ P′|Q′

Fig. 6. Store and Process Equivalence (E;θ t̀ Σ ∼ Σ ′) (E;θ ` P ∼ P′)

Structural equivalence is defined as the smallest equivalence relation over processes that satisfies
the following.

C[t.Σ/skip]≡ C[0] (Par Equiv)

C[P|0]≡ C[P] (Zero Equiv)

C[P|Q]≡ C[Q|P] (Comm Equiv)

C[P|(Q|R)]≡ C[(P|Q)|R] (Trans Equiv)

C[(νm)(P|Q)]≡ C[((νm)P)|Q)] if m /∈ fn(Q) (New Par Equiv)

C[(νm)P]≡ C[P] if m /∈ fn(P) (New Equiv)

C[(νm)(νn)P]≡ C[(νn)(νm)P] (New New Equiv)

Fig. 7. Structural equivalence

Σ/m ⇓ m (Name Eval)

Σ/unit ⇓ unit (Unit Eval)

Σ/(M,N) ⇓ (V,W) if Σ/M ⇓V and Σ/N ⇓W (Product Eval)

Σ/inl M ⇓ inlV if Σ/M ⇓V (Sum Left Eval)

Σ/inr M ⇓ inrV if Σ/M ⇓V (Sum Right Eval)

Σ/{M}N ⇓ {V}W if Σ/M ⇓V and Σ/N ⇓W (Cipher Eval)

Σ/p ⇓ Σ(p) if Σ(p) defined (Ref Eval)

Σ/M==N ⇓ inl unit if Σ/M ⇓V and Σ/N ⇓V (Equals True Eval)

Σ/M==N ⇓ inr unit otherwise if Σ/M ⇓ and Σ/N ⇓ (Equals False Eval)

Σ/dec M with N ⇓ inlV if Σ/M ⇓ {V}W and Σ/N ⇓W (Decrypt True Eval)

Σ/dec M with N ⇓ inr unit otherwise if Σ/M ⇓ and Σ/N ⇓ (Decrypt False Eval)

Fig. 8. Term evaluation (Σ/M ⇓V)

22

C[t.Σ/A; B]→ C′[t.Σ ′/A′; B] if C[t.Σ/A]→ C′[t.Σ ′/A′]
(Sequence Eval)

C[t.Σ/skip; B]→ C[t.Σ/B] (Skip Eval)

C[t.Σ/p := M]→ C[t.Σ , p:V/skip] if Σ/M ⇓V (Set Eval)

C[t.Σ/while M A]→ C[t.Σ/A; while M A] if Σ/M ⇓ inl unit
(While True Eval)

C[t.Σ/while M A]→ C[t.Σ/skip] otherwise if Σ/M ⇓
(While False Eval)

C[t.Σ/begin M]→ C[begunV | t.Σ/skip] if Σ/M ⇓V (Begin Eval)

C[t.Σ/end M]→ C[endedV | t.Σ/skip] if Σ/M ⇓V (End Eval)

C[t.Σ/out M]→ C[msgV | t.Σ/skip] if Σ/M ⇓V
(Output Eval)

C[msgV | t.Σ/inp (x); A]→ C[t.Σ/A{V/x}] (Input Eval)

C[t.Σ/{|M|}N as (x); A]→ C[(νm) t.Σ/A{{(V,m)}W/x}] if Σ/M ⇓V and Σ/N ⇓W and m fresh
(Encrypt Eval)

C[t.Σ/split M as (x,y); A B]→ C[t.Σ/A{V/x}{W/y}] if Σ/M ⇓ (V,W)
(Split Eval)

C[t.Σ/split M as (x,y); A B]→ C[t.Σ/B] otherwise if Σ/M ⇓
(Split Default Eval)

C[t.Σ/case M of inl(x1) => A1 inr(x2) => A2 B]→ C[t.Σ/A1{V/x1}] if Σ/M ⇓ inlV
(Case Left Eval)

C[t.Σ/case M of inl(x1) => A1 inr(x2) => A2 B]→ C[t.Σ/A2{V/x2}] if Σ/M ⇓ inrV
(Case Right Eval)

C[t.Σ/case M of inl(x1) => A1 inr(x2) => A2 B]→ C[t.Σ/B] otherwise if Σ/M ⇓
(Case Default Eval)

Fig. 9. Process Evaluation (P→ Q)

23

