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Models of discourse structure and processing are crucial for constructing computational systems

capable of interpreting and generating natural language. Research on discourse focuses on two

fundamental questions within computational linguistics and artificial intelligence. First, what

information is contained in extended sequences of utterances that goes beyond the meaning of the

individual utterances themselves? Second, how does the context in which an utterance is used

affect the meaning of the individual utterances, or parts of them?

Discourse research in computational linguistics and artificial intelligence encompasses work on

spoken and written discourse, monologues as well as dialogue (both spoken and keyboarded). The

questions that discourse research attempts to answer are relevant to all combinations of these

features. The juxtaposition of individual clauses may imply more than the meaning of the clauses

themselves, whether or not the clauses were contributed by the same speaker (writer).1 Likewise,

the context created by prior utterances affects the current one regardless of which participant

uttered it.

In this chapter, we will first provide an overview of types of discourse structure and illustrate

these with examples. We will then describe the influential theories that account for one or more

types of structure. We then show how these theories are used to address specific discourse pro-

cessing phenomena in computational systems. Finally, we discuss the use of discourse processing

techniques in a range of modern language technology applications.

Overview of Discourse Structure

Researchers in computational linguistics have long argued that coherent discourse has structure,

and that recognising the structure is a crucial component of comprehending the discourse (Grosz

& Sidner, 1986; Hobbs, 1993; Moore & Pollack, 1992; Stone & Webber, 1998). Interpreting

referring expressions (e.g., pronouns and definite descriptions), identifying the temporal order of

events (e.g., the default relationship between the falling and pushing events in “Max fell. John

pushed him.”), and recognizing the plans and goals of our interlocutors all require knowledge of

discourse structure (Grosz & Sidner, 1986; Kehler, 1994b; Lascarides & Asher, 1993; Litman &

Allen, 1987). Moreover, early research in language generation showed that producing natural-

sounding multisentential texts required the ability to select and organise content according to

rules governing discourse structure and coherence (Hovy, 1988b; McKeown, 1985; Moore & Paris,

1993).
1Henceforth, we will use speaker and hearer to indicate the producer and interpreter of discourse, respectively,

whether it is spoken or written. Where the distinction between spoken and written discourse is important, we will

be more explicit.
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Although there is still considerable debate about the exact nature of discourse structure and

how it is recognized, there is a growing consensus among researchers in computational linguistics

that at least three types of structure are needed in computational models of discourse processing

(Grosz & Sidner, 1986; Hobbs, 1993; Moore & Pollack, 1992). These are described below.

Intentional structure describes the roles that utterances play in the speaker’s communicative

plan to achieve desired effects on the hearer’s mental state or the conversational record (Lewis,

1979; Thomason, 1990). Intentions encode what the speaker was trying to accomplish with a given

portion of discourse. Many have argued that the coherence of discourse derives from the intentions

of speakers, and that understanding depends on recognition of those intentions, e.g., (Grice, 1957;

Grosz & Sidner, 1986). Research in response generation shows that in order to participate in a

dialogue, agents must have a representation of the intentional structure of the utterances they

produce. Intentional structure is crucial for responding effectively to questions that address a

previous utterance; without a record of what an utterance was intended to achieve, it is impossible

to elaborate or clarify that utterance (Moore, 1995; Young, Moore, & Pollack, 1994a). Moreover,

speaker intentions are an important factor in generating nominal expressions (Appelt, 1985; Green,

Carenini, & Moore, 1998) and in selecting appropriate lexical items, including discourse cues (e.g.

“because”, “thus”) (Moser & Moore, 1995; Webber, Knott, Stone, & Joshi, 1999) and scalar terms

like (e.g. “difficult”, “easy”) (Elhadad, 1995).

Informational structure consists of the semantic relationships between the information con-

veyed by successive utterances (Moore & Pollack, 1992). Causal relations are a typical example

of informational structure, and psycholigists working in reading comprehension have shown that

these relations are inferred during reading (Gernsbacher, 1990; Graesser, Singer, & Trabasso, 1994;

Singer, Revlin, & Halldorson, 1992). In addition, several researchers identified types of text whose

organization follows the inherent structure of the subject matter being communicated, e.g., the

structure of the domain plan being discussed (Grosz, 1974; Linde & Goguen, 1978), or the spatial

(Sibun, 1992; Linde, 1974), familial (Sibun, 1992) or causal relationships (Paris, 1988; Suthers,

1991) between the objects or events being described, or the states and events being narrated

(Lehnert, 1981). Several systems that generate coherent texts based on domain or informational

structure have been constructed (Sibun, 1992; Paris, 1988; Suthers, 1991)

Attentional structure as defined by Grosz and Sidner (1986) contains information about the

objects, properties, relations, and discourse intentions that are most salient at any given point in

the discourse. In discourse, humans “focus” or “center” their attention on a small set of entities

and attention shifts to new entities in predictable ways. Natural language understanding systems

must track attentional shifts in order to resolve anaphoric expressions (Grosz, 1977; Gordon, Grosz,

4



& Gilliom, 1993; Sidner, 1979) and understand ellipsis (Carberry, 1983; Kehler, 1994a). Natural

language generation systems track focus of attention as the discourse as a whole progresses as well

as during the construction of individual responses in order to influence choices on what to say

next (Kibble, 1999; McKeown, 1985; McCoy & Cheng, 1990), to determine when to pronominalise

(Elhadad, 1992), to make choices in syntactic form (e.g., active vs. passive) (McKeown, 1985;

Elhadad, 1992; Mittal, Moore, Carenini, & Roth, 1998), to appropriately mark changes in topic

(Cawsey, 1993), and generate elliptical utterances.

In addition to these three primary types of discourse structure, the literature on discourse in

computational linguistics has discussed two additional types of structure. One of them, rhetorical

structure, has had considerable impact on computational work in natural language generation.

Information structure consists of two dimensions: (1) the contrast a speaker makes between

the part of an utterance that connects it to the rest of the discourse (the theme), and the part

of an utterance that contributes new information on that theme (the rheme); and (2) what the

speaker takes to be in contrast with things a hearer is or can be attending to. Information

structure can be conveyed by syntactic, prosodic, or mophological means. Steedman argues that

information structure is the component of linguistic structure (or grammar) that links intentional

and attentional structure to syntax and prosody, via a compositional semantics for notions like

theme (or topic) and rheme (or comment). Recently, a number of theories of information structure

including (Vallduvi, 1990) and (Steedman, 1991) have brought hitherto unformalised notions like

theme, rheme and focus within the compositional semantics that forms a part of formal grammar

(Steedman, 2000, 2001).

Rhetorical structure is used by many researchers in computational linguistics to explain

a wide range of discourse phenomena. There have been several proposals defining the set of

rhetorical (or discourse or coherence) relations that can hold between adjacent discourse elements,

and have attempted to explain the inferences that arise when a particular relation holds between

two discourse entities, even if that relation is not explicitly signalled in the text. Researchers in

interpretation have argued that recognizing these relationships is crucial for explaining discourse

coherence, resolving anaphora, and computing conversational implicature (Hobbs, 1983; Mann

& Thompson, 1988; Lascarides & Asher, 1993). Researchers in generation have shown that it

is crucial that a system recognise the additional inferences that will conveyed by the sequence of

clauses they generate, because these additional inferences may be the source of problems if the user

does not understand or accept the system’s utterance. Moreover, in order to implement generation

systems capable of synthesizing coherent multi-sentential texts, researchers identified patterns of

such relations that chararacterise the structure of texts that achieve given discourse purposes,
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and many text generation systems have used these patterns to construct coherent monologic texts

to achieve a variety of discourse purposes (Hovy, 1991; McKeown, 1985; Mellish, O’Donnell,

Oberlander, & Knott, 1998; Mittal et al., 1998; Moore & Paris, 1993; Rösner & Stede, 1992; Scott

& de Souza, 1990).2

Much of the remaining debate concerning discourse structure within computational linguistics

centers around which of the these structures are primary and which are parasitic, what role the

structures play in different discourse interpretation and generation tasks, and whether their im-

portance or function varies with the discourse genre under consideration. For example, a major

result of early work in discourse was the determination that discourses divide into segments much

like sentences divide into phrases. Each utterance of a discourse either contributes to the pre-

ceding utterances, or initiates a new unit of meaning that subsequent utterances may augment.

The usage of a wide range of lexicogrammatical devices correlate with discourse structure, and

the meaning of a segment encompasses more than the meaning of the individual parts. In addi-

tion, recent studies show significant agreement among segmentations performed by naive subjects

(Passonneau & Litman, 1997). Discourse theories differ about the factors they consider central

to explaining this segmentation and the way in which utterances in a segment convey more than

the sum of the parts. Grosz and Sidner (1986) argue that intentions are the primary determiners

of discourse segmentation, and that linguistic structure (i.e., segment embedding) and attentional

structure (i.e., global focus) are dictated by relations between intentions. Polanyi (1988, p. 602)

takes an opposing view and claims that hierarchical structure “emerges from the structural and

semantic relationships obtaining among the linguistic units which speakers use to build up their

discourses”. In Hobbs (1985), segmental structure is an artefact of binary coherence relations

(e.g., background, explanation, elaboration) between a current utterance and the preceding dis-

course. Despite these different views, there is general agreement concerning the implications of

segmentation for language processing. For example, segment boundaries must be detected in order

to resolve anaphoric expressions (Asher, 1993; Grosz & Sidner, 1986; Hobbs, 1979; Passonneau

& Litman, 1997). Moreover, several studies have found prosodic as well as textual correlations

with segment boundaries in spoken language (Grosz & Hirschberg, 1992; Hirschberg, Nakatini,

& Grosz, 1995; Nakatani, 1997; Ostendorf & Swerts, 1995), and appropriate usage of these into-

national indicators can be used to improve the quality of speech synthesis (Davis & Hirschberg,

1988).

In the sections that follow, we will further examine the theories of discourse structure and
2Moore and Pollack (1992) argue that the rhetorical relations used in these systems typically conflate informa-

tional and intentional considerations, and thus do not represent a fourth type of structure.
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processing that have had significant impact on computational models of discourse phenomena. A

comprehensive survey of discourse structure for natural language understanding appears in (Grosz,

Pollack, & Sidner, 1989), and therefore we will focus on discourse generation and dialogue in this

chapter. We will then review the role that discourse structure and its processing plays in a variety

of current natural language applications. The survey in (Grosz et al., 1989) focuses largely on the

knowledge-intensive techniques that were prevalant in the late eighties. Here, we will put more

emphasis on statistical and shallow processing approaches that enable discourse information to be

used in a wide range of today’s natural language technologies.

Computational Theories of Discourse Structure and

Semantics

Discourse Representation Theory

Discourse Representation Theory (DRT) is a formal semantic model of the processing of text in

context which has applications in discourse understanding. DRT was originally formulated in

(Kamp, 1981) and further developed in (Kamp & Reyle, 1993), with a concise technical summary

in (van Eijck & Kamp, 1997). DRT grew out of Montague’s model-theoretic semantics (Thomason,

1974) which represents the meanings of utterances as logical forms and supports the calculation of

the truth conditions of an utterance. DRT addresses a number of difficulties in text understanding

(e.g. anaphora resolution) which act at the level of the discourse.

This section gives a brief overview of the philosophy behind DRT, the types of structures and

rules that DRT uses, and the particular problems that it addresses. We also describe some of the

limitations of the “standard” DRT theory.

Philosophical foundations of DRT. As mentioned above, DRT is concerned with ascer-

taining the semantic truth conditions of a discourse. The semantic aspects of a discourse are

related to the meaning of the discourse, but not related to the particular situation (including

time, location, common ground, etc) in which the discourse is uttered. The advantage to this

approach from the logical point of view is that the semantic representation for the discourse can

be automatically (more or less) built up from the contents (words) and structure of the discourse

alone, without bringing in information about the external context of the utterance. Once con-

structed, it can be compared with a logical representation of some world (a model in DRT terms)

to determine whether the discourse is true with respect to that model.

DRT structures. The standard representation format in DRT, known as a discourse repre-

sentation structure (DRS), consists of a box with two parts as shown in Figure 1. The top part of
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the box lists the discourse referents, which act as variables that can be bound to different entities

in the world. The bottom section of the DRS lists the propositions that are claimed to be true of

those referents in the described situation. Figure 1 gives the DRS of the sentence “John sleeps.”

The representation can be read as “There is an individual who is named John, and of whom the

sleep predicate is true. This is equivalent to the logical expression: ∃(x) : John(x) ∧ sleep(x).

[Figure 1 about here.]

DRT rules and processing. To derive a structure like the one shown above, DRT uses a set

of standard context-free grammar rules, and a set of semantic interpretation rules that are based

the syntactic structure of the input sentence. Figure 2 shows a simple DRT rule for processing

proper nouns. The left hand side shows a segment of the syntactic tree which must be matched,

and the right hand side shows the result of applying the rule, including adding propositions to

the DRS, and changing the parse tree. This rule applies to the structure on the left in Figure 3,

which shows the parse tree of the example sentence, “John sleeps,” in a DRS. The rule produces

the representation on the right in Figure 3 by deleting part of the parse tree, inserting a variable

in its place, and adding a proposition to the DRS.

[Figure 2 about here.]

Next, a similar rule is applied which reduces the verb phrase to a proposition, sleep which

is true of a new discourse referent, y. Then, the sentence rule deletes the remaining syntactic

structure and equates the subject discourse referent with the object referent, x = y. Finally, x is

substituted for y in the sleep proposition, producing the structure shown in Figure 1. The next

sentence in a discourse is processed by adding its parse tree to the box, and then applying the

semantic transformation rules to it.

[Figure 3 about here.]

The construction of a complete DRS enables the calculation of its truth value with respect to

a model. A model is a formal representation of the state of the world. Figure 4 shows a model

which is distinguished from a DRS by its double box. The elements in the top section of a model

are interpreted differently than those in a DRS. In a DRS, they are variables which can bind to

entities in the world. In a model, each referent indexes a particular entity in the world.

In this example, the DRS is true with respect to the model because there is a consistent

mapping (x = b) between the discourse referents in the DRS and the individuals in the model,

and the model contains all of the propositions which are in the DRS. Because the model is taken
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to be a “snapshot” of the world, it may contain many additional propositions which are not in the

DRS without affecting the truth conditions of the DRS. Those which are not relevant to the DRS

are simply ignored.

[Figure 4 about here.]

Uses of DRT. The major advantages of DRT are that it provides a simple, structure-based

procedure for converting a syntactic representation of a sentence into a semantic one, and that

that semantic representation can be mechanically compared to a representation of the world to

compute the truth-conditional status of the text. DRT also addresses (at least partially) the

difficult discourse problems of anaphora resolution, quantifier scoping, and presupposition.

When a pronoun is processed in DRT, the semantic interpretation rule adds an “instruction”

of the form x =?, which is read as, “find some discourse referent x in the discourse context. The

referent must satisfy three constraints: the consistency constraint, the structural constraint, and

the knowledge constraint. The consistency constraint specifies that the new mapping of a discourse

referent must not introduce a contradiction into the DRS. In practice, this ensures that number

and gender restrictions are applied. The structural constraint limits where in a complex DRS a

coreferent can be found. In practice, this is similar to the constraints proposed in Centering Theory

(Grosz, Joshi, & Weinstein, 1995). Finally, the knowledge constraint is intended to prohibit the

inclusion of any coreference which would violate world knowledge or common sense. Unfortunately,

the scope of this constraint makes a complete implementation of it impossible.

DRT is the foundation of recent research in psycholinguistics which attempts to model human

judgements of the acceptability of a range of anaphors. Gordon and Hendrick (1997) collected

ratings from humans of the acceptability of various combinations of names, quantified, definite

and indefinite noun phrases, and pronouns. Their results showed that human judgements did

not support some of the constraints on coreference acceptability that came from classical binding

theory (Chomsky, 1981). Gordon and Hendrick (1998) claimed that a model of coreference based

on DRT corresponds better with human acceptability judgements.

Of course, pronominal coreference is not the only type of anaphora. Asher (1993) addresses

other types of anaphora, as described below.

[Figure 5 about here.]

In sentences like (1), there is a structural ambiguity concerning the scope of the quantifier,

“every”. Specifically, there are two readings of the sentence. One in which each farmer owns a
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different donkey, and one in which all the farmers collectively own a particular donkey. When

processing such a sentence with DRT, there is a choice of processing the quantifier before or after

processing the indefinite noun phrase. The two orders of rule application produce the two different

structures shown in Figure 5.

(1) Every farmer owns a donkey.

Both of these DRSs include substructures which represent the quantifier as a conditional. They

are read as, “if the conditions on the left hold, the conditions on the right must also hold.” In the

DRS on the left, the donkey is within the scope of the conditional. Thus, for every farmer, there

should be a (potentially different) donkey. In the DRS on the right, the referent for the donkey

is global, and outside the scope of the conditional. Thus, there is one donkey that every farmer

owns. Although this example applies only within a sentence, it suggests how hierarchical discourse

relations can be represented by variants of DRT, as described below.

DRT’s treatment of presupposition in discourse is related to the way it handles quantifier

scoping. In particular utterances, such as (2a), certain propositions are said to project out of the

sentence, that is, they are held to be true whether or not the premise of the conditional is. In

(2a), there is a presupposition (at least for rhetorical purposes) that John has a dog, and that

presupposition is true whether or not she has fleas. For constructs like “John’s dog”, DRT creates

discourse referents at the global level of the representation which correspond to John and his dog.

(2) a. If John’s dog has fleas, she scratches them.

b. She wears a flea collar though.

b′. They jump around a lot.

The DRS for (2a) is shown in Figure 5 and is similar in structure to the one shown on the left in

Figure 5. Here, the discourse referent for the fleas is located within the internal left-hand box for

the conditional structure. Thus, a follow-up sentence like (2b) provides no difficulty for anaphora

resolution. But a sentence like (2b′) is not acceptable; the referent for the fleas is inaccessible

because it is embedded within a constituent DRS (Asher & Lascarides, 1999).

[Figure 6 about here.]

Limitations. Although it addresses the issues described above, DRT is somewhat limited as

theory of discourse. Most of its mechanisms address within-sentence processing. The addition

of new sentences to a DRS is done in a very simple way. The syntactic structure for the new
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sentence is added to the current DRS, and the semantic construction rules convert it to additional

conditions. There is no accounting for the relationships that apply between utterances.

One direction of current research is on the tense and aspect of verbs in sentences (Kamp &

Reyle, 1993). This involves the addition of a discourse referent that refers to an event. A sentence

like “John slept” is represented with the predicate sleep(t1, j), with the additional information

t1 < n, where n refers to the current time (now). Thus, this variant of DRT allows the explicit

representation of the temporal relationships between sentences in a discourse.

Another difficulty for standard DRT is anaphora with plural referents. There is no simple map-

ping between pronouns and plural referents. Instead, additional inference is required to produce

appropriate referents. In (3), the pronoun “They” refers not to any particular student, but to the

entire set of students. To address this problem, Kamp and Reyle (1993) have extended DRT to

deal with conjunctions and quantifiers like “most”.

(3) Every student passed the exam. They were very happy.

In discourses like (4), the prounoun, “it”, does not refer to an entity but to the fact that John

failed the exam. Asher (1993) takes this as a starting point for his research which deals with

reference to abstract objects. The current formalization of this research is Segmented DRT which

includes rhetorical relations between sentences, and is described below.

(4) John failed the exam, and it didn’t make him happy.

Grosz and Sidner Theory

In Grosz and Sidner’s (1986) theory of discourse (henceforth G&S), discourse structure is a compos-

ite of three interrelated structures which they call: intentional, attentional and linguistic structure.

In G&S, intentional structure consists of discourse segment purposes and the relationships between

them. Discourse segment purposes reflect the communicative intentions of the discourse partici-

pants and lead to the utterances produced. Discourse segment purposes are thus an extension of

the intentions in Grice’s (1957) theory of utterance meaning: they achieve their desired effect in

part by being recognized.

In G&S, a discourse segment is a group of utterances that function together to realize a

speaker’s purpose. A segment DSn originates with the speaker’s intention: it is exactly those

utterances that the speaker produces in order to satisfy a communicative intention In in the

intentional structure. In other words, In is the discourse segment purpose (DSP) of DSn. The

discourse structure is a hierarchy of segments originating with the structure of the speaker’s
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intentions when producing the discourse. G&S defines two relations that may hold among DSPs.

A purpose Im dominates another purpose In when fulfilling In is part of fulfilling Im. A purpose

In satisfaction-precedes another purpose Im when In must be satisfied first. The dominance and

satisfaction-precedence relations impose a hierarchical structure on the speaker’s intentions and

this in turn determines the linguistic structure of discourse. DSn is embedded in another segment

DSm just when the purposes of the two segments are in the dominance relation, i.e., Im dominates

In. The dominance relation among intentions fully determines the embeddedness relations of the

discourse segments that realize them.

As an example, consider the discourse shown in Figure 7, adapted from Mann and Thompson

(1988). The whole discourse is a segment, DS0, that attempts to realize I0, the speaker’s intention

for the hearer to adopt the intention of attending the party. As part of her plan to achieve I0,

the speaker generates I1, the intention for the hearer to adopt the belief that there will be lots of

good food. Then, as part of her plan to achieve I1, the speaker generates I2, the intention that

the hearer believe that a mutually known good caterer is providing the food. As shown on the left

in Figure 7, I0 dominates I1, which in turn dominates I2. Due to these dominance relations, the

discourse segment that realizes I2 is embedded in the discourse segment for I1, which is in turn

embedded within the discourse segment for I0, as shown on the right in the figure. The dominance

of intentions directly determines embedding of segments.

[Figure 7 about here.]

One of the most important aspects of the work of G&S is the investigation of the relation

between intentional and attentional structure in discourse. They model attentional state using a

stack of focus spaces and a set of transition rules for pushing and popping spaces from the stack.

Each focus space is associated with a discourse segment, and contains the entities that are salient

either because they have been mentioned explicitly in the segment or because they become salient

in the process of comprehending the utterances in the segment. The DSP is also included in

the focus space associated with a segment. G&S argue that attentional structure is parasitic on

intentional structure, more precisely the realtionships among DSPs determine pushes and pops of

focus spaces.

G&S provides a model of the use of referring expressions, and aids in determining both the

range of possible referents that an initial description makes available, and in choosing among

the possibilities to determine the entity(ies) to which a pronoun or definite description refers.

Determining how referring expressions interact with attentional state is crucial for solving these

problems. A detailed account of the G&S approach to anaphora resolution is beyond the scope of
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this paper; instead we provide an example. Further detail can be found in (Grosz & Sidner, 1986;

Grosz et al., 1989).

[Figure 8 about here.]

Consider the example discourse in Figure 8. G&S would break this discourse into two segments,

DS0 and DS1 with the embedding shown in the figure. This structure accounts for why the

utterances in 1-2 and 10-14 are more closely related to one another than to those in the intervening

segment DS1. In addition, G&S dictates that the focus space relating to the embedded segment

DS1 would be popped off the stack by the time the definite noun phrase “the tent” in 14 is

interpreted, and thus explains how participant A can determine that B is referring back to the

tent introduced in utterance 2 and not the tent introduced in utterance 7. Lexicogrammatical

clues to this segmentation are given by “the last trip” and “this trip”.

As we have seen, DRT also deals with anaphora resolution, but DRT does not properly con-

strain the range of possible referents and therefore both tents would be accessible. DRT overgen-

erates antecedents because it does not consider intention or the relation of intention to discourse

segmentation and attentional structure, and therefore cannot rule out entities introduced in utter-

ances 3-9. Also note that a full account of pronoun resolution requires a more fine-grained model of

attentional state than that provided by attentional structure. An account of that phenomena that

is compatible with G&S is provided by Centering Theory, which is described in detail in (Grosz

et al., 1995). Finally, it has been recognized that there are significant difficulties in recognizing

the speaker’s discourse plan. These are thoroughly described in (Grosz et al., 1989).

Rhetorical Structure Theory

As we have seen, in Grosz and Sidner’s theory, speaker intentions and the relations of dominance

and satisfaction precendence that may obtain among them are the primary determiners of discourse

structure. Other researchers, such as Hobbs (1983, 1985) downplay the importance of intention,

arguing that the role of the speaker’s intention is indirect, and that there are many discourse

problems for which the speaker’s intentions are uninformative.

The relation-based theories attempt to explain how coherent discourse conveys more than the

sum of its parts. They aim to provide a more detailed account of the inferences that hearers can

be expected to make when interpreting a series of utterances, based on the assumption that they

form a coherent discourse.

Hobbs (1983, 1979, 1985) characterizes coherence in terms of a set of binary coherence rela-

tions between a current utterance and the preceding discourse. He identified four reasons why a
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speaker breaks a discourse into more than one clause and classified the relations accordingly. For

example, if a speaker needs to connect new information with what is already known by the hearer,

the speaker chooses one of the linkage relations, such as BACKGROUND or EXPLANATION. If a

speaker wishes to move between specific and general statements, he or she must employ one of the

expansion relations, such as ELABORATION or GENERALIZATION. According to Hobbs, how the

speaker chooses to continue a discourse is equivalent to deciding which relation to employ. From

the hearer’s perspective, understanding why the speaker continued as he or she did is equivalent

to determining what relation was used.

Hobbs originally proposed coherence relations as a way of solving some of the problems in

interpreting discourse, e.g., anaphora resolution (Hobbs, 1979). He defines coherence relations in

terms of inferences that can be drawn from the propositions asserted in the items being related.

For example, (Hobbs, 1985, p. 25) defines ELABORATION as follows:

ELABORATION: S1 is an ELABORATION of S0 if the hearer can infer

the same proposition P from the assertions of S0 and S1.

Here S1 represents the current clause or larger segment of discourse, and S0 an immediately

preceding segment. S1 usually adds crucial information, but this is not part of the definition,

since Hobbs wishes to include pure repetitions under ELABORATION.

Hobbs’ theory of coherence is attractive because it relates coherence relations to the functions

that speakers wish to accomplish in a discourse. Thus, Hobbs’ theory could potentially be used in

text generation to indicate what coherence relation should be used to achieve a particular goal of

the speaker. For example, Hobbs (1979) notes two functions of ELABORATION. One is to overcome

misunderstanding or lack of understanding, and another is to “enrich the understanding of the

listener by expressing the same thought from a different perspective.” However, note that such

specifications of the speaker’s intentions are not an explicit part of the formal definition of the

relation. For this reason many researchers in text generation have turned to an alternative theory

of text structure, Rhetorical Structure Theory (rst) (Mann & Thompson, 1988).

As in Hobbs’s account, rst characterizes coherence in terms of a set of relations between

contiguous spans of text in a discourse. One of the main aims of rst was to account for conventional

inferences that arise when interpreting discourse. For example, Mann and Thompson (1986) argue

that in addition to the propositions represented explicitly by independent clauses in a text, there

are many implicit propositions, called relational propositions, which arise out of the combination

of clauses. They argue that the predicates of these propositions come from a small set of general,

frequently occurring relational predicates, e.g., “cause”, “solutionhood”, “concession”. These
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propositions arise from the hearer’s search for coherence among utterances that occur together,

that is, from the hearer’s assumption that the parts of a discourse form an intentionally constructed

sequence of linguistic expressions. They emphasize that relational propositions are inferences that

arise from the combination of the two parts of a text, and cannot be derived from either of the

parts independently.

Consider the following example from (Mann & Thompson, 1986):

(5) a. I’m hungry.

b. Let’s go to the Fuji Gardens.

Mann and Thompson (1986) argue that the assumption that this is a coherent discourse gives

rise to the relational proposition that (5b) provides a solution to the problem posed by (5a). The

relational predicate associated with this proposition is called solutionhood. Note that although

the solutionhood relation is not explicitly expressed anywhere in the text, it arises out of the

juxtaposition of the two discourse elements. As we discuss below, it is crucial that systems

generating such texts recognize these implicit relations that are conveyed, because they may be

the source of problems if the user does not understand or accept the system’s utterance.

Mann and Thompson make an argument that relational propositions are more basic than

other sorts of inferences that arise from texts, and cite as evidence the fact that virtually every

language has conjunction morphemes to signal them (e.g., in English “because”, “therefore”,

“so”, “however”). Rhetorical Structure Theory attempts to define a set of rhetorical relations

that accounts for these relational propositions.

The definition of each rhetorical relation in rst indicates constraints on the two entities being

related, constraints on their combination, as well as a specification of the effect that the speaker

is attempting to achieve on the hearer’s beliefs or inclinations. Thus RST provides an explicit

connection between the speaker’s intention and the rhetorical means used to achieve it.

[Table 1 about here.]

As an example, consider the rst definition of the MOTIVATION relation shown in Table 1. As

shown, an RST relation has two parts: a nucleus (N) and a satellite (S). The MOTIVATION relation

associates text expressing the speaker’s desire that the hearer perform an action (the nucleus)

with material intended to increase the hearer’s desire to perform the action (the satellite). For

example, in the text below (1) and (2) are related by MOTIVATION:

(6) a. Come to the party for the new President.

b. There will be lots of good food.
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The nucleus of the relation is that item in the pair that is most essential to the writer’s purpose.

In the example above, assuming that the writer’s intent is to make the hearer go to the party,

clause (6a) is nuclear. In general, the nucleus could stand on its own, but the satellite would

be considered a non-sequitur without its corresponding nucleus. In this example, without the

recommendation to “come to the party” the satellite in (6b) is out of place. Moreover, rst states

that the satellite portion of a text may be replaced without significantly altering the intended

function of the text. The same is not true for the nucleus. For example, replacing (6b) above

with:

(7) b′. All the important people will be there.

does not greatly change the function of the text as a whole. However, replacing the recommenda-

tion in the nucleus, e.g.,

(8) a′. Don’t go to the party.

significantly alters the purpose of the text.

Mann and Thompson also argue that if all the satellite units from a given text are deleted but

all the nuclei remain, we should be left with a coherent text with a message resembling that of

the original; it should be something like a synopsis, or summary, of the original text. As we shall

see later, this observation has been useful in recent work on summarization.

In rst, schemas define the structural constituency arrangements of text. They are abstract

patterns consisting of a small number of constituent text spans, a specification of the relations

between them, and a specification of how certain spans (nuclei) are related to the whole collec-

tion. Schemas are thus loosely analogous to grammar rules, and they constrain the possible rst

structures. A graphical depiction of one schema defined by Mann and Thompson (1988) appears

in Figure 9. This schema consists of a nucleus, and two satellites: one providing MOTIVATION for

the material in the nucleus, and the other providing ENABLEMENT for the material in the nucleus.

[Figure 9 about here.]

rst schemas are recursive; text serving as a nucleus or satellite in one schema may itself

be described by a schema that can be futher decomposed into spans related in one of the ways

dictated by the schemas. As defined by Mann and Thompson (1988, pp. 246-9), the schemas do

not constrain the ordering of the nucleus and satellites, and each constituent relation may occur

any number of times within a schema.

For example, the following text is described by the schema depicted in Figure 9:
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(9) a. Come to the party for the new President.

b. There will be lots of good food.

c. The Fluted Mushroom is doing the catering.

d. The party is in the ballroom at eight o’clock on Friday.

In this example, (9a) is the nucleus of the entire text and it presents an action that the speaker

wishes the hearer to perform. (9b-c) presents information intended to increase the hearer’s desire

to perform the action, and is therefore a satellite related to (9a) by the MOTIVATION relation. (9b-c)

is further decomposed into a nucleus, (9b), and a satellite, (9c), which in this case are related by

EVIDENCE since (9c) is intended to increase the hearer’s belief in (9b). In (9d) the speaker provides

information that is intended to increase the hearer’s ability to perform the action in the nucleus,

and thus (9d) is a satellite span related to (9a) by the ENABLEMENT relation. The rst analysis of

9 is shown in Figure 10.

[Figure 10 about here.]

To be acceptable, an rst analysis of a text must meet several additional criteria. It must be

complete and connected, i.e., there must be one schema application under which the entire text is

subsumed and all minimal units of the text must be accounted for in the analysis. In addition,

each minimal unit can appear in exactly one schema application, and the spans constituting each

schema application must be adjacent in the text. These constraints guarantee that a correct rst

analysis will form a tree structure.

As we describe in more detail below, rst has been used extensively by researchers in text

generation. More recently, rst has been used as the basis for rhetorical parsing, which has been

applied to the problem of text summarization (Marcu, 1999). While it did not correctly identify

as many of the rhetorical relations as humans do (47% compared to 83%), the relations that it

did identify were mostly correct (78% compared to 83% for humans) (Marcu, 1999, p. 437).

Segmented Discourse Representation Theory

The three theoretical approaches presented so far each focus on different aspects of what makes

discourse coherent. Recently Asher and Lascarides have developed a theory that combines the

logic-based structures of DRT with the focus on rhetorical relations from RST to address a wide

range of discourse phenomena. This theory, called Segmented Discourse Representation Theory

(SDRT) started in (Asher, 1993) and has been further developed in (Asher & Lascarides, 1995)

and (Asher & Lascarides, 1999, 2002).
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In DRT, the “discourse update” procedure that joins the DRSs of two utterances together,

consists simply of appending the two structures. Any unresolved references to, for example, pro-

nouns are resolved structurally, i.e., all available (not embedded) discourse referents are potential

antecedents. Thus, DRT overgenerates antecedents; it allows coreferences that humans would

never consider for a variety of discourse-related reasons. The connections are made on the basis

of structure alone, not on the content.

SDRT greatly expands the power of the discourse update procedure by including rhetorical

relations. Every time a DRS for a new utterance is added, some relation must be computed

between it and one of the proceeding utterances. The set of relations is open-ended, but includes

Narration, Elaboration, Continuation, Background, Explanation, Result, Evidence, Parallel, and

Contrast. The relations are derived from theories in the field of pragmatics, for example, Grice’s

maxims (Grice, 1957).

For each new utterance in a dialogue, a DRS is created in the same way as described above.

When it is added to the structure for the dialogue (the discourse update procedure), there must

be some link established via a rhetorical relation with a preceding utterance. The inclusion of

the relation constrains how the preceding discourse utterances can be accessed. Thus, the set

of possible antecedents is not just based on structure, it is based on the pragmatically preferred

reading.

For example, Figure 11 shows an SDRS created from the discourse in (10), if Kπ1 to Kπ5 are

drss that represent respectively the content of the utterances (10a) to (10e):

(10) a. Andrew’s family had a great time at the beach last week. π1

b. They went snorkeling. π2

c. They saw a starfish. π3

d. They saw a grouper fish too. π4

e. Then they had dinner at a cafe on the beach. π5

[Figure 11 about here.]

The πi symbols label subcomponents (representations of utterances) of the discourse. Re-

lationships between them are given in the same way as normal DRT conditions, for example

Narration(π2, π5) in this case. The key benefit of SDRT is that the specification of the relation-

ships between the utterances constrains further processing, for example, anaphora resolution. If

discourse (10) were continued with the sentence, “It was delicious,” the pronoun “it” could not

refer to the grouper fish because its representation is embedded within a substructure.
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We know of no current implementation of SDRT. It was previously used in a project for

analyzing air traffic control conversations in French (Asher, Aurnague, Bras, & Vieu, 1995). And

it is the center of current research in natural language generation (Danlos, Gaiffe, & Roussarie,

2001) and in dealing with sentence fragments in discourse (Schlangen, Lascarides, & Copestake,

2001).

Generating coherent discourse

As noted above, a comprehensive survey of discourse structure for natural language under-

standing appears in (Grosz et al., 1989). Thus, here we will focus on the role of discourse in

natural language generation.

Content selection and organization

Early work in natural language generation (Cohen, 1978; Cohen & Perrault, 1979; Appelt, 1985)

focused on generating utterances that would allow a hearer to recognize the speaker’s intention

to perform a particular speech act. These systems formalize the preconditions and effects of

illocutionary acts, and reason about the beliefs of the hearer and speaker, and the effects of

speech acts on these beliefs. This approach explicitly represents the relation between the speaker’s

intentions and the speech acts that achieve them. This is a necessary component of any system

that must participate in a dialogue with its users. However, these systems could generate only

short (one- or two-clause) texts; they do not represent or use knowledge about how speech acts

may be combined into larger bodies of coherent text to achieve a speaker’s goals.

To build systems capable of producing larger bodies of text, researchers sought approaches

that would enable systems to produce texts that adhere to standard patterns of discourse and flow

smoothly from topic to topic. Until recently, two main approaches to the generation of connected

discourse were prevalent: graph traversal and schema-based approaches. Graph traversal pro-

duces texts whose structure mirrors the structure of the domain knowledge representations being

traversed, while schema-based approaches use domain-independent rhetorical strategies to select

information and impose a structure on the text. Both approaches incorporate focus considerations

to determine what to say next when several options are available.

Graph traversal: Paraphrasing the knowledge base

By studying a range of naturally occurring texts, computational linguists identified types of text for

which discourse structure closely follows the conceptual relations (e.g., causal, temporal, spatial)

connecting the domain entities being described. For example, Paris (1988) observed that one
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strategy for describing a complex physical object is to trace through the process that allows the

object to perform its function. Sibun (1992) found that texts describing the layout of houses or the

relations among members of a family also follow domain relations. When text structure follows

domain structure, the most appropriate generation mechanism selectively traverses existing links

in a knowledge base (Suthers, 1991). To generate text, graph traversal is typically combined with

a focusing mechanism, which appeals to some model of attentional structure, to select the most

appropriate thing to say next when multiple domain links are available.

Uses of this technique are limited to cases where the system’s representation of the domain

mirrors, or can be engineered to mirror the structure of natural utterances in the domain. This

places an undue burden on knowledge engineers, who are already trying to mediate between the

sometimes conflicting demands of writing programs that are correct, efficient, and maintainable

(Swartout, 1983). The approach also does not admit communicative strategies that depart from

the organization of the knowledge base, thereby restricting the types of texts that a system can

produce. Finally, because the approach does not model the effects of its utterances, it does not

provide a representation of the text from which a system can determine how to interpret and

respond to feedback from the user.

Schemas: Representing Patterns of Rhetorical Structure

Some of the limitations of traversal techniques can be overcome by using domain-independent

rhetorical strategies that control both what is said and how it is structured. Many researchers

have attempted to understand the nature of the relationships that hold between the utterances of

a coherent discourse (Lehnert, 1981; Polanyi, 1988; Reichman-Adar, 1984; Rumelhart, 1975, for

example). At the heart of many of these efforts is a set of rhetorical predicates or relations that

characterize the organization of coherent texts of the type studied. And we have seen that many

linguists and computational linguists have proposed classifications of these relations and attempted

to identify their functions (Hobbs, 1983; Grimes, 1975; Lascarides & Asher, 1993; Longacre, 1983;

Mann & Thompson, 1988).

McKeown (1985) found a correlation between the discourse purpose of a text and patterns

of rhetorical predicates in the text, with a family of similar patterns representing a strategy for

achieving a given discourse purpose. McKeown encoded these patterns of rhetorical predicates into

script-like (Schank & Abelson, 1977) structures called schemas . By associating each rhetorical

predicate with an access function for an underlying knowledge base, these schemas can be used

to guide both the selection of content and its organization into a coherent text to achieve a

given communicative goal. The schema-based approach, and other approaches based on rhetorical
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structuring (Hovy, 1988b), have proven successful for many text generation applications.

The graph traversal and rhetorical structuring approaches to content determination are not

mutually exclusive. For example, the Intelligent Labelling EXplorer (ILEX) (Mellish et al., 1998)

uses a combination of these techniques. In ILEX, facts about the domain are organised into a text

potential, a graph of facts interconnected in terms of thematic and rhetorical relations, representing

the information ILEX can express and the ways it can be related. Given an entity to describe,

ILEX finds all of the facts associated with that entity and selects among these “opportunities”

for what to say next using a set of heuristics. Once a fact is chosen, all of its connections are

examined, and the next fact is chosen, and so on.

The schema-based approach has several advantages. First, because it decouples discourse

strategies from low-level details of knowledge representation, knowledge engineers have more flex-

ibility to design knowledge bases to satisfy other desiderata, such as maintainability and runtime

efficiency. Second, discourse strategies based on rhetorical knowledge enable systems to generate

a range of different texts from the same knowledge representation.

However, Elhadad (1996, 1997) has argued the need to go beyond schemas to produce effective

argumentation. Moore (1995) has shown that schemas and rhetorical structure trees are insufficient

as a discourse model for dialogue systems because they do not include a representation of the

intended effects of the components of the text produced, nor how these intentions are related

to one another or to the informational structure of the utterances produced. A schema can be

viewed as the result of a “compilation” process that dispenses with the rationale for all of its

component steps. What remains is the top-level communicative goal that invoked the schema,

and the sequence of actions (i.e., instantiated rhetorical predicates which cause sentences to be

generated) that are used to achieve that goal. Because of this compilation, schemata provide a

computationally efficient way to produce multisentential texts for achieving discourse purposes.

They are rhetorical “recipes” that encode frequently occurring patterns of discourse structure.

Using schemata, the system need not reason directly about how speech acts affect the beliefs of

the hearer and speaker, nor about the effects of juxtaposing speech acts. The system is guaranteed

that each schema will lead to a coherent text that achieves the specified discourse purpose.

However, this compilation renders the system incapable of responding appropriately if the

hearer does not understand or accept the utterance. Because intentional structure has been

“compiled out” of the schema representation, the system cannot determine if any of the discourse

actions in the recipe have failed to achieve their intended effects or what other strategies could be

used to achieve those effects. Intentional structure is crucial for interpreting and responding to

questions or challenges that address a previous utterance: without a record of what an utterance
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was intended to achieve, it is impossible to elaborate, clarify, or defend that utterance. This

is because there is not a one-to-one mapping between intentional and informational structure.

That is, there is not a one-to-one mapping between the ways in which content can be related in

a discourse and the ways in which intentions combine into a coherent discourse plan to affect a

hearer’s mental state (Moore & Paris, 1993; Moore & Pollack, 1992). Thus, it is not possible to

recover intentional structure from informational structure, or vice versa. And therefore, it is not

possible to reconstruct the intended effects of individual actions in an instantiated schema, which

contains only propositions and rhetorical relations between those propositions.

Plan-based Approaches

To overcome the limitations inherent in schema-based approaces, researchers have applied tech-

niques from AI planning research to the problem of constructing discourse plans that explicitly

link communicative intentions with communicative actions and the information that can be used

in their achievement (Moore, 1995; Young et al., 1994a). Text planning generally makes use

of plan operators, discourse action descriptions that encode knowledge about the ways in which

information can be combined to achieve communicative intentions, more specifically:

• effect(s): communicative goal(s) the operator is intended to achieve

• preconditions: conditions that must hold for an act to successfully execute. For example,

it may be the case that the hearer must hold certain beliefs or have certain goals for a

particular discourse strategy to be effective.

• constraints: specifications of the knowledge resources needed by the discourse strategy.

• subplan: optionally, a sequence of steps that implement the discourse strategy

Simplified examples of typical discourse planning operators, taken from (Young & Moore, 1994)

are shown in Table 2. In this framework, the representation of communicative action is separated

into two types of operators: action operators and decomposition operators. Action operators

capture the conditions (preconditions and constraints) under which an action can be executed,

and the effects the action achieves if executed under the appropriate conditions. Preconditions

specify conditions that the agent should plan to achieve (e.g., the hearer knows a certain term),

while constraints specify conditions that the agent should not attempt to plan to change (e.g.,

facts and rules about the domain). Effects describe the changes that a discourse action is intended

to have on the hearer’s mental state. If an action is composite, there must be at least one

decomposition operator indicating how to break the action down into more primitive steps. Each
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decomposition operator provides a partial specification for a subplan that can achieve the action’s

effects, provided the preconditions are true at the time the steps in the decomposition are executed.

[Table 2 about here.]

As an example of how action and decomposition operators are used to encode discourse ac-

tions, consider operators 1 and 2 in Table 2. These two operators describe the discourse action

Cause-to-Bel, which is capable of achieving the effect of making the hearer believe a proposition.

Operator 1 is an action operator and it indicates that Cause-to-Bel can be used to achieve the

state where the hearer believes a proposition ?p, if the hearer does not already believe ?p.3 Op-

erator 2 in Table 2 is one decomposition operator for the Cause-to-Bel action. It says that one

plan for making a hearer believe a proposition is to inform the hearer of that proposition and to

provide support for that proposition.

As illustrated in operator 3 of Table 2, decomposition operators may also have constraints,

which indicate the conditions under which the decomposition may be applied. Such constraints

often specify the type of information needed for particular communicative strategies, and satisfying

them causes the planner to find content to be included in its utterances. For example, operator 3

encodes the discourse strategy that one way for a speaker to support a proposition is to describe

a plausible cause of that proposition. More specifically, the constraint on operator 3 says that

to support proposition ?p, there must be another proposition, ?q, such that causes(?q, ?p)

is true in the domain. When the planner attempts to use a decomposition operator to support

a proposition, it must try to satisfy all of its constraints. If a constraint contains no unbound

variables, it is simply checked against the knowledge source to which it refers. However, if the

constraint contains free variables (e.g., ?q in operator 3), the system must search its knowledge

bases for acceptable bindings for these variables. In this way, satisfying constraints directs the

planner to select appropriate content to include in explanations. In operator 3, if an appropriate

?q can be found, then the speaker can support ?p by making the hearer believe ?q and making

the hearer believe that causes(?q, ?p). Thus we see that action and decomposition operators

specify how information can be combined in a discourse to achieve effects on the hearer’s mental

state. That is, action operators and their decompositions encode the link between intentional and

informational structure.

A detailed description of the algorithm for synthesizing plans from such operators is beyond the

scope of this paper, and may be found in (Young & Moore, 1994; Young, Pollack, & Moore, 1994b;
3Note that not(Bel(?p)) is a constraint because we do not wish our discourse planner to attempt to plan to

make the hearer not believe ?p in order to use this operator.
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Moore, 1995). However, it is important to note that the plans produced from such operators can

serve as the speaker’s model of the effects that individual parts of the text were intended to have

on the hearer and how they fit together to achieve her top-level intention. From a text plan, we can

determine which intentions dominate other intentions, i.e., we can determine when an intended

action is in the plan to serve a higher intention. This allows the speaker to interpret and respond

to feedback indicating that the hearer does not fully understand or accept what the speaker says,

and localise the failure in some portion of the utterance that failed to achieve its intended purpose.

To illustrate this, we will consider an utterance from a naturally occurring tutorial dialogue,

and see how reasoning about the text plan that produced the utterance could enable a system to

respond appropriately to a range of student responses. Consider the dialogue fragment shown in

Table 3, which was taken from a corpus of student-tutor interactions in which students are using a

computer simulation environment that trains them to troubleshoot the complex electronic circuitry

found in aircraft. The tutoring system presents the student with a troubleshooting problem to

solve, allows the student to solve the problem with minimal tutor interaction, and then provides

a critique of the student’s solution in a post-problem review session. During the review session,

the system replays the student’s solution step-by-step, pointing out good aspects of the student’s

solution as well as ways in which the student’s solution could be improved.

[Table 3 about here.]

In turn 1 of the dialogue in Table 3, the tutor indicates that the problem-solving step of

replacing a particular component was suboptimal (as indicated by < − > preceding the step

description). The student does not immediately accept this assessment, and probes the tutor to

find out why this action was assessed negatively, turn 2.

In turn 3, the tutor explains why the student’s action was judged suboptimal, with the following

utterance, repeated here for convenience:

(11) P1. It would have been better to troubleshoot this card by taking measurements instead

of swapping.

P2. You can’t count on having spare cards available for swapping.

Our analysis of this example is that the tutor’s primary intention is to convince the student

of P1, that it is better to troubleshoot a component by taking measurements than to swap the

component. To achieve this goal, the tutor asserts this proposition and then supports it by claiming

P2, that the student cannot always count on having spare parts available for swapping. The plan

for generating this text is shown in Figure 12.
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[Figure 12 about here.]

To handle feedback indicating that the hearer does not fully understand or agree with what the

speaker says, the speaker must be able to determine what portion of the utterance failed to achieve

its intended purpose. Therefore, the speaker must have a model of the effects that individual parts

of the text were intended to have on the hearer and how they fit together to achieve the speaker’s

top-level intention. From the plan in Figure 12, we can determine that the speaker’s intention

to make the hearer believe that one cannot count on having spare cards available for swapping

serves the higher-level intention of making the hearer believe that it would have been preferable

to troubleshoot the card by taking measurements.

Now let us consider several possible student responses to the tutor’s utterance in turn 3 of the

sample dialogue, given in examples (12)–(14), and see how a computer system, acting as tutor,

could use this discourse plan to help determine appropriate responses in each case.

(12) We always have spare cards in our shop.

(13) Yeah, it would have been better to troubleshoot the card, but we always have spare cards

in our shop.

(14) Yeah, you can’t count on having spares, but it’s still better to swap.

In example (12), the student rejects P2, the proposition that spare cards may be unavailable.

This blocks the support that P2 would have provided to convince the hearer that troubleshooting

by taking measurements is a better strategy than swapping. To see how the system can determine

this, consider again the discourse plan in Figure 12. Response (12) indicates that the effect Bel(P2)

asserted by the Inform(P2) was not achieved. From the plan representation, it is possible to trace

a path of failed effects from Bel(P2) across causal links and up decompositional links through the

actions Inform(P2), Cause-to-Bel(P2), Support(P2), Cause-to-Bel(P1), and eventually to the

top-level intended effect Bel(P1). Using this information, the system can determine that appro-

priate responses to 12) can be generated by trying to convince the student that spare cards are not,

in fact, always available (i.e., replanning the subtree rooted at the node Cause-to-Bel(P2), most

likely by providing support for P2), or by finding some other support for the claim troubleshooting

by taking measurements is a better strategy than swapping (i.e, replanning the subtree rooted at

the node Support(P1)).

An appropriate response to (13) would be very different. In (13), the hearer again expresses

disbelief in the supporting proposition P2, i.e., the effect Bel(P2) asserted by the Inform(P2) was

not achieved. However, here the student gives more information about the success of the speaker’s
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original plan by indicating that he believes that it would have been better to take measurements

than to swap, that is, here the effect Bel(P1) has been achieved.) As in (12), the speaker’s

intention to get the hearer to believe P2 has failed, and thus the support that P2 would have

provided for P1 is again blocked. However, in (13), the tutor need not do anything about this

failure. This is because the intention to get the hearer to believe P2 was held in service of the

intention to get the hearer to believe P1. Since (13) explicitly indicates that Cause-to-Bel(P1)

has achieved its intended effect, namely Bel(P1), the outcome of any intended act that served as

a precondition to this intention or as a step in a subplan for this intention can be ignored. Unless,

of course, the tutor has some other reason for wanting the student to believe P2.

Now consider how to handle (14), where the hearer agrees with P2, but is not convinced of P1.

Implicit in the speaker’s original argument was his belief that as a rule not being able to count on

having spare cards makes troubleshooting by taking measurements a preferable strategy to swap-

ping. That is, the discourse plan in Figure 12 is predicated on the truth of Bel(causes(P2,P1)).

Note that the node Cause-to-Bel(causes(P2,P1)) was not expanded in this discourse plan

because this proposition was an effect of the initial step. Together with the statement in P2,

causes(P2,P1) would have provided support to convince the hearer that it is better to trou-

bleshoot before swapping. (14) indicates that the support for P1 has failed. At this point, the

tutor must either convince the student that the causal relationship between P2 and P1 does indeed

hold, or must find another way to support P1. As in the previous case, an appropriate response

results from the re-planning of subtrees whose execution is affected by this failure. Specifically,

those subtrees rooted at Cause-to-Bel(causes(P2,P1)) across causal links and up decompo-

sitional links to Support(P1) and eventually to Cause-to-Bel(P1). Note that this does not

include the subtree rooted at Cause-to-Bel(P2) and thus, unlike in (12), the system will behave

correctly and will not attempt to reestablish P2, the proposition that spare cards may not always

be available.

In these examples, each of the hearer’s replies provides feedback about a subset of the speaker’s

intentions. To respond appropriately, the speaker must reason about the relationships between the

intentions in his communicative plan in order to determine what implication the hearer’s feedback

has on the ultimate success of his other intentions. These examples show that the information in

discourse plans provides guidance for the planning of subsequent responses.

Note that discourse plans in this framework also include a representation of informational struc-

ture. When a discourse strategy requires that a particular informational relation be recognized by

the hearer for a discourse to have its intended purpose, a condition expressing this requirement will

appear in the (sub)plan that requires this. For example, in Figure 12, the strategy for supporting
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P1 will be successful only if the two effects Bel(P2) and Bel(causes(P2,P1)) are achieved. Con-

ditions such as this one allow the planner to recognize how the content expressed in portions of

the text plan is related. Among other tasks, the informational structure is used by the realization

component when transforming the discourse plan into a series of natural language utterances. The

representation of informational structure, together with information about intentional structure,

allows the text generator to order clauses and to select appropriate content-bearing discourse cues

(e.g., because, in addition).

Discourse plans such as these, which have been used in many systems, are hierarchical struc-

tures, whose leaves specify a partially ordered sequence of speech acts to be performed. The

internal structure of the plan represents dominance and satisfaction precedence relations between

discourse intentions, and steps in subplans post goals to make the hearer recognize informational

relations between plan components. While these plan structures contain much information that

is crucial for generating coherent multisential natural language texts, they cannot be transformed

directly into natural language. They do not include all of the information required by existing

syntactic realizers, which transform abstract syntactic specifications of natural language sentences

(or phrases) into their corresponding surface forms. Examples of such systems FUF (Elhadad,

1992) and REALPRO (Lavoie & Rambow, 1997).

To construct specifications from which English sentences can be generated, many decisions

about organization and lexicalization remain. A system must choose a total ordering for the

steps in the discourse plan, and decide how to apportion propositional content to sentences and

sentence constituents cf. (Hovy, 1988a; McDonald, 1983; Meteer, 1992). It also must choose

referring expressions cf. (Appelt, 1985; Dale, 1992; Reiter, 1990), and lexical items to express the

content in the speech acts cf. (Bateman & Paris, 1989; Danlos, 1984; Granville, 1984; Matthiessen,

1991; McDonald, 1991; Pustejovsky & Nirenburg, 1987; Reiter, 1991). As the references indicate,

there has been considerable research on many of these issues.

A remaining issue, and one that has received relatively little attention in the computational

generation literature, concerns the use of discourse cues. Discourse cues are words or phrases,

such as because, first, although and also, that mark structural and semantic relationships be-

tween discourse entities. They play a crucial role in many discourse processing tasks, including

plan recognition (Litman & Allen, 1987), text comprehension (Cohen, 1984; Hobbs, 1985; Mann

& Thompson, 1986; Reichman-Adar, 1984), and anaphora resolution (Grosz & Sidner, 1986).

Moreover, research in reading comprehension indicates that felicitous use of cues improves com-

prehension and recall (Goldman, 1988), but that indiscriminate use of semantic cues may have

detrimental effects on recall (Millis, Graesser, & Haberlandt, 1993). In addition, there is evi-
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dence that the benefit of discourse cues may depend on the subjects’ reading skill or level of prior

knowledge of the domain (Goldman & Murray, 1992; Meyer, Brandt, & Bluth, 1980; McNamara,

Kintsch, Songer, & Kintsch, 1996).

The problems of determining when discourse cues should be used in the final text, where

the cues should be placed, and which cues would be most effective in increasing the hearer’s

comprehension of a text are a current area of research. McKeown and Elhadad studied several

connectives (e.g., but, since, because) with the aim of identifying features of the propositions

connected by the cues that can be used to select appropriate cues during text generation (McKeown

& Elhadad, 1991; Elhadad & McKeown, 1990). Researchers concerned with generating text

from RST trees (where leaf nodes contain content and internal nodes indicate the RST relation

that holds between subtrees) have proposed algorithms for determining sentence boundaries and

choosing cues based on the rhetorical relation between spans of text, the order of the relata, and

the complexity of the related text spans (Rösner & Stede, 1992; Scott & de Souza, 1990).

As noted above, RST analyses presume that there is a primary rhetorical relation between

any two consecutive elements of a coherent discourse, and RST analyses do not permit multiple

relations between text spans. This means that consecutive elements in RST trees are related

either by an informational or an intentional relation. However, Moore and Pollack (1992) showed

that discourse interpretation and generation cannot depend upon analyses in which informational

and intentional structure are in competition; intentional and informational analyses must coexist.

Therefore, we must devise algorithms for generating appropriate texts from a discourse model that

represents these two types of structure, such as the discourse plans described above.

Intentional and informational structure and cue choice

It should be clear that the informational (or semantic) relation between discourse items affects

the choice of cue. For example, to mark an exemplification relation a speaker can felicitously use

a cue such as “for example” or “for instance”, but could not use a cue such as “thus” or “first”. It

is less clear to many how intentional structure affects cue usage. Note here that we are concerned

with those cues that convey semantic information between discourse elements, such as because,

thus, for example. It is clear that intentional structure affects cues that indicate purely structural

aspects of discourse, such as topic shifts (e.g., now, anyway), and digressions (by the way) (Grosz

& Sidner, 1986; Hirschberg & Litman, 1993).

To illustrate the effect of intentional structure on cue choice, let us consider the two example

discourses in (15) and (16) in which the informational relation between discourse entities and the

placement of the cue is held constant, but the intentional structure varies. Figure 13 shows the
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intentional and informational relations between two discourse actions, and the text that these

actions produce. In this example, the tutor is trying to convince the student of (15b), that there

is a break in a certain signal path. To achieve this goal, the tutor informs the student of (15b)

and supports it with (15a). In the domain, there is a causal connection between (15a) and (15b),

the bad signal at pin 26 causes there to be a break in the particular path discussed. Thus, the

tutor can use the discourse strategy (encoded in operator 3 above) of supporting a proposition by

describing a plausible cause of that proposition. Figure 13 represents a typical deductive argument;

to convince the hearer of an effect (15b), cite its cause (15a) as support.

[Figure 13 about here.]

In example 15, the intention to make the student believe (15b) dominates the intention to make

the hearer believe (15a). At the informational level, there is a causal relation between (15a) and

(15b). In the text, the proposition expressing the cause (and the dominated discourse purpose)

precedes the one expressing the effect (and the dominating discourse purpose). The discourse cue,

thus, is placed with the proposition expressing the effect. This cue indicates both the causal relation

at the informational level as well as the dominance relation between the speaker’s intentions.

In contrast, consider the relation between the discourse actions and the accompanying text in

Figure 14. In this example, the tutor is trying to convince the student of (16a), that the signal on

pin 26 is bad, and is using (16b) as support. That is, the speaker is trying to convince the hearer

that a state exists by citing an effect of that state. This is a typical abductive argument. In this

example, the informational relation between (16a) and (16b) is the same as in example (15), i.e.,

(16a) causes (16b). However, the two texts differ at the intentional level. In (16), the intention

to make the hearer believe (16a) dominates the intention to make the hearer believe (16b). This

difference in intentional structure is reflected in the discourse cue chosen. As in example (15),

the cause precedes the effect, and the discourse cue is placed with the text expressing the effect.

However, a different discourse cue (because) must be used to indicate the difference in intentional

structure. In (16), the intentional roles of cause and effect are reversed. The proposition expressing

the cause is now expressing the dominating discourse purpose, and the one expressing the effect is

now expressing the dominated discourse purpose. And the cue is now placed with the proposition

expressing the dominated discourse purpose. Since the causal relation at the informational level

has remained unchanged from example (15), the difference in cue must be due to the difference in

intentional structure.

[Figure 14 about here.]
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These examples show that algorithms based on a discourse model that forces a choice between

intentional and informational structure, such as RST, cannot be complete. Algorithms for cue

usage must take both informational and intentional structure into account. Moser and Moore

(1995, 2001) have done an extensive empirical study to identify the factors that predict appropriate

use of cues. Di Eugenio et al. (1997) are using machine learning to induce decision trees that can

be used to determine cue choice in automatic text generation.

Current discourse applications

In this section, we describe some of the new directions in computational linguistics and artificial

intelligence in processing discourse. Many of the current techniques break with the theoretical

traditions described in previous sections. Instead, they rely on shallow text processing techniques

and statistical methods which support the inference of discourse information in a task-specific or

domain-specific way.

Summarization

As its name suggests, the goal of a text summarization system is to produce a summary of a text

that can be quickly read by a user. Because of the huge amounts of textual data available on the

web and elsewhere, text summarization can provide a great benefit to those who need to scan or

stay current in a topic, but care only about the main points, and not the details.

Most current systems perform summarization in three steps:

1. Identify the important text units of a documents (or set of related documents).

2. Extract from each unit the most central sentence or sentences.

3. Join them to form the summary.

This section describes how discourse processing techniques are used to perform these steps in a

variety of summarization systems.

A critical first step in determining which parts of a document are most important is locating

the boundaries between topic segments. This allows a summarization system to know which topics

should be represented in the summary. And it prevents the system from misreading important

text on a new topic as less important text continuing the current topic.

The standard technique for performing automatic text segmentation is to use some measure of

sentence similarity to find consecutive clusters of sentence that have something in common. The

usual similarity metrics are based on word overlap, typically by calculating word stems, and then
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comparing sentences with either a keyword overlap mechanism or a vector-based formula. Then,

some type of clustering algorithm is used to detect boundaries between groups of consecutive

sentences that are highly similar (Choi, 2000).

Another approach is to use the pattern of word occurrences across the text as an indication

of topic segments. Lexical chaining was was introduced by Morris and Hirst (1991). For each

reference to an entity in the text, a graph is created which follows references to the same or

closely-related terms. The related terms are inferred from synonym sets provided by a lexical

database like WordNet (Fellbaum, 1998). The chains show which terms are essential to the text

as a whole (longer chains represent more significant terms), and locate where those terms are

mentioned (Barzilay & Elhadad, 1997; Hirst & St-Onge, 1998; Stairmand, 1996).

A genre-specific segmentation method was developed by Teufel (1999). For scientific papers,

she used a machine learning technique to associate a variety of discourse cues with “argumentative

zones”, that is, sections of the papers with different functional purposes. Two examples of argu-

mentative zones are general scientific background and descriptions of other people’s work. These

zones provided the basis for performing topic segmentation of the texts.

Marcu (2000) used a similar technique which works on unrestricted texts. His approach, rhetor-

ical parsing, also used machine learning to determine the rhetorical relations based on a variety

of shallow cues such as discourse cues and punctuation. For example, the use of the cue term,

“although”, indicates either a Concession or an Elaboration relation with a neighboring textual

unit. Marcu demonstrated that the hierarchical rhetorical trees that this technique produces are

useful for text summarization because they highlight topic switches in the text. The rhetorical

relations also indicate the central text units of each section. Systems which do not perform rhetor-

ical parsing tend to rely on word overlap measures to determine which text units are most central

within a section.

The key sentences of a segment can not normally be used directly in a summary because of

anaphoric references. Coreference resolution must be performed in order to replace abbreviated

references with their fully specified form. For example, a document might refer to the same

company as “Apple Computer Inc”, “Apple”, “the computer company”, “the company”, and

“it”. Because the first reference may not be in the sentence which contains the most central

information, coference resolution is essential. As mentioned above, the various computational

theories of discourse structure each have something to say about the constraints on coreference.

But because most summarization systems do not perform in-depth processing of the texts, they

tend to use domain-specific shallow methods to track coreference.

Coreference resolution has been the focus of many current corpus-based applications. Lappin
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and Leass (1994) described a model for resolving pronominal anaphora using a surface parse of

the sentences, and a heuristic measure of salience of potential referents based on features such as

their proximity and syntactic position. This approach was extended by Kennedy and Boguraev

(1996) to use an even shallower syntactic representation in which words were marked with their

syntactic function, but no parse tree was required. Other researchers have used machine learning

approaches like Bayesian induction and decision trees to learn methods for coreference resolution

from annotated corpora (Aone & Bennett, 1995; Connelly, Burger, & Day, 1994; Kehler, 2000;

McCarthy & Lehnert, 1995, for example). A recent DARPA-sponsored information extraction ini-

tiative (Sundheim, 1995) had a subtask which required participants to resolve coreference between

proper names, aliases, definite noun phrases, and more.

As in other natural language processing tasks, performance is normally calculated by comparing

with human judgments, and reported in terms of “recall”, “precision”, and “Fscore”. Recall is the

number of true positives divided by the sum of the true positives and the false negatives. Precision

is the number of true positives divided by the sum of the true positives and the false positives.

Because there is normally a trade-off between precision and recall, the Fscore combines them and

is defined as: 2 ∗ Precision ∗ Recall/(Precision + Recall). On the coreference task, participants

have achieved success rates of over 60% recall, 70% precision, and 65% Fscore (Sundheim, 1995).

Once coreference resolution is performed by a summarization system, the fully-specified sen-

tences can then be processed into a coherent and readable summary. Using techniques from natural

language generation, references to the same entities can be replaced with anaphoric expressions

to increase the cohesiveness of the text. Sentences may also need to be re-structured to account

for discourse focus (Kan & McKeown, 1999, for example).

Another DARPA initiative has recently compared the performance of several text summariza-

tion systems (Mani, Firmin, House, Chrzanowski, klein, Hirschman, Sundheim, & Obrsi, 1998).

Because it is so difficult to determine what an ideal summary would be, the evaluation focused

on “extrinsic” metrics, that is, ones that measure how well the end product of the system enables

a human to perform some task. In this case, one task (the “adhoc” task) was to determine if

a document was relevant to a particular topic. A good summary allows the human analyst to

quickly determine if the source document is relevant. In this evaluation, the best systems achieved

performance of over 60% recall, 80% precision, and Fscores of around 70%.

There was also a categorization task, in which the summaries were used by a human analyst

to classify the source document as either fitting into one of five topics, or “none of the above”.

Here the scores were lower, with top precision scores of around 70%, recall scores around 45%,

and Fscores around 50%.
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Question answering

Question answering (QA) is an offshoot of the information retrieval task. In information retrieval,

the task is to select from a large database of texts a small number that matches some query,

similar to exploring the internet with a search engine. In QA, the task is more specific: instead

of returning an entire document, the system should return just the specific sentence that answers

the question.

The standard approach to this task involves first performing information retrieval to find

relevant documents. Then each document is searched for the sentence which is most relevant to

the question. The sentences are ranked for relevance and informativeness, and the highest ranking

sentence is returned as the answer.

Here also, it is clear that discourse information plays a crucial role. For example, in searching

for the answer to the question, “Who wrote “To Kill a Mockingbird”?, a system might find the

text:

Now Harper Lee is 70, a white-haired woman who protects her privacy as insistently

as J.D. Salinger or Thomas Pynchon. She is the author of a single book, “To Kill a

Mockingbird,” but that book is one of the most widely read American novels of the

century.

A QA system must resolve the coreference in order to succinctly provide the correct answer.

Coreference resolution has been used to increase the performance of a number of recent QA systems

(Breck, Burger, Ferro, House, Light, & Mani, 1999; Humphreys, Gaizauskas, Hepple, & Sanderson,

1999; Litkowski, 1999, for example). The systems used a variety of more local techniques, for

example, producing variants of the questions. Because these are not discourse-related, they are

not described here.

In the most recent QA section of the DARPA-sponsored TREC (Text REtrieval Conference)

program, the task was to answer a set of approximately 700 fact-based short answer questions by

extracting for each a small amount of text (250 bytes) from a 3 gigabyte collection of newswire

text. An example question is, “How much folic acid should an expectant mother get daily?” The

systems were allowed to provide a ranked set of answers to each question. The scores were based

on how far down the stack of answers the correct answer was, or 0 for no correct answer. The

best system from among the 28 participants achieved a score of 75% (the correct answer was on

average one quarter down the ranked list of answers) and did not answer 15% of the questions.

Summary
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In this chapter, we have discussed the types of discourse structure that researchers in computa-

tional linguistics and artificial intelligence have developed in order to address a range of problems

in discourse interpretation and generation. In conclusion, we would like to point to several fruitful

areas for future research.

First, discourse actions like all other actions have context dependent effects. Indeed, one of the

main aims of discourse research is to understand how the context in which an utterance occurs

affects the meaning of that utterance. If we are taking a plan-based view of discourse interpretation

and generation, many inferences beyond what are listed as the direct effects of discourse operators

may be licensed. In artificial intelligence, this is the well-known ramification problem. In

discourse, some of these inferences, the Gricean conversational implicatures, are an important

part of normal cooperative conversation. As we have argued, discourse interpreters must make

these inferences if they are to properly understand the discourse, and discourse generators must

be aware of the implicatures licensed by their utterances in order to produce natural sounding

utterances and avoid leading the hearer to make false implicatures. Although early research, e.g.,

(Hirschberg, 1985; Joshi, Webber, & Weischedel, 1984), identified the problem and attempted

to specify the conversational implicatures licensed by certain types of utterances, there has been

no general solution. Recently, there has been renewed interest in this problem, and considerable

progress has been made, see (Green & Carberry, 1999; Stone, 2001). However, much work remains

to be done to provide an adequate model of discourse actions and their effects, which can be used

in realistic computational systems.

Second, computational accounts of discourse have largely ignored the impact that human

processing limitations must have on language. However, some research has shown that taking

resource limitations seriously can provide an explanation of phenomona such as how much risk

speakers take of being misunderstood in a given conversational setting (Carletta, 1992), and why

speakers sometimes produce redundant utterances (Walker, 1996). Moreover, McKeown’s (1985)

schema-based generation system showed how constraints on focus of attention could affect the

content and organization of a discourse. To adequately model human discourse interpretation and

generation in computational systems, we must further investigate the interpretation and generation

problems as resource-bounded tasks.

Third, we must take seriously a model of belief and context update. Without it, our theories

cannot adequately account for why speakers ever do more than simply assert the facts they want

their hearers to believe. Most models simply assume that the effect of asserting a proposition P

is that the hearer believes P. In fact, a speaker may go to great lengths to convince the hearer of

the truth of a proposition. She may first assert it, then support it, and even provide support for
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that support. In such cases, the speaker presumably believes that the combination of utterances is

what leads the hearer to accept the main proposition, and we need to model this behavior. Recent

work by Galliers (1990), Carberry and Lambert (1999), and Lascarides and Asher (1999) begins

to address this issue.

Fourth, more integrated accounts of the relationship between the various types of discourse

structure are needed. For example, a more detailed understanding of how speakers’ intentions

are realized via informational stucture will support more principled and effective text and speech

generation. Moreover, a more detailed understanding of the relationship between discourse struc-

ture at the segment level and the information structure of Vallduvi (1990) and Steedman (1991)

is crucial.

Fifth, over the last decade, statistical techniques have greatly improved performance on tasks

such as parsing and word sense disambiguation, and probabilistic models are now widely used for

a range of language processing tasks (Jurafsky & Martin, 2000; Manning & Schütze, 1999). We

are just beginning to see progress in statistical methods for discourse and dialogue, and there is

much work to be done to incorporate more sophisticated models of the discourse phenomena that

we wish to approximate with statistical methods.

Finally, with the advent of virtual and life-like animated agents, many new discourse processing

tasks are emerging. Our theories will need to be broadened to include spoken language, where much

discourse information is conveyed by intonation, and to account for the information contained in

a speaker’s gestures, which can be used to disambiguate or enrich the meaning of the speaker’s

utterances (Cassell, Sullivan, Prevost, & Churchill, 2000).
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x

John(x)
sleep(x)

Figure 1: A simple DRS for the sentence, “John sleeps.”
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Figure 2: A DRS rule for processing proper nouns
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Figure 3: Before and after applying the proper noun rule
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sleep(b)
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Figure 4: A snapshot of the world
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⇒

y
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Figure 5: Two readings of an ambiguous quantifier scoping
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John(x)
dog(y)
owns(x, y)
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⇒
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Figure 6: A DRS for a conditional sentence with accommodated presuppositions
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Intentional Linguistic
Structure Structure

I0: IntendS(IntendH a)
|

I1: IntendS(BelieveH b)
|

I2: IntendS(BelieveH c)

DS0 (a) Come to the party for the new President.

DS1 (b) There will be lots of good food.

DS2 (c) The Fluted Mushroom is doing the catering.

Figure 7: For G&S, dominance in intentional structure determines embedding in linguistic struc-
ture.
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DS0 1 A: I’m going camping next weekend. Do you have a two person tent
I could borrow?

2 B: Sure. I have a a two-person backpacking tent .
DS1 3 A: The last trip I was on there was a huge storm.

4 It poured for two hours.
5 I had a tent, but I got soaked anyway.
6 B: What kind of a tent was it?
7 A: A tube tent.
8 B: Tube tents don’t stand up well in a real storm.
9 A: True.
10 B: Where are you going on this trip?
11 A: Up in the Minarets.
12 B: Do you need any other equipment?
13 A: No.
14 B: Okay. I’ll bring the tent in tomorrow.

Figure 8: Discourse structure affects referent accessibility.
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MOTIVATION

ENABLEMENT

Figure 9: Graphical Representation of an RST Schema
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MOTIVATION
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d

b c

EVIDENCE

a

Figure 10: Graphical Representation of an RST Analysis of (9)
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π1,π6

π1 : Kπ1

π6 :

π2, π5, π7

π2 : Kπ2 , π5 : Kπ5

Narration(π2, π5)

π7 :

π3,π4

π3 : Kπ3, π4 : Kπ4 ,
Narration(π3, π4)

Elaboration(π2, π7)

Elaboration(π1, π6)

Figure 11: An SDRS for discourse (10)
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FINAL

INFORM(P1)

ENDBEGIN

Cause-to-Bel(P2)

BEGIN

END

Bel(P1,P2)

Bel(causes(P1,P2))

BEGIN END
Bel(P2)

cause (P2,P1)

P2 = You can’t count on having spare cards available for swapping. 

G = to troubleshoot the test station

A = taking measurements

B = swapping components 

INITIAL

Know-Plan (A,G)

Know-Plan (B,G)

Bel(P1)

SUPPORT(P1)

INFORM (P2)

Cause-to-Bel(P2,P1)

Cause-to-Bel(P1)   

P1 = It would have been better to troubleshoot by taking measurements instead of swapping.

Figure 12: A Sample Discourse Plan
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Cause-to-Bel(b)

Cause-to-Bel(a)

cause(a,b)

(15) a. You know that the signal on pin 26 is bad.

b. Thus, there’s a break in the path created by TPA63.

Figure 13: Arguing from cause to effect
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Cause-to-Bel(a)

Cause-to-Bel(b)

cause(a,b)

(16) a. You know that the signal on pin 26 is bad

b. because there’s a break in the path created by TPA63.

Figure 14: Arguing from effect to cause
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Table 1: RST Relation – MOTIVATION

relation name: MOTIVATION
constraints on N: Presents an action (unrealized with respect to N)

in which the Hearer is the actor.
constraints on S: none
constraints on N + S combination:

Comprehending S increases the Hearer’s desire to
perform the action presented in N.

effect: The Hearer’s desire to perform the action presented in N
is increased.
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Table 2: Discourse Plan Operators

Operator 1: Action operator for Cause-to-Bel

HEADER: Cause-to-Bel(?p)
CONSTRAINTS: not(Bel(?p))
PRECONDITIONS: nil
EFFECTS: Bel(?p)

Operator 2: Decomposition operator for Cause-to-Bel

HEADER: Cause-to-Bel(?p)
CONSTRAINTS: nil
STEPS: Begin, Inform(?p),

Support(?p), End

Operator 3: Decomposition operator for Support

HEADER: Support(?p)
CONSTRAINTS: causes(?q, ?p)
STEPS: Begin, Cause-to-Bel(?q),

Cause-to-Bel(causes(?q, ?p)), End
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Table 3: Fragment of a naturally occurring tutoring dialogue
...

tutor < − > Next, you replaced the A1A3A13. [1]

student This is the first circuit card assembly in the drawer that the signal goes
through. Why would I not start at the entrance to the station and follow
the path to the measurement device?

[2]

tutor It would have been better to troubleshoot this card by taking measurements
instead of swapping. You can’t count on having spare cards available for
swapping.

[3]

66


