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Transactional Memory

> Replace locks with transactions
> Well studied ...

> Atomicity = all or nothing
> Committeds: What order?

> Standard serializability: 3 total order (arbitrary)
> Strict serializability: 3 total order respecting real-time order
> Causal serializability: 3 partial order respecting causality

> Aborteds: Can affect client?

> Yes: Opacity — Aborteds must fit in committed order
> No: TMS1, VWC, ... — Intuition less clear

» How does nontransactional code see transaction?

> Atomically: Strong isolation
> As individual operations: Weak isolation

> ... assuming memory is sequentially consistent (SC)

> What about relaxed memory?
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Idea: Use order from underlying memory model
= causal serializability
& strict serializability
& standard serializability, in general
Respects causality:  v'us X standard
Single total order:  Xus v'standard
= standard serializability, for GHB models, e.g. TSO and ARMv8
Respects causality:  v'us X standard
Single total order:  v'us  V'standard
In paper: Observational serializability = causal & standard

> Aborteds: Can affect client?

>
>

Natural formalization of opacity (Ignoring realtime)
New perspective on weaker conditions (TMS1, VWC, ...)

» Nontransactional code?

>

Natural formalization of isolated and relaxed
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Herding Cats!

> Axiomatic model Alglave, Maranget and Tautschnig (AMT)
> Unifying framework for TSO, Power, ARMv7, etc

> Events labelled by action (Rx1, Wx1)
> Relations over events, including

> Program generated (ML syntax)
> Program order wx1 2% Wyl eg., x:=1;y:=1
> Data dependency  Rx1 data, Wyl e.g.,y:=Ix
> Address dependency Rxy addr, Wyl e.g., !x:=1
> Control dependency Rx1 e, Wyl e.g.,if !x then y:=1

> Resolving nondeterminism

> Reads-from Wx1 LR Rx1 eg., x:=1]ly:=!x
> From-read Rx0 5 Wx1 eg., x:=1]ly:=!Ix
» Coherence Wx1 5 Wx2 e.g., x:=1[|x:=2

> Architecture generated

> Preserved program order For SC: ppo = po
For TSO: ppo = po \ WR
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Herding Cats!

> Axiomatic model Alglave, Maranget and Tautschnig (AMT)
> Unifying framework for TSO, Power, ARMv7, etc

> Execution is valid if it satisfies certain acyclicity requirements

> Load buffering example: Forbidden under SC, where ppo = po
Initially: x=y=0
Thread 1: x:=1;FF;read y;
Thread 2: y:=1;FF;read x;

> Allowed under TSO, where ppo = po \ WR

> To get a cycle under TSO, add fences
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A simple idea

> Load buffering example: Allowed under TSO, without atomics

Initially: x=y=0
Thread 1: atomic{x:=1;read y}
Thread 2: atomic{y:=1;read x}

» Transaction shown as boxes

> To achieve atomicity, lift relations across transactions
> Independent discovery by Chong, Sorensen and Wickerson
> Not AMT valid: Cycle appears between the reads
> Consequences:
> AMT valid = acyclicity = Causal serializability
> lIgnores real time
> Erase empty transactions, singletons
> Lift includes nontransactional = Strong isolation



Some goals

> Nested transactions
> Weak isolation (Example under TSO)

Wx1 Wx2
o f X strong v/ weak

Rx1

> Abort models (Example under TSO)

Rx0 Wyl

Wx2 fir X opaque v non-opaque

,,,,,,,,,,,,
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Definition

» Execution is correct if AMT valid with lifted relations and
Vd € Aborted.Ve € E. d ™4, ¢ implies e € Aborted

e lift(o), d when either

1. e>d

2. or e’ > d for some ¢’ € descend(e), d ¢ descend(e),
either ¢’ € Stronglsolated or d € Transactional

3. or symmetrically for d’

v

v

Refinements:
> Nesting: €’ in same or sub-transaction of e
> Weak isolated not seen atomically, except by transactions
> Opacity: aborteds ordered w.r.t. committeds = No changed to lift
Aborteds only affect aborteds: rwdep = rf U data U addr U ctrl

> Consequences: Causal serializability, No real time, Singletons

v

What about standard serializability?
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Standard Serializability?

> Independent Reads of Independent Writes (IRIW)
Forbidden for Multi-copy atomic, e.g. SC, TSO, ARMv8

y addr

Wx1

addr

> Allowed under ARMv7: Writes seen in different orders

> With transactions: v causal serializable X serializable
Lift =5 Standard serializability, in general

» Lift = Standard serializability, for multi-copy atomic
Formalized using Global Happens Before [Alglave 2010]
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» Forbidden if all commit (Example under TSO)

> What if bottom transaction aborts?

> Forbidden under opacity: Aborteds ordered w.r.t. committeds
> Allowed under weaker conditions, e.g. VWC (and possibly TMS1)

» QOur solution:

> Check committeds and opaques together, ignoring non-opaques
> Check each non-opaque w.r.t. its causal history

> New formal footing for weaker conditions, e.g. VWC and TMS1
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In the paper

» Non-Opaques: Comparison with VWC and TMS1
> Automaton to check violations of Global Happens Before
Used to prove lift = total order on transactions (for GHB)

» Formalized in Memalloy [Wickerson, et al 2017]

> TSO, Power and ARMv8 using non-opaque aborts

> Compared to HW transactions (< 5 events)

> HW hides aborted from different aborted

> Otherwise, our model strictly more expressive

> HW enforces coherence with aborted
> HW places fences before/after each transaction

HW allows We allow

EO0: W[jx=1 E0: Wilx=1

\
R
Bl R[]x':l J

.~b< N’I > EL: R[Ix=1

E2: R[Jx=0

We allow We allow
EO: W[]x=2 ‘ EO: W[lx=1 EL: W(ly=1
{ » | |
ElL: W[]x=1 E3: R[ly=0 E2: R[]x=0
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Inspiration

S

What do High-Level Memory Models Mean for Transactions?
Grossman, Manson and Pugh, 2006

Transactions As the Foundation of a Memory Consistency Model
Dalessandro, Scott and Spear, 2010

A Shared Memory Poetics
Alglave, 2010

Herding Cats: Modeling, Simulation, Testing, and Data Mining ...
Alglave, Maranget and Tautschnig, 2014

Automatically comparing memory consistency models,
Wickerson, Batty, Sorensen and Constantinides, 2017

The Semantics of Transactions ... in x86, Power, ARMvS, and C++
Chong, Sorensen and Wickerson, 2017

Our contribution: High-level view of low-level model



