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Transactional Memory

I Replace locks with transactions
I Well studied . . .

I Atomicity = all or nothing
I Commi�eds: What order?

I Standard serializability: ∃ total order (arbitrary)
I Strict serializability: ∃ total order respecting real-time order
I Causal serializability: ∃ partial order respecting causality

I Aborteds: Can a�ect client?

I Yes: Opacity — Aborteds must fit in commi�ed order
I No: TMS1, VWC, . . . — Intuition less clear

I How does nontransactional code see transaction?

I Atomically: Strong isolation
I As individual operations: Weak isolation

I . . . assuming memory is sequentially consistent (SC)
I What about relaxed memory?
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Transactional Memory . . . Relaxed

I Atomicity, as before

I Order for commi�eds?

I Idea: Use order from underlying memory model
I ⇒ causal serializability
I ⇐ strict serializability
I /⇔ standard serializability, in general

Respects causality: 3us 7 standard
Single total order: 7 us 3standard

I ⇒ standard serializability, for GHB models, e.g. TSO and ARMv8
Respects causality: 3us 7 standard
Single total order: 3us 3standard

In paper: Observational serializability⇒ causal & standard

I Aborteds: Can a�ect client?

I Natural formalization of opacity (Ignoring realtime)
I New perspective on weaker conditions (TMS1, VWC, . . . )

I Nontransactional code?

I Natural formalization of isolated and relaxed
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Herding Cats!

I Axiomatic model Alglave, Maranget and Tautschnig (AMT)
I Unifying framework for TSO, Power, ARMv7, etc

I Events labelled by action (Rx1, Wx1)
I Relations over events, including

I Program generated (ML syntax)

I Program order Wx1 po
−−→Wy1 e.g., x:=1;y:=1

I Data dependency Rx1 data
−−−→Wy1 e.g., y:=!x

I Address dependency Rxy addr
−−−−→Wy1 e.g., !x:=1

I Control dependency Rx1 ctrl
−−−→Wy1 e.g., if !x then y:=1

I Resolving nondeterminism

I Reads-from Wx1 rf
−→ Rx1 e.g., x:=1‖y:=!x

I From-read Rx0 fr
−→Wx1 e.g., x:=1‖y:=!x

I Coherence Wx1 co
−−→Wx2 e.g., x:=1‖x:=2

I Architecture generated

I Preserved program order For SC: ppo = po
For TSO: ppo = po \WR
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Herding Cats!

I Axiomatic model Alglave, Maranget and Tautschnig (AMT)
I Unifying framework for TSO, Power, ARMv7, etc

I Execution is valid if it satisfies certain acyclicity requirements

I Load bu�ering example: Forbidden under SC, where ppo = po

Initially: x=y=0

Thread 1: x:=1;

FF;

read y;

Thread 2: y:=1;

FF;

read x;

init

Wx1 Ry0

Wy1 Rx0

co

co

rf

rf

I Allowed under TSO, where ppo = po \WR
I To get a cycle under TSO, add fences
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A simple idea

I Load bu�ering example: Allowed under TSO

Initially: x=y=0

Thread 1:

atomic{

x:=1;read y

}

Thread 2:

atomic{

y:=1;read x

}

init

Wx1 Ry0

Wy1 Rx0

po

po

co

co

rf

rf

fr

fr

I Transaction shown as boxes
I To achieve atomicity, li� relations across transactions

I Independent discovery by Chong, Sorensen and Wickerson
I Not AMT valid: Cycle appears between the reads

I Consequences:

I AMT valid⇒ acyclicity⇒ Causal serializability
I Ignores real time
I Erase empty transactions, singletons
I Li� includes nontransactional⇒ Strong isolation
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I Load bu�ering example: Allowed under TSO, without atomics
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Some goals

I Nested transactions
I Weak isolation (Example under TSO)

Rx1

Wx1 Wx2
po

rf fr 7 strong 3weak

I Abort models (Example under TSO)

init Wx2

Rx0 Wy1

Rx2 Ry0

rf

fr

fr

rf

rf

7 opaque 3non-opaque
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Definition

I Execution is correct if AMT valid with li�ed relations

and
∀d ∈ Aborted.∀e ∈ E . d

rwdep

−−−−→ e implies e ∈ Aborted

I e li�(o)
−−−−→ d when either
1. e o
−→ d

2. or e′ o
−→ d for some e′ ∈ trans(e), d < trans(e)

,

either

e′ ∈ StrongIsolated or d ∈ Transactional

3. or symmetrically for d ′

I Refinements:

I Nesting: e′ in same or sub-transaction of e
I Weak isolated not seen atomically

, except by transactions

I Opacity: aborteds ordered w.r.t. commi�eds

⇒ No changed to li�
Aborteds only a�ect aborteds: rwdep = rf ∪ data ∪ addr ∪ ctrl

I Consequences: Causal serializability, No real time, Singletons
I What about standard serializability?
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I Non-Opaques: Comparison with VWC and TMS1

I Automaton to check violations of Global Happens Before
Used to prove li�⇒ total order on transactions (for GHB)

I Formalized in Memalloy [Wickerson, et al 2017]

I TSO, Power and ARMv8 using non-opaque aborts
I Compared to HW transactions (≤ 5 events)
I HW hides aborted from di�erent aborted
I Otherwise, our model strictly more expressive

I HW enforces coherence with aborted
I HW places fences before/a�er each transaction

HW allows We allow We allow We allow
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