Transactions in Relaxed Memory Architectures

Brijesh Dongol Radha Jagadeesan James Riely

Transactional Memory

> Replace locks with transactions
> Well studied ...

Transactional Memory

> Replace locks with transactions
> Well studied ...
> Atomicity = all or nothing

Transactional Memory

> Replace locks with transactions
> Well studied ...

> Atomicity = all or nothing

> Committeds: What order?
> Standard serializability: 3 total order (arbitrary)
> Strict serializability: 3 total order respecting real-time order
> Causal serializability: 3 partial order respecting causality

Transactional Memory

> Replace locks with transactions
> Well studied ...

> Atomicity = all or nothing

> Committeds: What order?

> Standard serializability: 3 total order (arbitrary)
> Strict serializability: 3 total order respecting real-time order
> Causal serializability: 3 partial order respecting causality

> Aborteds: Can affect client?

> Yes: Opacity — Aborteds must fit in committed order
> No: TMS1, VWC, ... — Intuition less clear

Transactional Memory

> Replace locks with transactions
> Well studied ...
> Atomicity = all or nothing
> Committeds: What order?
> Standard serializability: 3 total order (arbitrary)
> Strict serializability: 3 total order respecting real-time order
> Causal serializability: 3 partial order respecting causality
> Aborteds: Can affect client?
> Yes: Opacity — Aborteds must fit in committed order
> No: TMS1, VWC, ... — Intuition less clear
> How does nontransactional code see transaction?
> Atomically: Strong isolation
> As individual operations: Weak isolation

Transactional Memory

> Replace locks with transactions
> Well studied ...

> Atomicity = all or nothing
> Committeds: What order?

> Standard serializability: 3 total order (arbitrary)
> Strict serializability: 3 total order respecting real-time order
> Causal serializability: 3 partial order respecting causality

> Aborteds: Can affect client?

> Yes: Opacity — Aborteds must fit in committed order
> No: TMS1, VWC, ... — Intuition less clear

» How does nontransactional code see transaction?

> Atomically: Strong isolation
> As individual operations: Weak isolation

> ... assuming memory is sequentially consistent (SC)

> What about relaxed memory?

Transactional Memory ... Relaxed

> Atomicity, as before

Transactional Memory ... Relaxed

> Atomicity, as before
» Order for committeds?

> ldea: Use order from underlying memory model

Transactional Memory ... Relaxed

> Atomicity, as before
> Order for committeds?
> ldea: Use order from underlying memory model
> = causal serializability
> « strict serializability
> & standard serializability, in general
Respects causality: v'us X standard
Single total order: Xus v'standard

Transactional Memory ... Relaxed

> Atomicity, as before

» Order for committeds?

>

>
>
| 2

Idea: Use order from underlying memory model
= causal serializability
& strict serializability
& standard serializability, in general
Respects causality: v'us X standard
Single total order: Xus v'standard
= standard serializability, for GHB models, e.g. TSO and ARMv8
Respects causality: v'us X standard
Single total order: v'us V'standard
In paper: Observational serializability = causal & standard

Transactional Memory ... Relaxed

> Atomicity, as before

» Order for committeds?

>

>
>
| 2

Idea: Use order from underlying memory model
= causal serializability
& strict serializability
& standard serializability, in general
Respects causality: v'us X standard
Single total order: Xus v'standard
= standard serializability, for GHB models, e.g. TSO and ARMv8
Respects causality: v'us X standard
Single total order: v'us V'standard
In paper: Observational serializability = causal & standard

> Aborteds: Can affect client?

>
>

Natural formalization of opacity (Ignoring realtime)
New perspective on weaker conditions (TMS1, VWC, ...)

Transactional Memory ... Relaxed

> Atomicity, as before

» Order for committeds?

>

>
>
| 2

Idea: Use order from underlying memory model
= causal serializability
& strict serializability
& standard serializability, in general
Respects causality: v'us X standard
Single total order: Xus v'standard
= standard serializability, for GHB models, e.g. TSO and ARMv8
Respects causality: v'us X standard
Single total order: v'us V'standard
In paper: Observational serializability = causal & standard

> Aborteds: Can affect client?

>
>

Natural formalization of opacity (Ignoring realtime)
New perspective on weaker conditions (TMS1, VWC, ...)

» Nontransactional code?

>

Natural formalization of isolated and relaxed

Herding Cats!

> Axiomatic model Alglave, Maranget and Tautschnig (AMT)
> Unifying framework for TSO, Power, ARMv7, etc

Herding Cats!

> Axiomatic model Alglave, Maranget and Tautschnig (AMT)
> Unifying framework for TSO, Power, ARMv7, etc

> Events labelled by action (Rx1, Wx1)

Herding Cats!

> Axiomatic model Alglave, Maranget and Tautschnig (AMT)
> Unifying framework for TSO, Power, ARMv7, etc
> Events labelled by action (Rx1, Wx1)

> Relations over events, including
> Program generated (ML syntax)

> Program order wx1 % Wyl eg., x:=1;y:=1

Herding Cats!

> Axiomatic model Alglave, Maranget and Tautschnig (AMT)
> Unifying framework for TSO, Power, ARMv7, etc

> Events labelled by action (Rx1, Wx1)
> Relations over events, including

> Program generated (ML syntax)
> Program order wx1 2% Wyl eg., x:=1;y:=1
> Data dependency Rx1 data, Wyl e.g.,y:=Ix
> Address dependency Rxy a-dlgr% Wyl e.g., !x:=1
> ctr

Control dependency Rx1 — Wy1 e.g.,if !x then y:=1

Herding Cats!

> Axiomatic model Alglave, Maranget and Tautschnig (AMT)
> Unifying framework for TSO, Power, ARMv7, etc

> Events labelled by action (Rx1, Wx1)

> Relations over events, including
> Program generated

> Program order wx1 25 wy1
> Data dependency Rx1 data, Wyl

> Address dependency Rxy addr, Wyl

> Control dependency Rx1 e, Wyl

> Resolving nondeterminism

»> Reads-from Wx1 —rf—> Rx1

(ML syntax)

eg., x:=1;y:=1
eg.,y:=Ix
eg., !Ix:=1

eg.,if !x then y:=1

eg., x:=1]ly:=!x

Herding Cats!

> Axiomatic model Alglave, Maranget and Tautschnig (AMT)
> Unifying framework for TSO, Power, ARMv7, etc

> Events labelled by action (Rx1, Wx1)

> Relations over events, including
> Program generated

> Program order wx1 25 wy1
> Data dependency Rx1 data, Wyl
> addr

Address dependency Rxy —— Wy1

> Control dependency Rx1 e, Wyl

> Resolving nondeterminism

»> Reads-from Wx1 —rf—> Rx1
> From-read Rx0 —fr—> Wx1

(ML syntax)

eg., x:=1;y:=1
eg.,y:=Ix
eg., !Ix:=1

eg.,if !x then y:=1

eg., x:=1]ly:=!x
eg., x:=1]ly:=!Ix

Herding Cats!

> Axiomatic model Alglave, Maranget and Tautschnig (AMT)
> Unifying framework for TSO, Power, ARMv7, etc

> Events labelled by action (Rx1, Wx1)

> Relations over events, including
> Program generated

> Program order wx1 25 wy1
> Data dependency Rx1 data, Wyl
> Address dependency Rxy addr, Wyl
> ctrl

Control dependency Rx1 — Wy1
> Resolving nondeterminism

»> Reads-from Wx1 —rf—> Rx1
> From-read Rx0 —fr—> Wx1
> Coherence Wx1 < Wx2

(ML syntax)

eg., x:=1;y:=1
eg.,y:=Ix
eg., !Ix:=1

eg.,if !x then y:=1

eg., x:=1]ly:=!x
eg., x:=1]ly:=!Ix
e.g., x:=1[|x:=2

Herding Cats!

> Axiomatic model Alglave, Maranget and Tautschnig (AMT)
> Unifying framework for TSO, Power, ARMv7, etc

> Events labelled by action (Rx1, Wx1)
> Relations over events, including

> Program generated (ML syntax)
> Program order wx1 2% Wyl eg., x:=1;y:=1
> Data dependency Rx1 data, Wyl e.g.,y:=Ix
> Address dependency Rxy addr, Wyl e.g., !x:=1
> Control dependency Rx1 e, Wyl e.g.,if !x then y:=1

> Resolving nondeterminism

> Reads-from Wx1 LR Rx1 eg., x:=1]ly:=!x
> From-read Rx0 5 Wx1 eg., x:=1]ly:=!Ix
» Coherence Wx1 5 Wx2 e.g., x:=1[|x:=2

> Architecture generated

> Preserved program order For SC: ppo = po
For TSO: ppo = po \ WR

Herding Cats!

> Axiomatic model Alglave, Maranget and Tautschnig (AMT)
> Unifying framework for TSO, Power, ARMv7, etc

> Execution is valid if it satisfies certain acyclicity requirements

Herding Cats!

> Axiomatic model Alglave, Maranget and Tautschnig (AMT)
> Unifying framework for TSO, Power, ARMv7, etc

> Execution is valid if it satisfies certain acyclicity requirements

> Load buffering example: Forbidden under SC, where ppo = po

Initially: x=y=0
Thread 1: x:=1; read y;
Thread 2: y:=1; read x;

Herding Cats!

> Axiomatic model Alglave, Maranget and Tautschnig (AMT)
> Unifying framework for TSO, Power, ARMv7, etc

> Execution is valid if it satisfies certain acyclicity requirements
> Load buffering example: Forbidden under SC, where ppo = po
-Wx1 Ry0

Initially: x=y=0 '
Thread 1: x:=1; read y; '

Thread 2: y:=1; read x;

> Allowed under TSO, where ppo = po \ WR

Herding Cats!

> Axiomatic model Alglave, Maranget and Tautschnig (AMT)
> Unifying framework for TSO, Power, ARMv7, etc

> Execution is valid if it satisfies certain acyclicity requirements

> Load buffering example: Forbidden under SC, where ppo = po
Initially: x=y=0
Thread 1: x:=1;FF;read y;
Thread 2: y:=1;FF;read x;

> Allowed under TSO, where ppo = po \ WR

> To get a cycle under TSO, add fences

A simple idea

> Load buffering example: Allowed under TSO
Initially: x=y=0

Thread 1: x:=1;read y
Thread 2: y:=1;read x

A simple idea

> Load buffering example: Allowed under TSO, without atomics
Initially: x=y=0

Thread 1: atomic{x:=1;read y?}
Thread 2: atomic{y:=1;read x}

» Transaction shown as boxes

A simple idea

> Load buffering example: Allowed under TSO, without atomics

Initially: x=y=0
Thread 1: atomic{x:=1;read y?}
Thread 2: atomic{y:=1;read x}

> Transaction shown as boxes
> To achieve atomicity, lift relations across transactions
> Independent discovery by Chong, Sorensen and Wickerson

A simple idea

> Load buffering example: Allowed under TSO, without atomics

Initially: x=y=0
Thread 1: atomic{x:=1;read y?}
Thread 2: atomic{y:=1;read x}

> Transaction shown as boxes
> To achieve atomicity, lift relations across transactions

> Independent discovery by Chong, Sorensen and Wickerson
> Not AMT valid: Cycle appears between the reads

A simple idea

> Load buffering example: Allowed under TSO, without atomics

Initially: x=y=0
Thread 1: atomic{x:=1;read y?}
Thread 2: atomic{y:=1;read x}

> Transaction shown as boxes
> To achieve atomicity, lift relations across transactions

> Independent discovery by Chong, Sorensen and Wickerson
> Not AMT valid: Cycle appears between the reads

> Consequences:
> AMT valid = acyclicity = Causal serializability

A simple idea

> Load buffering example: Allowed under TSO, without atomics

Initially: x=y=0
Thread 1: atomic{x:=1;read y?}
Thread 2: atomic{y:=1;read x}

> Transaction shown as boxes
> To achieve atomicity, lift relations across transactions

> Independent discovery by Chong, Sorensen and Wickerson
> Not AMT valid: Cycle appears between the reads

> Consequences:

> AMT valid = acyclicity = Causal serializability
> lIgnores real time

A simple idea

> Load buffering example: Allowed under TSO, without atomics

Initially: x=y=0
Thread 1: atomic{x:=1;read y?}
Thread 2: atomic{y:=1;read x}

> Transaction shown as boxes
> To achieve atomicity, lift relations across transactions
> Independent discovery by Chong, Sorensen and Wickerson
> Not AMT valid: Cycle appears between the reads
> Consequences:
> AMT valid = acyclicity = Causal serializability
> lIgnores real time
> Erase empty transactions, singletons

A simple idea

> Load buffering example: Allowed under TSO, without atomics

Initially: x=y=0
Thread 1: atomic{x:=1;read y}
Thread 2: atomic{y:=1;read x}

» Transaction shown as boxes

> To achieve atomicity, lift relations across transactions
> Independent discovery by Chong, Sorensen and Wickerson
> Not AMT valid: Cycle appears between the reads
> Consequences:
> AMT valid = acyclicity = Causal serializability
> lIgnores real time
> Erase empty transactions, singletons
> Lift includes nontransactional = Strong isolation

Some goals

> Nested transactions
> Weak isolation (Example under TSO)

Wx1 Wx2
o f X strong v/ weak

Rx1

> Abort models (Example under TSO)

Rx0 Wyl

Wx2 fir X opaque v non-opaque

,,,,,,,,,,,,

Definition

» Execution is correct if AMT valid with lifted relations

> ¢ lift(o), d when either

1. e>d

2. or e’ > d for some €’ € trans(e), d ¢ trans(e)

3. or symmetrically for d’

Definition

» Execution is correct if AMT valid with lifted relations

> ¢ lift(o), d when either

1. e>d

2. or e’ > d for some ¢’ € descend(e), d ¢ descend(e)

3. or symmetrically for d’
> Refinements:

> Nesting: €’ in same or sub-transaction of e

Definition

» Execution is correct if AMT valid with lifted relations

> ¢ lift(o), d when either

1. e>d
2. or e’ > d for some ¢’ € descend(e), d ¢ descend(e),

e’ € Stronglsolated
3. or symmetrically for d’

» Refinements:

> Nesting: €’ in same or sub-transaction of e
> Weak isolated not seen atomically

Definition

» Execution is correct if AMT valid with lifted relations

> ¢ lift(o), d when either

1. e>d
2. or e’ > d for some ¢’ € descend(e), d ¢ descend(e),

either ¢’ € Stronglsolated or d € Transactional
3. or symmetrically for d’

» Refinements:

> Nesting: €’ in same or sub-transaction of e
> Weak isolated not seen atomically, except by transactions

Definition

» Execution is correct if AMT valid with lifted relations

> ¢ lift(o), d when either

1. e>d
2. or e’ > d for some ¢’ € descend(e), d ¢ descend(e),
either ¢’ € Stronglsolated or d € Transactional
3. or symmetrically for d’
> Refinements:
> Nesting: €’ in same or sub-transaction of e

> Weak isolated not seen atomically, except by transactions
> Opacity: aborteds ordered w.r.t. committeds = No changed to lift

Definition

» Execution is correct if AMT valid with lifted relations and
Vd € Aborted.Ve € E. d —— e implies e € Aborted

> ¢ lift(o), d when either

1. e>d

2. or e’ > d for some ¢’ € descend(e), d ¢ descend(e),
either ¢’ € Stronglsolated or d € Transactional

3. or symmetrically for d’

> Refinements:
> Nesting: €’ in same or sub-transaction of e
> Weak isolated not seen atomically, except by transactions
> Opacity: aborteds ordered w.r.t. committeds = No changed to lift

Aborteds only affect aborteds

Definition

» Execution is correct if AMT valid with lifted relations and
Vd € Aborted.Ve € E. d 9P, ¢ implies e € Aborted

> ¢ lift(o), d when either

1. e>d

2. or e’ > d for some ¢’ € descend(e), d ¢ descend(e),
either ¢’ € Stronglsolated or d € Transactional

3. or symmetrically for d’

> Refinements:
> Nesting: €’ in same or sub-transaction of e
> Weak isolated not seen atomically, except by transactions
> Opacity: aborteds ordered w.r.t. committeds = No changed to lift
Aborteds only affect aborteds: rwdep = rf U data U addr U ctrl

Definition

» Execution is correct if AMT valid with lifted relations and
Vd € Aborted.Ve € E. d ™4, ¢ implies e € Aborted

> ¢ lift(o), d when either

1. e>d

2. or e’ > d for some ¢’ € descend(e), d ¢ descend(e),
either ¢’ € Stronglsolated or d € Transactional

3. or symmetrically for d’

> Refinements:
> Nesting: €’ in same or sub-transaction of e
> Weak isolated not seen atomically, except by transactions
> Opacity: aborteds ordered w.r.t. committeds = No changed to lift
Aborteds only affect aborteds: rwdep = rf U data U addr U ctrl

> Consequences: Causal serializability, No real time, Singletons

Definition

» Execution is correct if AMT valid with lifted relations and
Vd € Aborted.Ve € E. d ™4, ¢ implies e € Aborted

e lift(o), d when either

1. e>d

2. or e’ > d for some ¢’ € descend(e), d ¢ descend(e),
either ¢’ € Stronglsolated or d € Transactional

3. or symmetrically for d’

v

v

Refinements:
> Nesting: €’ in same or sub-transaction of e
> Weak isolated not seen atomically, except by transactions
> Opacity: aborteds ordered w.r.t. committeds = No changed to lift
Aborteds only affect aborteds: rwdep = rf U data U addr U ctrl

> Consequences: Causal serializability, No real time, Singletons

v

What about standard serializability?

Standard Serializability?

> Independent Reads of Independent Writes (IRIW)
Forbidden for Multi-copy atomic, e.g. SC, TSO, ARMv8

fr

y

fr

Ry1 Rx0
y addr X

Standard Serializability?

> Independent Reads of Independent Writes (IRIW)
Forbidden for Multi-copy atomic, e.g. SC, TSO, ARMv8

rf
/ fr
fr

addr

> Allowed under ARMv7: Writes seen in different orders

Standard Serializability?

> Independent Reads of Independent Writes (IRIW)
Forbidden for Multi-copy atomic, e.g. SC, TSO, ARMv8

y addr

Wx1

addr

> Allowed under ARMv7: Writes seen in different orders

> VWith transactions: v causal serializable X serializable
Lift =5 Standard serializability, in general

Standard Serializability?

> Independent Reads of Independent Writes (IRIW)
Forbidden for Multi-copy atomic, e.g. SC, TSO, ARMv8

y addr

Wx1

addr

> Allowed under ARMv7: Writes seen in different orders

> With transactions: v causal serializable X serializable
Lift =5 Standard serializability, in general

» Lift = Standard serializability, for multi-copy atomic
Formalized using Global Happens Before [Alglave 2010]

NonOpaque Aborts

» Forbidden if all commit (Example under TSO)

Rx0 Wyl
A
of Lfr

fr

rf

T
Rx2 Ry0

BEE

NonOpaque Aborts

» Forbidden if all commit (Example under TSO)

Rx0 Wyl
A
of \ fr
W x2 fr
rf f
TRx2! TRy0t

> What if bottom transaction aborts?

NonOpaque Aborts

» Forbidden if all commit (Example under TSO)

Rx0 Wyl

Pl

> What if bottom transaction aborts?

> Forbidden under opacity: Aborteds ordered w.r.t. committeds
> Allowed under weaker conditions, e.g. VWC (and possibly TMS1)

NonOpaque Aborts

» Forbidden if all commit (Example under TSO)

/frr

> What if bottom transaction aborts?

> Forbidden under opacity: Aborteds ordered w.r.t. committeds
> Allowed under weaker conditions, e.g. VWC (and possibly TMS1)

» Qur solution:
> Check committeds and opaques together, ignoring non-opaques

NonOpaque Aborts

» Forbidden if all commit (Example under TSO)

> What if bottom transaction aborts?

> Forbidden under opacity: Aborteds ordered w.r.t. committeds
> Allowed under weaker conditions, e.g. VWC (and possibly TMS1)

» QOur solution:

> Check committeds and opaques together, ignoring non-opaques
> Check each non-opaque w.r.t. its causal history

NonOpaque Aborts

» Forbidden if all commit (Example under TSO)

> What if bottom transaction aborts?

> Forbidden under opacity: Aborteds ordered w.r.t. committeds
> Allowed under weaker conditions, e.g. VWC (and possibly TMS1)

» QOur solution:

> Check committeds and opaques together, ignoring non-opaques
> Check each non-opaque w.r.t. its causal history

> New formal footing for weaker conditions, e.g. VWC and TMS1

In the paper

» Non-Opaques: Comparison with VWC and TMS1

In the paper

» Non-Opaques: Comparison with VWC and TMS1
> Automaton to check violations of Global Happens Before
Used to prove lift = total order on transactions (for GHB)

In the paper

» Non-Opaques: Comparison with VWC and TMS1
> Automaton to check violations of Global Happens Before
Used to prove lift = total order on transactions (for GHB)
» Formalized in Memalloy [Wickerson, et al 2017]
> TSO, Power and ARMv8 using non-opaque aborts
> Compared to HW transactions (< 5 events)

In the paper

» Non-Opaques: Comparison with VWC and TMS1
> Automaton to check violations of Global Happens Before
Used to prove lift = total order on transactions (for GHB)
» Formalized in Memalloy [Wickerson, et al 2017]
> TSO, Power and ARMv8 using non-opaque aborts
> Compared to HW transactions (< 5 events)
» HW hides aborted from different aborted

HW allows We allow

EO0: Wlx=1 -

\
R
Bl R[]x':l J

.~b< N’I > EL: R[Jx=1

E2: R[]x=0

In the paper

» Non-Opaques: Comparison with VWC and TMS1
> Automaton to check violations of Global Happens Before
Used to prove lift = total order on transactions (for GHB)

» Formalized in Memalloy [Wickerson, et al 2017]

> TSO, Power and ARMv8 using non-opaque aborts

> Compared to HW transactions (< 5 events)

> HW hides aborted from different aborted

> Otherwise, our model strictly more expressive

> HW enforces coherence with aborted
> HW places fences before/after each transaction

HW allows We allow

EO0: W[jx=1 E0: Wilx=1

\
R
Bl R[]x':l J

.~b< N’I > EL: R[Ix=1

E2: R[Jx=0

We allow We allow
EO: W[]x=2 ‘ EO: W[lx=1 EL: W(ly=1
{ » | |
ElL: W[]x=1 E3: R[ly=0 E2: R[]x=0

Inspiration

» What do High-Level Memory Models Mean for Transactions?
Grossman, Manson and Pugh, 2006

> Transactions As the Foundation of a Memory Consistency Model
Dalessandro, Scott and Spear, 2010

Inspiration

» What do High-Level Memory Models Mean for Transactions?
Grossman, Manson and Pugh, 2006

> Transactions As the Foundation of a Memory Consistency Model
Dalessandro, Scott and Spear, 2010

» A Shared Memory Poetics
Alglave, 2010

» Herding Cats: Modeling, Simulation, Testing, and Data Mining ...
Alglave, Maranget and Tautschnig, 2014

Inspiration

S

What do High-Level Memory Models Mean for Transactions?
Grossman, Manson and Pugh, 2006

Transactions As the Foundation of a Memory Consistency Model
Dalessandro, Scott and Spear, 2010

A Shared Memory Poetics

Alglave, 2010

Herding Cats: Modeling, Simulation, Testing, and Data Mining ...
Alglave, Maranget and Tautschnig, 2014

Automatically comparing memory consistency models,
Wickerson, Batty, Sorensen and Constantinides, 2017

The Semantics of Transactions ... in x86, Power, ARMvS, and C++
Chong, Sorensen and Wickerson, 2017

Inspiration

S

What do High-Level Memory Models Mean for Transactions?
Grossman, Manson and Pugh, 2006

Transactions As the Foundation of a Memory Consistency Model
Dalessandro, Scott and Spear, 2010

A Shared Memory Poetics
Alglave, 2010

Herding Cats: Modeling, Simulation, Testing, and Data Mining ...
Alglave, Maranget and Tautschnig, 2014

Automatically comparing memory consistency models,
Wickerson, Batty, Sorensen and Constantinides, 2017

The Semantics of Transactions ... in x86, Power, ARMvS, and C++
Chong, Sorensen and Wickerson, 2017

Our contribution: High-level view of low-level model

