Succour to the Confused Deputy
Types for Capabilities

Radha Jagadeesan, Corin Pitcher, and James Riely

DePaul University

Abstract. The possession of secrets is a recurrent theme in security literature
and practice. We present a refinement type system, based on indexed intuitonist
S4 necessity, for an object calculus with explicit locations (corresponding to prin-
cipals) to control the principals that may possess a secret. Type safety ensures that
if the execution of a well-typed program leads to a configuration with an object p
located at principal a, then a possesses the capability to p. We illustrate the type
system with simple examples drawn from web applications, including an illus-
tration of how Cross-Site Request Forgery (CSRF) vulnerabilities may manifest
themselves as absurd refinements on object declarations during type checking.
A fuller version of the paper is available at fpl.cs.depaul.edu/jriely/papers/
2012-aplas.pdf.

1 Introduction

Many systems depend upon a prescribed usage of secrets to enforce policies that incor-
porate secrecy, integrity, authentication, authorization, and auditing concerns. Neverthe-
less, it may be computationally expensive, or impossible in some adversarial models, to
control the use of secrets directly. For this reason, it is common to control the possession
of secrets instead of their use. However, invariants about the possession of secrets can
fail due to inadequately-specified interfaces or a lack of agreement between software
components. We illustrate some of the issues with two examples.

Object References The Java security manager permits access control checks based
upon permissions assigned to code [19]. This allows control over systems composed
of code from different sources. The java.io.FileOutputStream system class
utilizes access control checks in the following manner:

— The FileOutputStream constructor checks for the relevant file write permis-
sion.

— For performance, FileOutputStream methods do not have access control checks.

The lack of access control checks after construction means that references to in-

stances of FileOutputStream can be used to write a file by untrusted code, if the

reference is made available to the untrusted code. For this reason, sensitive object

references must be confined to trusted code.

Cross-Site Request Forgery and the Confused Deputy Cross-Site Request Forgery
(CSRF) attacks [13] are acknowledged as an instance of the Confused Deputy prob-
lem [22]. A principal is a Confused Deputy if it uses its authority to mistakenly act

2 Radha Jagadeesan, Corin Pitcher, and James Riely

on behalf of an initiating principal. The capability-based solution [22] to the Con-

fused Deputy problem requires the initiating principal to provide a capability to

the Deputy, which the Deputy requires to complete its actions. Since capabilities

authorize access to a resource without further checks, their possession must be con-

strained programmatically. For example, one might ask:

— If the initiating principal hands a capability to the Deputy, to whom can the
Deputy pass the capability?

— Is the Deputy permitted to add its own capabilities to any request from the initi-
ating principal?

In the case of a web browser, acting as a Deputy for both user and JavaScript behav-

ior on web pages, it is permitted to add cookies to outgoing HTTP requests based

on the URLs determined from the web pages. Several browser extensions provide

a more restrictive policy on forwarding cookies for cross-site requests to prevent

misunderstandings in web applications vulnerable to CSRF attacks.

In this paper, we address control over the possession of secrets via the use of logical
specifications embedded in the types of a distributed programming language. Static
analysis is used to verify that programs comply with possession policies, yielding an
upper bound on the principals that may possess a secret.

Approach. The main contribution of this paper is the application of a refinement type
system for a distributed object-oriented language. The type system controls possession
of object references, representing secrets, via specifications in a principal-indexed vari-
ant of intuitionist S4.

We specify possession of secrets using intuitionist S4 logic [6,28]. Instead of a
single modality, we consider modalities indexed by principals. An indexed modality
of the form O,® represents a predicate @ that is permissible for principal a [17,10].
We use a “may possess” predicate mp(s) representing possession of a secret s. Thus
O,mp(s) means that principal a is permitted to possess secret s.

It is key to our approach that indexed modalities allow different principals to have
different possession policies. In particular, O,mp(s) and O,mp(s) are independent state-
ments about whether the different principals a and b may possess s. The underlying
logic then provides relationships between uses of modalities:

— Indexed modalities commute, i.e., (J,0,P) = (0,0,P). This permits a sequence
of indexed modalities to be treated as a multiset.

— The counit (0,P) = P allows a modality to be eliminated. The converse does not
hold in general. Consequently, a right for principal a can be forgotten during logical
deduction, but cannot be manufactured.

— From O,(®; = &,) and O,P;, we can deduce O,Ps; thus, the possessions of a
principal are closed under deduction. From comultiplication, (0,%) = (0,0,9P),
we deduce that the deductions in the scope of a principal a includes the knowledge
of a’s posessions.

— If b is less secure than a and O, @ then we can deduce O, P; so, by this principle of
Principal naturality, more secure principals have access to more secrets.

These relationships yield an indexed intuitionist S4 necessity modality, representing
layers of permission for principals, over the underlying logic. This distinction in the

Succour to the Confused Deputy 3

logic between permissions and who has those permissions, represented by principal-
indexed modalities, greatly reduces the need to quantify over principals during reason-
ing. For example, if a policy states that s2 may be possessed if s1 may be possessed,
written mp(s1) = mp(s2), then the indexed intuitionist S4 necessity modality structure
allows this implication to be lifted to any principal a as (O,mp(s1)) = (O,mp(s2)).

Noninterference theorems [25] justify the use of indexed intuitionist S4 necessity
modalities in this modeling. In that paper, we show that noninterference captures the
idea that there is no information flow between differently indexed modalities. Let ¢ be
a modality free formula. The intuitive idea behind non interference is that if 0,0 is
derivable from some deductively closed set of hypothesis, then it is derivable from a
subset of those hypothesis that are in the scope of the modality indexed by a, i.e. the
formulas of the form O,-. In particular, noninterference implies the unprovability of the
following formulas:

- Ogmp(s1) = Opmp(sl)
= (Ba(mp(s1) = mp(s2)) A Opmp(s1)) = O.mp(s2)

The unprovability of O,mp(s1) = O,mp(s1) shows that the logical reasoning does not
transfer capabilities unrestrictedly between principals. The unprovability of the second
formula (O, (mp(s1) = mp(s2)) A O,mp(sl)) = O,mp(s2) ensures that the acquisi-
tion of a new capability (s1) by another principal (b) does not create new capabilities
for principal a by purely logical reasoning. Thus, non-interference facilitates distribu-
tion and decentralized enforcement of policies in the following sense. The reference
monitor at a location uses logical reasoning to deduce whether a principal has sufficient
capabilities to access the resource available at the location. Noninterference ensures
that this reasoning is not dependent on other principals; so, the reference monitor at a
location can function without knowledge of the principals at other locations.
We present three analyses to establish the utility of our approach:

— Sealed objects (Section 2) that demonstrate modeling of symmetric cryptography [2].

— An object encoding (Section 5) of Hardy’s Confused Deputy [22].

— A web browser and server model to explore browser security policies and Cross-Site
Request Forgery prevention solutions. For space reasons, this example is in the full
version of this paper at fpl.cs.depaul.edu/jriely/papers/2012-aplas.pdf.

Related Work

Capability-based systems. Capabilities have been used to realize security policies in a
variety of systems, e.g., [23,29,5] to name but a few. Distributed object languages such
as E [12] illustrate the “capabilities-as-object references” paradigm where both subjects
and resources are represented uniformly as objects, and classical object-oriented mech-
anisms are used to structure the exchange and invocation of capabilities. This viewpoint
underlies Caja, a safe subset of Javascript. Caja eschews direct references to DOM ob-
jects, instead providing references to wrappers that restrict the capabilities provided on
DOM objects. [26] formalize a notion of capability-safety, show that the subset Cajita
satisfies this property and derive that Cajita programs have inter-component isolation.
Type systems for secrecy, confinement, and access control. In object-oriented lan-
guages, ownership and confinement types (see [11] for a survey of ownership type sys-
tem) aim to delimit the portions of the object reference graph that can have references

4 Radha Jagadeesan, Corin Pitcher, and James Riely

to the objects under consideration. In this paper, we generalize from confinement types
to multi-party secrecy types using refinement types built on intuitionist S4 to express
dependencies.

Abadi [4] describes a type system for controlling secret keys in the spi calculus,
using a binary division of code as either fully trusted or untrusted. This paper explores
an idea stated there: “distinguish various principals within the system, and enable us to
discuss which of these principals have a given piece of data”.

Language-based approaches to access control have long been studied in the setting
of process calculi, though these approaches are not based explicitly in logic; two early
references are [27,24]. In [15], Fournet, Gordon and Maffeis validate authorization poli-
cies statically using a specification language with “expect” assertions in a Datalog-style
language. The says family of principal-indexed modalities is used in logics for rea-
soning about authorization statements made by different principals [18,1].The says
modality has a monadic structure, as exemplified by the unit law (& = a says @). In
our prior work [9] we develop a type system based on authorization logic to capture
provenance in a distributed object calculus. [14] explores the impact of compromised
principals on authorization policies in a distributed setting.

In this paper, we carry out a similar program, albeit in the logical setting of intution-
ist S4, by reusing the infrastructure of refinement types [16] developed in the literature:
policies (and therefore types) may quantify over object references of a given class. Ob-
ject references (and variables) appear in logical formulae in equality predicates and in
the “may-possess” predicate mp(.) described previously. Our semantics and notion of
safety are from [9] and derive, ultimately, from [20] and [21].

2 Sealed Objects

In this section, we introduce the computational model and logic, by way of an example.
The details of the logic can be found in a companion paper [25]; here we summarize
the properties of the logic required to understand the example.

Computation is based on threads that communicate via a shared heap. Threads are
“located” at the principal for which the thread is running; similarly objects are “located”
at the principal that created the object. We use the terms “principal” and “location”
interchangeably. For an object p, the location is available to the programmer via the
pseudo-field p.loc.

Neither threads nor objects can change location; however, object references can be
communicated between threads using shared objects. A method invocation on an object
leads to code execution at the location of the callee object. Thus, when the caller and
callee objects are located at different locations, method invocation leads to a change of
location context.

We conflate opponents, representing them all via L. Threads acting on behalf of
opponents can only instantiate classes with trivial invariants, discussed below. Threads
acting on behalf of non-opponents must obey a global policy. All threads must be well
typed according to typical object-oriented programming rules, e.g., as in Java. Addi-
tionally, our type system controls communication of object references by non-opponent
threads.

Succour to the Confused Deputy 5

Principals are ordered by a partial order with least principal being the Opponent _L.
Principal naturality allows that whenever O & is deducible, then so is O,P, for any
a. In particular, this means that any of the Opponent capabilities are available to all
principals. Thus, our type system does not impose any restrictions more than those of
usual object oriented programming on Opponent programs.

A program is safe if every object reference that is available to a principal at runtime
is permitted by the global specification of permitted capabilities. Our type system en-
sures that safe well-typed programs remain safe under evaluation in the face of arbitrary
opponent processes.

Consider javax.crypto.Sealed0Object. It permits a serializable object to be en-
crypted with a secret key and a symmetric-key cipher. The constructor is responsible
for serialization and encryption. The resulting Sealed0bject contains only ciphertext.
The original object can be recovered by passing the same secret key to getObject. We
model SealedObject as:

class SealedObject {

private final SecretKey key;

private final Object contents;

public SealedObject (SecretKey key, Object contents) {
this.key = key; this.contents = contents;

}

public Object getObject (Section key) {
if (key == this.key) return this.contents;
else return null;

}
}[O, (mp(this.key) = mp(this.contents))]

By controlling possession of the key, one controls access to the contents. This
code uses private fields guarded by object equality rather than encryption. This is suffi-
cient since the type system enforces that the caller of getObject must possess key.

Specifications in our system are divided between a global policy and a set of class
invariants. Intuitively, the combinatation of these policies indicates upper bounds on
the capabilities that can be possessed by a principal. Our safety theorem shows that at
any stage in the evolution of a system, even in the presence of opponents, any principal
only possesses references that are provided for in the policy.

The global policy describes the distribution of initial secrets, and also any potential
relationships between classes. It is informative to consider the following extremal global
policies. Suppose that all class invariants are trivial (i.e., tt).

— The extremely permissive global policy V1. O, mp(n) does not forbid any trans-
mission of objects. Thus, typing under this global policy is essentially the same as
standard object-oriented typing.

— The extremely restrictive global policy tt in the case where there are only two prin-
cipals — Opponent (L) and Secret (T) — forbids all transmission of objects from
T to L. Thus, typing under this global policy is essentially the same as standard
information flow.

The class invariant is intended to describe the private internals of a single class. The
mutable state in our objects is only in the form of private instance variables. The class

6 Radha Jagadeesan, Corin Pitcher, and James Riely

invariant is written at the end of each class, in square brackets. Because we are in a
concurrent setting, we make the simplifying assumption that only final fields may be
mentioned in the class invariant and that constructors may do nothing but assign fields
— we also disallow reassignment of method parameters and local variables. Thus, the
class invariant holds for every object at the point its constructor terminates.

References to SealedObjects can be safely sent anywhere because they do not
leak their contents arbitrarily. The fact that they are allowed anywhere is exemplified
by the global policy (Vo:SealedObject. O mp(o)) — type-sorted quantification is
shorthand for quantification using a “type” predicate on objects. This policy allows
SealedObjects to be given to opponents; however, they can only retrieve the contents
if they have the matching key. More restrictive policies are also possible.

The class invariant of SealedObject indicates that any principal that may possess
this.key may also possess this.contents. Opponents cannot create secrets, and
therefore are restricted to creating instances of “global” classes with invariants (i.e.
“true”) that are trivially satisfied. The invariant of SealedObject is nontrivial, and
therefore opponents may not create instances of the class.

The invariant must be statically justifiable by any code that creates an instance of
the class. For example, consider the code new SealedObject (key, acct), where key
is an instance of SecretKey and acct is an instance of a BankAccount class. We
must establish that every principal that may possess key may also possess acct, writ-
ten O, (mp(key) = mp(acct)). This might be accomplished using a global policy that
allows acct to be possessed anywhere, written O, (mp(acct)). Stricter policies could
be specified pairwise, including O (mp(key) = mp(acct)) as a fact. More flexible ar-
rangements are also possible, for example, using the invariant of the factory class that
creates new keys. In any case, the implication must be deduced from the available policy
in order to instantiate SealedObject. In all non-trivial cases, the initial ability to create
SealedObjects is specified as part of the global policy; indeed, the non-interference
theorems ensure that there is no possible creation of SealedObjects otherwise.

In order to justify safety of the getObject method, we first observe that the caller
to getObject must possess the key, i.e., Oealier(mp(key)). From the SealedObject
class invariant, we know that:

O, (mp(this.key) = mp(this.contents))
From which we can deduce that (note the principal on O):
Ocaller (mp(this.key) = mp(this.contents))

After the reference equality test (key==this.key), the callee knows key = this.key.
Moreover, equality can be lifted to comodalities, and we have O,jier (key = this. key).
From Oc,jier (mp(key)) and O,pier (key = this.key), we deduce Oyl (mp(this. key)).
In conjunction with the implication above, we find that O,y (mp(this. contents)).
This justifies return of this.contents to the caller. In the case where the equality test
fails, we use the property that null may be possessed anywhere, written O (mp(null)).
If the SealedObject class had public fields, then a higher threshold must be met
to instantiate the class. In this case, one would also need to establish that any principal
that may possess the object may also possess the values placed into the public fields.

Succour to the Confused Deputy 7

It is worth noting that other symmetric cryptography schemes can be encoded as
simple variants of SealedObject. For example, using nested conditionals, one can
encode an object requiring n keys to encrypt and k < n keys to decrypt.

3 Language

To formalize the preceding discussion, we first describe a distributed class-based lan-
guage with mutable objects [9]. The operational semantics borrows heavily from [20],
adding distribution [7,8] and classes. We consider typing in Section 4.

Syntax Names for classes (c, d), methods (¢), fields (f, g), variables (x, y, 7), objects
(p, q@) and principals (a, b) are drawn from separate namespaces, as usual. Predicate
variables (¢, B) and predicate constructors () occur in static annotations used during
type-checking.

The reserved words of the language include: the variable name “this”; the principal
“caller”; the class name Object; the predicate constructors “tt”, “f£”, “=", “A”, “V”,
“=” and “0”. We write binary constructors infix.

The language is explicitly typed. Object types (c<($>) include the actual predicate
parameters 6 , which we treat formally as extended values. Value types include objects
(O), principals (Prin) and Unit. Extended value types include predicate types (P), which
are resolved during typechecking. The process type (Proc) has no values.

One may write classes and methods that are generic in the predicate variables,
achieving ML-style polymorphism with respect to effects. Class declarations thus in-
clude the formal predicate parameters &, which may occur in the effect @ (see next
table) associated with instances of the class. In addition to effects, class declarations
include field and method declarations, but omit implicit constructor declarations. Fields
include mutability annotations that are used in the statics. The syntax is as follows'.

Types, Annotations, Class and Method Declarations
I

C,D := c<($> Object Types
T,S == C | Prin | Unit Value Types
PQ == Pred(7) Predicate Types
g, =T | P | Proc Types

U == private final | private mutable | public final

9 :=class €<&:I3><D{ﬁ 77, AY@]
M i=<B:0>S (T MY

Values, Terms, Evaluation Contexts

I .
V.WU.ABG i=x | plaluit|aly] o

! When writing definitions using classes and methods, we sometimes omit irrelevant bits of syn-
tax, e.g., we leave out the parameters to classes when empty, such as writing Object rather
than Object<@>. We identify syntax up to renaming of bound names, and write M {[V/x} for
substitution of V for x in M (and similarly for other categories). We often omit type informa-
tion. We use standard syntactic sugar in place of explicit sequencing. For example, we may
write “y.f.g” to abbreviate “let x=y.f; x.g”.

8 Radha Jagadeesan, Corin Pitcher, and James Riely

M,N,L,®.¥ ==V | V.f| V.loc
if V=WthenMelse N | letx=N;M | NI M
Vfi=W | letx=new c<¢>(V); M | letx=V .4<dp>(W); M
p:C{f=V} | (vp:OOM | alM1?

E =[] | alE1% | letx=E;M | EIN | MI[E | (vp)E

We use the metavariables @, v, @ and ¥ to represent values and terms of predicate
type, and the other metavariables to represent runtime values and terms, with A and
B reserved for values of principal type. Predicates are static annotations used in type-
checking; they play no role in the dynamics. An expectation “expect @” as in [15]
can be coded as “new Proof<®>()”, where class Proof is defined “class Proof<o :
Pred>{}a]”.

The last three constructs in the definition of terms — p: C{f= V}, (vp:C)M, and
a[M1% — are dynamic constructs. These constructs are not allowed in method declara-
tions or initial code.

With the exception of V.loc, N I M, and the terms on the last line of the definition,
the constructs of the language are standard for class-based languages with generics.

The special “field” loc returns the location of an object. Concurrent composition
(Ir) is asymmetric. In N | M, the returned value comes from M; the term N is available
only for side effects. The terms on the last line are are not allowed to appear in dec-
larations, as they model the runtime heap and call stack. These include heap elements
p:C{---} (indicating that p is located at a with actual class C and ﬁelds?= V), name
restriction (vp) (indicating that p is a fresh name) and frames a [M]f (indicating that
M is running under authority of principle a and class ¢, with result available to b). We
write irreducible frames simply as a [M] .

Evaluation is defined using a structural congruence on terms. Let = be the least
congruence on terms that satisfies the following axioms. The rules for concurrent com-
position are from [20]. They capture properties of concurrent composition, including
semi-associativity and the interaction with let. The rules for distribution are inspired by
[8]. The interpretation of a value is independent of the location at which it occurs and
the computation of a frame does not depend upon the location from which the frame
was invoked (eg. a[b [M]]“ :, bIM] d) and ax1omatlze the interaction of let with
distribution (eg. a[let x= N M]¢ =letx=a [N]‘C‘ ;alM1é)

Structural Congruence (M =M’') (where p ¢ fn(M))
I
(MITN)TL=MIT(NITL)

(MITN)TL=(NTM)IL allet x= b[V]“,M]g =alletx=V; me
((vp)N) TM = (vp)(N I M) albIM1)1¢ = bIM1Y
M ((vp)N) = (vp) (M I[N) alN IFM]" =alN1¢ I alM1¢

letx=(LITN); M =L (letx=N; M) al (vpI)N1¥ = (Vp)a[N]“
let x=((vp) N); M = (vp)(letx=N; M) allet x=N; M1¢ =letx=a[N1%;alM]¥
|

The evaluation relation is defined with respect to an arbitrary fixed class table. The
class table is referenced indirectly in the semantics through the lookup functions fields
and body. We refer the reader to the full paper for the routine definitions of these func-
tions.

Succour to the Confused Deputy 9

Term Evaluation (M — M’)
I

let y=new C(V); L — (vp:C) (p:C{f=V} I L{?/s]})

if fields(C) =f and |f] = |V|
blp:C{---}] Tallety=p.£(W); L14 — blp:C{---}] Mallety=b[M'1% 119

if body(C.0) = (¥){M} and |%|=|W| and M’ :M{[“/caller]}{[”/this]}{[w/f]} and C=c<->
blp:C{---}] Fp.loc —blp:C{---}] Iro
blp:C{f=V---3pf=W—blp:C{f=W---3}] [lunit
blp:C{f=V---Hip.f —blp:C{f=V---}31 IV
ifV=VthenMelse N+ M
if V=WthenMelse N> N if V#W
let x=V; M — M{"/x]}
L

M=N—N=M M—M
M- M EM] — E[M']

The new construct creates an object and returns a reference to it. The result is a
concurrent composition: the new object appears on the left, the return value on the
right. Method invocation happens at the callee site, and thus a new frame is introduced
in the consequent b [M’] 4; the result of the method call will be made available to a. In
M’, the distinguished variables caller and this are bound to the calling principal and the
object upon which the method is invoked respectively.

4 Types

The type system controls the distribution of object references via logical policies. We
follow [15], as adapted to distributed OO languages with localities in [9].

By allowing predicates to include open values, we can reason about terms that in-
clude variables, such as x; however, we cannot reason about x.f. Thus we extend the
type system to include equations between terms and values. Allowing any term is un-
sound, however, since our language includes mutability. Thus we identify a subset of
pure terms which do not include mutable features. In addition, we require that evalua-
tion of pure terms must terminate, and therefore we disallow method calls in pure terms.
To shorten some definitions, we define a category of identifiers, 1, which include bound
names and principals.

ni=x|plala
Environments have two types of data: type bindings for names (as usual) and logical
phrases, including equalities and predicates. Define dom(A)={n |n:7 € A}.

Ax=0|AN:T |A,P| A V=M
Predicate lookup (effect(C) = @) is similar to method lookup. Here “®p A @{[5/ alt”
is sugar for “let x= ®p; let y=P{%al; x A y”.

9D > class <t : P>aD{ - Y[®] effect(D{%/al}) = Pp
effect(Object) =true gffoct(c<g>) = dp A @{[6/6&]}

We also define a function (env,(M) = A) to create an environment from a term.

envg(N:C{f=V}) = Oump(n),a=n.loc,Vi=1.f1,...,Va=1.f»

10 Radha Jagadeesan, Corin Pitcher, and James Riely

envg(let x=N; M) = envy(N) envg(N IT M) = envy(N), envy (M)
envy (b [M]‘C’/) =envy(M) envy((vp:CYM)=p:C,envg(M) envy(M) =0, otherwise

The type system is parameterized with respect to a semantic entailment relation
(A EW). In addition to the rules arising from indexed intuitionist necessity modali-
ties, we expect the relation to support domain specific axioms and satisfy the following
properties. Let ¢ stand for substitutions of pure terms M for x.

1. If AE Y then Ao F Wo, for any substitution ¢ from variables to values, or from
principals to principals.

2. IfA,V=V,A'EW¥ then A,A" EV.

3. If A, x: T, x=M,O,mp(x),A’ F ¥ and A, A’ F O,mp(M) then A, A’ E P {M/.].

In examples, we assume that whenever O,mp(n) and 7 : C are deducible, then so is
O.mp(n.f) for every public field of C.

The standard judgements required for the type system are relegated to the full paper,
including subtyping (- .7’ <: 7, well-formed overriding (- <ﬁ - 0>S(T) overrides
D.¢), well-formed types (A - .77), and well-formed environments (A -). The only
noteworthy aspect of these definitions is that the implication of the effects for the same
base class also yields subtyping:

D >classc<d> QEY |G| =0 =V
- e<d> <: <>

The judgments for declarations have the standard format. The judgment for values
include a script a, indicating that the value is well typed at a specific location. The
judgment for terms carries additional structure. In A 12 M : 7 p d, a should be read as
the location of the term, @’ as the location of the caller, 7 as the type of the resulting
value, d as the class from which the code is derived, and p € {Pure, Impure} as a puriry
annotation.

The effect on a class must be a pure term of type Pred. The rule for typing meth-
ods uses a standard well-formed overriding definition. The typing of the method body
occurs in the context of an abstract principal a that is constrained to coincide with the
location of the ambient object. Similarly, the abstract principal caller is constrained to
coincide with the annotation on the typing of the body of the method. In typing the
method body, one can use the logical variables of the class, the method declaration and
assume that the caller was permitted to possess the arguments.

Well-Formed Declarations (A+ 2) (A& .4 in c<d:P><D)
I
A,G:P+D,T A,&:P,a:Prin,this: c<@> a=this.loc,0,mp(this) I2 @ : Pred Pure ¢
AF M inc<d:P>aD fields(D) =ip Tpfp foNf=0 a¢ (M)
A+ class c<@: P><aD{ T f; M}[®)
:OFS,T 8 <8 +S(T) overrides D.l
,X:T,a:Prin, this: c<d>,a=this.loc, O, (mp(this) Amp(X)),
caller: Prin, Oyjiermp (%) 157 ler pg . s pc a¢fmM)
AF<B:0>S ((T) {M?} in c<d: P><D
L

A G:
A G

Succour to the Confused Deputy 11

The judgment for values requires that well-formed objects satisfy their class invari-
ants. In addition, the object value, as well as the objects held in its public fields must be
permitted at the given location.

Well-Formed Values and Terms (Al;V:.9) (A I%/ M: 7 pd) (p == Pure | Impure)
I
A3b:Prin A>3x:T AEOmp(x) A>p:C AFEOmp(p)

Algb:Prin Abgx:T Algp:C A Iz unit : Unit
A>o:Pred(T) arity(y) =T Al ¢:Pred(F) AtV : T

Alza:Pred(Z) Aly:Pred(F) Ak o(V):Pred

—

Ao Algp:C fields(C)=0Tf AV:T +T' <T
A, envy(p:C{f=V}) E effect(C) {P/this]}

A l% p:C{f=‘7} :Procpd

Ao AFC fields(C)=HTf ARV:T' FT'<T

A, envy(x:C{f=V}) E effect(C) {Y/this]} A, x:C envy(x:C{f=V?}) lﬁ/ M:Tpd
A letx=new C(V); M : .7 Impure d

Abo AV :C body(C.l)=<B:0>S(T) AlG¢:0 AW :T' +T'<T{¥§}
A,b:Prin,b=V .locF Oymp(W) b dom(A) A,x:S{%]}, Osmp(x) D%/M: Tpd

A et x=V .l<¢>(W); M : T Impure d

AbFo AV :d<¢> fields(d<¢>)=HTf p; =privatemutable AL W:T' +FT' < T
A V.f;:=W : Unit Impure d

AbFo ALV :c<¢> fields(c<¢>)=H Tf If u; > private then c = d

If u; > mutable then p = Impure

AlG V. fi:Tipd

Abo AGV:T ALW:S AV=WEM:Tpd AYN:T pd

Either F 7' <. T =" or F T < 7' =T"

A ifV=WthenMelseN: 7" pd

right(N) = N’
AN :T Impured) AEN:Tpd A,enva(N)I%N”:TPured
Aenvg(N),x:T,Omp(x)1g M: T pd A,envy(N),x:T,x=N',O,mp(x)l4 M: T pd
Al letx=N; M : T Impured Al letx=N;M: T pd
A,enva(M)lﬁHNzﬂ’pd A,enva(N)I%/Mzﬂpd A,p:C%M:ﬁpd
AENIM:Tpd Al (vp:OOM: T pd
Abo AlgV:T Abo ARV:C kb:Prin AU M:Tpc
ALYV Tpd AE V.ioc:Prinpd AEbIMIY :Tpd
|

The typing rules for terms are designed to establish several invariants, which we
now discuss.
Well located. The rules for terms use the value judgment to ensure that value occur-
rences are available at a given location. The rule for located terms switches principals
as expected.
Purity annotations. Field updates and constructor calls are impure because they mutate
the heap. Field accesss to mutable fields are impure because they rely on mutable state.
Method invocations are impure because they might not terminate. In all other cases,

12 Radha Jagadeesan, Corin Pitcher, and James Riely

the purity annotation is constructed inductively. For example, a let is pure only if both
terms involved are pure. Similarly for concurrent composition and conditionals.
Equations. The rule for pure let terms uses the function right. Intuitively, for any term
N, right(N) returns the rightmost subterm of N after it has been rewritten to a normal
form. Routine details are omitted. Conditionals and let expression on pure terms intro-
duce equations to the environment. Equations are also generated by the rules for heap
objects (n:C{---}) and new.

Caller annotations. The caller annotation is carried inductively through all rules but
two. In the rule for the concurrent composition, only the right term is constrained; the
value of the left term is ignored. The purpose of the caller annotation is revealed by the
rule for values which appear as terms — these are the return values. The rule ensures
that the caller principal is permitted to have a reference to the value.

Checking effects and the mp(-) predicate. The rule for new illustrates the methodology.
(The rule for heap objects enforces similar proof obligations.) In this rule, the hypothe-
sis for typing fields is standard. The lookup of the effect obligation via effect(C) yields
a conjunction of the effects for this class and all its superclasses. The proof obligations
ensure that the created object conforms to the class predicate, and that the reference
and its public fields are permitted to be at the principal at which the object is located.
The facts used to discharge this proof obligation are derived from the environment via
A which accumulates the benefits derivable from the objects declared in the environ-
ment and the equations accumulated in the environment via lets and conditionals. The
parameters to the constructor have to be available at the current location a.

In field update and lookup, the class annotation on the typing judgment is ensured
to be the class of the object if the field is private.

In the rule for “generic” methods, we substitute concrete formulas for the logical
variables being carried in the method definition. Since methods are executed at the
location of the callee, we check to ensure that the location of the callee object possesses
the right to hold references to the objects being passed in as actual parameters.
Conjoining specifications The rule for concurrent composition reflects the ideas from
conjoining specifications of concurrent systems [3] — each component can assume the
information exposed by the other component.

Results. An initial program is one that contains no dynamic constructs.

An opponent class is one whose effect is trivial, i.e., tt. An opponent program is
one that can be typed only allowing the constructor rule for opponent classes. In typing
opponents, we allow the assumption V7). O mp(1). Thus opponents are typed using a
restricted class table, but under a permissive policy. This permissive policy is essentially
the same as standard object-oriented typing.

An opponent can instantiate opponent classes. By Principal Naturality, the oppo-
nent can unconstrainedly pass arguments or return results in method invocations. Thus,
the opponent typability requirement in the following safety result means only that the
opponent program is typable in the sense of classic object-oriented programming.

Recall that a frame is a term of the form a [M1%.

Definition 1. A term M is safe for A if whenever M —* N, N = E[a[N'1%], N contains
no frames and p € fn(N) then A,env, (N) E Omp(p). O

Succour to the Confused Deputy 13

class User {
private final Compiler compiler;
private FileOutputStream fDebug;
void action () {

this.compiler.compile (this.fDebug, ...); // Invoke with current fDebug.
}
void setDebug (FileQutputStream fDebug) {
this.fDebug = fDebug;
}
}[Vo :FileOutputStream.O¢his.10cmp(0) = Otnis. compiler.locmp(0) 1

class Compiler {
private final FileOutputStream fStats;
public void compile (FileOutputStream fDebug, String source) {

this.fStats.write (...); // Write statistics to fStats.
fDebug.write (...); // Write debugging output to fDebug.
}
}

Fig. 1. User and Compiler Code

Proposition 2. Suppose that A M and A,env | (M), (V1.0 mp(n))k N for an initial
opponent program N. Then N || M is safe for A. O

The safety result ensures that well-typed trustworthy programs are safe when combined
with arbitrary (typed but untrustworthy) opponents.

5 The Confused Deputy

In this section, we examine how to typecheck code that addresses the Confused Deputy
problem using object references as capabilities.

Hardy [22] discusses a system with a compiler invoked by a user. The compiler
writes two files, in addition to any generated code. The first is a statistics file. The name
of the statistics file is hardcoded into the compiler, and the compiler is explicitly granted
permission to write to that file. The second is a debugging file, chosen by the user. In
order to write to the user’s choice of debugging file, the compiler must be granted a
broad permission. Hardy describes an occasion when a user selected a sensitive file—
subsequently overwritten by the compiler—and dubs the compiler a Confused Deputy.

Hardy’s solution requires the user to obtain a capability to write to the debugging
file, and to send that capability to the compiler. The compiler can use the user’s capa-
bility to write to the debugging file.

Modeling. We model Hardy’s solution using the code in Figure 1. Following the object
references as capabilities paradigm, the capabilities to write to files are represented by
aFileQutputStream class (as in Java).

14 Radha Jagadeesan, Corin Pitcher, and James Riely

The User class invokes a compiler, passing the FileQutputStream contents of
the fDebug field. The User class allows its £Debug field to be updated via a method
setDebug—we examine the typing consequences below.

The Compiler class must be initialized with a final FileOQutputStream field fStats
at construction. When it compiles, it uses its own £Stats field and the fDebug method
parameter supplied by the caller to write to the statistics and debugging files.

Controlling capabilities. The capability solution improves upon the Confused Deputy
situation, with respect to the principle of least privilege, because the compiler lacks
the broad permission to write to many files in the object/capability solution. Hardy
observes that achieving a comparable system with a traditional access control policy
for the compiler is challenging, e.g., because the compiler may be invoked by different
users with access to different files.

However, the capability solution is not entirely satisfactory. As discussed in the
introduction, an untrustworthy compiler might forward capabilities that it receives to
objects at different locations (principals).

Type assignment. We now consider how to typecheck the code of Figure 1 in a way
that allows the Compiler to receive the fDebug object reference but not forward it to
another location. We omit discussion of the source code given to the compiler, and any
executable output, for reasons of space.

The typing of the compiler’s use of FileOutputStream references is straightfor-
ward. The compiler receives permission to possess the field £Stats implicitly. More
generally, our type system implicitly allows every object to access its own fields. On
the other hand, code that constructs a Compiler instance is responsible for ensur-
ing that the chosen location of the compiler is able to possess £Stats. That is, if
a newly created Compiler instance is referenced via c, then the proof obligation is
Oc.10cmp(c. £Stats). Similarly, our type system implicitly grants the compiler per-
mission to possess the method parameter fDebug, and the obligation lies with the caller
to ensure that the location of the callee may possess fDebug.

Typechecking the body of the compile method does not introduce proof obligations
involving £Stats or £Debug, because those values are passed as this, and the type
system automatically validates (Vo.O, 1,cmp(0)). That is, a location may possess a
reference to any object stored at that location.

The user has a more interesting policy, because it has to permit forwarding of
fDebug to the compiler. The form of the policy hinges upon the mutability of the
fDebug field. For example, if fDebug was a final field, it could be referred to in the
class invariant, e.g., with form:

I:'this .compiler.loc Dthis . locmp(this . fDebug)
which entails:
(Dthis. locmp(this . fDebug)) A (Dthis .compiler.locmp(thiS . fDebug))

To demonstrate a more flexible alternative, we chose to make fDebug non-final (muta-
ble) in the code of Figure 1. Since we can no longer refer to the field in a class invariant,
we instead state that all FileOutputStrean references that may be possessed at the

Succour to the Confused Deputy 15

location of User may also be possessed at the location of the corresponding compiler.
This class invariant is written:

VO : FileOutputStream.Dthisllocmp(o) = Dthis,compilerllocmp(o)

With this class invariant, typechecking justifies forwarding of this.fDebugto this.compiler
using implication together with the facts that: (1) this.loc may possess this.fDebug
(the location of an object implicitly possesses its fields); and (2) this.fDebug is de-
clared to be an instance of FileOQutputStream.

Finally, code that constructs an instance of User has an obligation to show that the
associated Compiler instance is usable with any FileOQutputStream object reference
that the User receives.

6 Conclusion

The control of the possession and transmission of secrets is a recurrent theme in secu-
rity literature and practice. The policies on possession in this paper describe an upper
bound on the principals who can possess a secret. We describe a static analysis to en-
sure programs in a distributed object-oriented language comply with such policies. Our
static analysis takes the form of a refinement type system, based on indexed necessity
modalities from intuitionist S4, for an object calculus with locations. The safety result
ensures that in the configurations that arise from the execution of well-typed programs,
objects are only accessible to principals who are permitted to do so by the system policy,
even in the presence of attackers who try to subvert the policies by inserting malicious
objects and code into the system. Our results suggest that type systems are a practical
tool to debug secrecy errors in the design of user-defined APIs in distributed systems.

Acknowledgements We thank the referees of a previous version of this paper for
useful comments. This research was supported by NSF CCF-0915704.

References

1. Abadi, M.: Access control in a core calculus of dependency. ENTCS. 172, 5-31 (2007)

2. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus. Infor-
mation and Computation 148, 3647 (1999)

3. Abadi, M., Lamport, L.: Conjoining specifications. ACM Trans. Program. Lang. Syst. 17(3),
507-535 (1995)

4. Abadi, M.: Secrecy by typing in security protocols. Journal of the ACM 46, 611-638 (1998)

5. Anderson, M., Pose, R.D., Wallace, C.S.: A password-capability system. Comput. J. 29(1),
1-8 (1986)

6. Bierman, G.M., de Paiva, V.C.V.: On an intuitionistic modal logic. Studia Logica 65 (2001)

7. Cardelli, L.: A language with distributed scope. POPL. pp. 286-297 (1995)

8. Castellani, I.: Process algebras with localities. Handbook of Process Algebra, chap. 15, pp.
945-1045 (2001)

9. Cirillo, A., Jagadeesan, R., Pitcher, C., Riely, J.: TAPIDO: Trust and authorization via prove-
nance and integrity in distributed objects. ESOP. pp. 208-223 (2008)

16

10.

11.

12.
13.

14.

15.

16.

17.

18.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

Radha Jagadeesan, Corin Pitcher, and James Riely

DeYoung, H., , Pfenning, F.: Reasoning about the consequences of authorization policies in
a linear epistemic logic. Tech. Rep. 1213, CMU (2009)

Drossopoulou, S.: Ten years of ownership types or the benefits of putting objects into boxes
(2008), invited talk at BCS. Talk available at http://www.doc.ic.ac.uk/~scd /BCS.pdf

E: Open source distributed capabilities, http://www.erights.org

Feil, R., Nyffenegger, L.: Evolution of cross site request forgery attacks. Journal in Computer
Virology 4(1), 61-71 (Nov 2007)

Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization in distributed
systems. CSF (2007)

Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization policies. ACM
Trans. Program. Lang. Syst. 29(5) (2007)

Freeman, T., Pfenning, F.: Refinement types for ML. pp. 268-277. PLDI 91, ACM, New
York, NY, USA (1991)

Garg, D., Bauer, L., Bowers, K.D., Pfenning, F., Reiter, M.K.: A linear logic of authorization
and knowledge. ESORICS. LNCS, vol. 4189, pp. 297-312 (2006)

Garg, D., Pfenning, F.: Non-interference in constructive authorization logic. CSFW. pp. 283—
296 (2006)

. Gong, L., Mueller, M., Prafullch, H.: Going beyond the sandbox: An overview of the new se-

curity architecture in the Java Development Kit 1.2. USENIX Symposium on Internet Tech-
nologies and Systems. pp. 103—-112 (1997)

Gordon, A.D., Hankin, P.D.: A concurrent object calculus: Reduction and typing. Proceed-
ings HLCL’98 (1998)

Gordon, A.D., Jeffrey, A.: Authenticity by typing for security protocols. Journal of Computer
Security 11(4), 451-520 (2003)

Hardy, N.: The confused deputy: (or why capabilities might have been invented). SIGOPS
Oper. Syst. Rev. 22, 36-38 (October 1988)

Hardy, N.: KeyKOS architecture. SIGOPS Oper. Syst. Rev. 19, 8-25 (October 1985)
Hennessy, M., Riely, J.: Resource access control in systems of mobile agents. Information
and Computation 173, 2002 (1998)

Jagadeesan, R., Pitcher, C., Riely, J.: Non interference for intuitionist necessity. Tech. Rep.
12-003, School of Computing, DePaul University (2012)

Maffeis, S., Mitchell, J.C., Taly, A.: Object capabilities and isolation of untrusted web appli-
cations. IEEE Symposium on Security and Privacy. pp. 125-140 (2010)

Nicola, R.D., Ferrari, G., Pugliese, R.: Klaim: a kernel language for agents interaction and
mobility. IEEE Transactions on Software Engineering 24, 315-330 (1997)

Pfenning, F., Wong, H.C.: On a modal A-calculus for S4. Proceedings of MFOS. New Or-
leans, Louisiana (Mar 1995), ENTCS, Volume 1, Elsevier

Shapiro, J.S., Smith, J.M., Farber, D.J.: EROS: a fast capability system. SIGOPS Oper. Syst.
Rev. 33, 170-185 (Dec 1999)

