
DRAFT
1/12

Transactions in Relaxed Memory Architectures

Brijesh Dongol Radha Jagadeesan James Riely



DRAFT
2/12

Transactional Memory

I Replace locks with transactions
I Well studied . . .

I Atomicity = all or nothing
I Commi�eds: What order?

I Standard serializability: ∃ total order (arbitrary)
I Strict serializability: ∃ total order respecting real-time order
I Causal serializability: ∃ partial order respecting causality

I Aborteds: Can a�ect client?

I Yes: Opacity — Aborteds must fit in commi�ed order
I No: TMS1, VWC, . . . — Intuition less clear

I How does nontransactional code see transaction?

I Atomically: Strong isolation
I As individual operations: Weak isolation

I . . . assuming memory is sequentially consistent (SC)
I What about relaxed memory?



DRAFT
2/12

Transactional Memory

I Replace locks with transactions
I Well studied . . .

I Atomicity = all or nothing

I Commi�eds: What order?

I Standard serializability: ∃ total order (arbitrary)
I Strict serializability: ∃ total order respecting real-time order
I Causal serializability: ∃ partial order respecting causality

I Aborteds: Can a�ect client?

I Yes: Opacity — Aborteds must fit in commi�ed order
I No: TMS1, VWC, . . . — Intuition less clear

I How does nontransactional code see transaction?

I Atomically: Strong isolation
I As individual operations: Weak isolation

I . . . assuming memory is sequentially consistent (SC)
I What about relaxed memory?



DRAFT
2/12

Transactional Memory

I Replace locks with transactions
I Well studied . . .

I Atomicity = all or nothing
I Commi�eds: What order?

I Standard serializability: ∃ total order (arbitrary)
I Strict serializability: ∃ total order respecting real-time order
I Causal serializability: ∃ partial order respecting causality

I Aborteds: Can a�ect client?

I Yes: Opacity — Aborteds must fit in commi�ed order
I No: TMS1, VWC, . . . — Intuition less clear

I How does nontransactional code see transaction?

I Atomically: Strong isolation
I As individual operations: Weak isolation

I . . . assuming memory is sequentially consistent (SC)
I What about relaxed memory?



DRAFT
2/12

Transactional Memory

I Replace locks with transactions
I Well studied . . .

I Atomicity = all or nothing
I Commi�eds: What order?

I Standard serializability: ∃ total order (arbitrary)
I Strict serializability: ∃ total order respecting real-time order
I Causal serializability: ∃ partial order respecting causality

I Aborteds: Can a�ect client?
I Yes: Opacity — Aborteds must fit in commi�ed order
I No: TMS1, VWC, . . . — Intuition less clear

I How does nontransactional code see transaction?

I Atomically: Strong isolation
I As individual operations: Weak isolation

I . . . assuming memory is sequentially consistent (SC)
I What about relaxed memory?



DRAFT
2/12

Transactional Memory

I Replace locks with transactions
I Well studied . . .

I Atomicity = all or nothing
I Commi�eds: What order?

I Standard serializability: ∃ total order (arbitrary)
I Strict serializability: ∃ total order respecting real-time order
I Causal serializability: ∃ partial order respecting causality

I Aborteds: Can a�ect client?
I Yes: Opacity — Aborteds must fit in commi�ed order
I No: TMS1, VWC, . . . — Intuition less clear

I How does nontransactional code see transaction?
I Atomically: Strong isolation
I As individual operations: Weak isolation

I . . . assuming memory is sequentially consistent (SC)
I What about relaxed memory?



DRAFT
2/12

Transactional Memory

I Replace locks with transactions
I Well studied . . .

I Atomicity = all or nothing
I Commi�eds: What order?

I Standard serializability: ∃ total order (arbitrary)
I Strict serializability: ∃ total order respecting real-time order
I Causal serializability: ∃ partial order respecting causality

I Aborteds: Can a�ect client?
I Yes: Opacity — Aborteds must fit in commi�ed order
I No: TMS1, VWC, . . . — Intuition less clear

I How does nontransactional code see transaction?
I Atomically: Strong isolation
I As individual operations: Weak isolation

I . . . assuming memory is sequentially consistent (SC)
I What about relaxed memory?



DRAFT
3/12

Transactional Memory . . . Relaxed

I Atomicity, as before

I Order for commi�eds?

I Idea: Use order from underlying memory model
I ⇒ causal serializability
I ⇐ strict serializability
I /⇔ standard serializability, in general

Respects causality: 3us 7 standard
Single total order: 7 us 3standard

I ⇒ standard serializability, for GHB models, e.g. TSO and ARMv8
Respects causality: 3us 7 standard
Single total order: 3us 3standard

In paper: Observational serializability⇒ causal & standard

I Aborteds: Can a�ect client?

I Natural formalization of opacity (Ignoring realtime)
I New perspective on weaker conditions (TMS1, VWC, . . . )

I Nontransactional code?

I Natural formalization of isolated and relaxed



DRAFT
3/12

Transactional Memory . . . Relaxed

I Atomicity, as before
I Order for commi�eds?

I Idea: Use order from underlying memory model

I ⇒ causal serializability
I ⇐ strict serializability
I /⇔ standard serializability, in general

Respects causality: 3us 7 standard
Single total order: 7 us 3standard

I ⇒ standard serializability, for GHB models, e.g. TSO and ARMv8
Respects causality: 3us 7 standard
Single total order: 3us 3standard

In paper: Observational serializability⇒ causal & standard

I Aborteds: Can a�ect client?

I Natural formalization of opacity (Ignoring realtime)
I New perspective on weaker conditions (TMS1, VWC, . . . )

I Nontransactional code?

I Natural formalization of isolated and relaxed



DRAFT
3/12

Transactional Memory . . . Relaxed

I Atomicity, as before
I Order for commi�eds?

I Idea: Use order from underlying memory model
I ⇒ causal serializability
I ⇐ strict serializability
I /⇔ standard serializability, in general

Respects causality: 3us 7 standard
Single total order: 7 us 3standard

I ⇒ standard serializability, for GHB models, e.g. TSO and ARMv8
Respects causality: 3us 7 standard
Single total order: 3us 3standard

In paper: Observational serializability⇒ causal & standard

I Aborteds: Can a�ect client?

I Natural formalization of opacity (Ignoring realtime)
I New perspective on weaker conditions (TMS1, VWC, . . . )

I Nontransactional code?

I Natural formalization of isolated and relaxed



DRAFT
3/12

Transactional Memory . . . Relaxed

I Atomicity, as before
I Order for commi�eds?

I Idea: Use order from underlying memory model
I ⇒ causal serializability
I ⇐ strict serializability
I /⇔ standard serializability, in general

Respects causality: 3us 7 standard
Single total order: 7 us 3standard

I ⇒ standard serializability, for GHB models, e.g. TSO and ARMv8
Respects causality: 3us 7 standard
Single total order: 3us 3standard

In paper: Observational serializability⇒ causal & standard

I Aborteds: Can a�ect client?

I Natural formalization of opacity (Ignoring realtime)
I New perspective on weaker conditions (TMS1, VWC, . . . )

I Nontransactional code?

I Natural formalization of isolated and relaxed



DRAFT
3/12

Transactional Memory . . . Relaxed

I Atomicity, as before
I Order for commi�eds?

I Idea: Use order from underlying memory model
I ⇒ causal serializability
I ⇐ strict serializability
I /⇔ standard serializability, in general

Respects causality: 3us 7 standard
Single total order: 7 us 3standard

I ⇒ standard serializability, for GHB models, e.g. TSO and ARMv8
Respects causality: 3us 7 standard
Single total order: 3us 3standard

In paper: Observational serializability⇒ causal & standard

I Aborteds: Can a�ect client?
I Natural formalization of opacity (Ignoring realtime)
I New perspective on weaker conditions (TMS1, VWC, . . . )

I Nontransactional code?

I Natural formalization of isolated and relaxed



DRAFT
3/12

Transactional Memory . . . Relaxed

I Atomicity, as before
I Order for commi�eds?

I Idea: Use order from underlying memory model
I ⇒ causal serializability
I ⇐ strict serializability
I /⇔ standard serializability, in general

Respects causality: 3us 7 standard
Single total order: 7 us 3standard

I ⇒ standard serializability, for GHB models, e.g. TSO and ARMv8
Respects causality: 3us 7 standard
Single total order: 3us 3standard

In paper: Observational serializability⇒ causal & standard

I Aborteds: Can a�ect client?
I Natural formalization of opacity (Ignoring realtime)
I New perspective on weaker conditions (TMS1, VWC, . . . )

I Nontransactional code?
I Natural formalization of isolated and relaxed



DRAFT
4/12

Herding Cats!

I Axiomatic model Alglave, Maranget and Tautschnig (AMT)
I Unifying framework for TSO, Power, ARMv7, etc

I Events labelled by action (Rx1, Wx1)
I Relations over events, including

I Program generated (ML syntax)

I Program order Wx1 po
−−→Wy1 e.g., x:=1;y:=1

I Data dependency Rx1 data
−−−→Wy1 e.g., y:=!x

I Address dependency Rxy addr
−−−−→Wy1 e.g., !x:=1

I Control dependency Rx1 ctrl
−−−→Wy1 e.g., if !x then y:=1

I Resolving nondeterminism

I Reads-from Wx1 rf
−→ Rx1 e.g., x:=1‖y:=!x

I From-read Rx0 fr
−→Wx1 e.g., x:=1‖y:=!x

I Coherence Wx1 co
−−→Wx2 e.g., x:=1‖x:=2

I Architecture generated

I Preserved program order For SC: ppo = po
For TSO: ppo = po \WR



DRAFT
4/12

Herding Cats!

I Axiomatic model Alglave, Maranget and Tautschnig (AMT)
I Unifying framework for TSO, Power, ARMv7, etc

I Events labelled by action (Rx1, Wx1)

I Relations over events, including

I Program generated (ML syntax)

I Program order Wx1 po
−−→Wy1 e.g., x:=1;y:=1

I Data dependency Rx1 data
−−−→Wy1 e.g., y:=!x

I Address dependency Rxy addr
−−−−→Wy1 e.g., !x:=1

I Control dependency Rx1 ctrl
−−−→Wy1 e.g., if !x then y:=1

I Resolving nondeterminism

I Reads-from Wx1 rf
−→ Rx1 e.g., x:=1‖y:=!x

I From-read Rx0 fr
−→Wx1 e.g., x:=1‖y:=!x

I Coherence Wx1 co
−−→Wx2 e.g., x:=1‖x:=2

I Architecture generated

I Preserved program order For SC: ppo = po
For TSO: ppo = po \WR



DRAFT
4/12

Herding Cats!

I Axiomatic model Alglave, Maranget and Tautschnig (AMT)
I Unifying framework for TSO, Power, ARMv7, etc

I Events labelled by action (Rx1, Wx1)
I Relations over events, including

I Program generated (ML syntax)
I Program order Wx1 po

−−→Wy1 e.g., x:=1;y:=1

I Data dependency Rx1 data
−−−→Wy1 e.g., y:=!x

I Address dependency Rxy addr
−−−−→Wy1 e.g., !x:=1

I Control dependency Rx1 ctrl
−−−→Wy1 e.g., if !x then y:=1

I Resolving nondeterminism

I Reads-from Wx1 rf
−→ Rx1 e.g., x:=1‖y:=!x

I From-read Rx0 fr
−→Wx1 e.g., x:=1‖y:=!x

I Coherence Wx1 co
−−→Wx2 e.g., x:=1‖x:=2

I Architecture generated

I Preserved program order For SC: ppo = po
For TSO: ppo = po \WR



DRAFT
4/12

Herding Cats!

I Axiomatic model Alglave, Maranget and Tautschnig (AMT)
I Unifying framework for TSO, Power, ARMv7, etc

I Events labelled by action (Rx1, Wx1)
I Relations over events, including

I Program generated (ML syntax)
I Program order Wx1 po

−−→Wy1 e.g., x:=1;y:=1
I Data dependency Rx1 data

−−−→Wy1 e.g., y:=!x
I Address dependency Rxy addr

−−−−→Wy1 e.g., !x:=1
I Control dependency Rx1 ctrl

−−−→Wy1 e.g., if !x then y:=1

I Resolving nondeterminism

I Reads-from Wx1 rf
−→ Rx1 e.g., x:=1‖y:=!x

I From-read Rx0 fr
−→Wx1 e.g., x:=1‖y:=!x

I Coherence Wx1 co
−−→Wx2 e.g., x:=1‖x:=2

I Architecture generated

I Preserved program order For SC: ppo = po
For TSO: ppo = po \WR



DRAFT
4/12

Herding Cats!

I Axiomatic model Alglave, Maranget and Tautschnig (AMT)
I Unifying framework for TSO, Power, ARMv7, etc

I Events labelled by action (Rx1, Wx1)
I Relations over events, including

I Program generated (ML syntax)
I Program order Wx1 po

−−→Wy1 e.g., x:=1;y:=1
I Data dependency Rx1 data

−−−→Wy1 e.g., y:=!x
I Address dependency Rxy addr

−−−−→Wy1 e.g., !x:=1
I Control dependency Rx1 ctrl

−−−→Wy1 e.g., if !x then y:=1

I Resolving nondeterminism
I Reads-from Wx1 rf

−→ Rx1 e.g., x:=1‖y:=!x

I From-read Rx0 fr
−→Wx1 e.g., x:=1‖y:=!x

I Coherence Wx1 co
−−→Wx2 e.g., x:=1‖x:=2

I Architecture generated

I Preserved program order For SC: ppo = po
For TSO: ppo = po \WR



DRAFT
4/12

Herding Cats!

I Axiomatic model Alglave, Maranget and Tautschnig (AMT)
I Unifying framework for TSO, Power, ARMv7, etc

I Events labelled by action (Rx1, Wx1)
I Relations over events, including

I Program generated (ML syntax)
I Program order Wx1 po

−−→Wy1 e.g., x:=1;y:=1
I Data dependency Rx1 data

−−−→Wy1 e.g., y:=!x
I Address dependency Rxy addr

−−−−→Wy1 e.g., !x:=1
I Control dependency Rx1 ctrl

−−−→Wy1 e.g., if !x then y:=1

I Resolving nondeterminism
I Reads-from Wx1 rf

−→ Rx1 e.g., x:=1‖y:=!x
I From-read Rx0 fr

−→Wx1 e.g., x:=1‖y:=!x

I Coherence Wx1 co
−−→Wx2 e.g., x:=1‖x:=2

I Architecture generated

I Preserved program order For SC: ppo = po
For TSO: ppo = po \WR



DRAFT
4/12

Herding Cats!

I Axiomatic model Alglave, Maranget and Tautschnig (AMT)
I Unifying framework for TSO, Power, ARMv7, etc

I Events labelled by action (Rx1, Wx1)
I Relations over events, including

I Program generated (ML syntax)
I Program order Wx1 po

−−→Wy1 e.g., x:=1;y:=1
I Data dependency Rx1 data

−−−→Wy1 e.g., y:=!x
I Address dependency Rxy addr

−−−−→Wy1 e.g., !x:=1
I Control dependency Rx1 ctrl

−−−→Wy1 e.g., if !x then y:=1

I Resolving nondeterminism
I Reads-from Wx1 rf

−→ Rx1 e.g., x:=1‖y:=!x
I From-read Rx0 fr

−→Wx1 e.g., x:=1‖y:=!x
I Coherence Wx1 co

−−→Wx2 e.g., x:=1‖x:=2

I Architecture generated

I Preserved program order For SC: ppo = po
For TSO: ppo = po \WR



DRAFT
4/12

Herding Cats!

I Axiomatic model Alglave, Maranget and Tautschnig (AMT)
I Unifying framework for TSO, Power, ARMv7, etc

I Events labelled by action (Rx1, Wx1)
I Relations over events, including

I Program generated (ML syntax)
I Program order Wx1 po

−−→Wy1 e.g., x:=1;y:=1
I Data dependency Rx1 data

−−−→Wy1 e.g., y:=!x
I Address dependency Rxy addr

−−−−→Wy1 e.g., !x:=1
I Control dependency Rx1 ctrl

−−−→Wy1 e.g., if !x then y:=1

I Resolving nondeterminism
I Reads-from Wx1 rf

−→ Rx1 e.g., x:=1‖y:=!x
I From-read Rx0 fr

−→Wx1 e.g., x:=1‖y:=!x
I Coherence Wx1 co

−−→Wx2 e.g., x:=1‖x:=2
I Architecture generated

I Preserved program order For SC: ppo = po
For TSO: ppo = po \WR



DRAFT
5/12

Herding Cats!

I Axiomatic model Alglave, Maranget and Tautschnig (AMT)
I Unifying framework for TSO, Power, ARMv7, etc

I Execution is valid if it satisfies certain acyclicity requirements

I Load bu�ering example: Forbidden under SC, where ppo = po

Initially: x=y=0

Thread 1: x:=1;

FF;

read y;

Thread 2: y:=1;

FF;

read x;

init

Wx1 Ry0

Wy1 Rx0

co

co

rf

rf

I Allowed under TSO, where ppo = po \WR
I To get a cycle under TSO, add fences



DRAFT
5/12

Herding Cats!

I Axiomatic model Alglave, Maranget and Tautschnig (AMT)
I Unifying framework for TSO, Power, ARMv7, etc

I Execution is valid if it satisfies certain acyclicity requirements
I Load bu�ering example: Forbidden under SC, where ppo = po

Initially: x=y=0

Thread 1: x:=1;

FF;

read y;

Thread 2: y:=1;

FF;

read x;

init

Wx1 Ry0

Wy1 Rx0

co

co

rf

rf

ppo

ppo

fr

fr

I Allowed under TSO, where ppo = po \WR
I To get a cycle under TSO, add fences



DRAFT
5/12

Herding Cats!

I Axiomatic model Alglave, Maranget and Tautschnig (AMT)
I Unifying framework for TSO, Power, ARMv7, etc

I Execution is valid if it satisfies certain acyclicity requirements
I Load bu�ering example: Forbidden under SC, where ppo = po

Initially: x=y=0

Thread 1: x:=1;

FF;

read y;

Thread 2: y:=1;

FF;

read x;

init

Wx1 Ry0

Wy1 Rx0

co

co

rf

rf

po

po

fr

fr

I Allowed under TSO, where ppo = po \WR

I To get a cycle under TSO, add fences



DRAFT
5/12

Herding Cats!

I Axiomatic model Alglave, Maranget and Tautschnig (AMT)
I Unifying framework for TSO, Power, ARMv7, etc

I Execution is valid if it satisfies certain acyclicity requirements
I Load bu�ering example: Forbidden under SC, where ppo = po

Initially: x=y=0

Thread 1: x:=1;FF;read y;

Thread 2: y:=1;FF;read x;

init

Wx1 Ry0

Wy1 Rx0

co

co

rf

rf

hb

hb

fr

fr

I Allowed under TSO, where ppo = po \WR
I To get a cycle under TSO, add fences



DRAFT
6/12

A simple idea

I Load bu�ering example: Allowed under TSO

Initially: x=y=0

Thread 1:

atomic{

x:=1;read y

}

Thread 2:

atomic{

y:=1;read x

}

init

Wx1 Ry0

Wy1 Rx0

po

po

co

co

rf

rf

fr

fr

I Transaction shown as boxes
I To achieve atomicity, li� relations across transactions

I Independent discovery by Chong, Sorensen and Wickerson
I Not AMT valid: Cycle appears between the reads

I Consequences:

I AMT valid⇒ acyclicity⇒ Causal serializability
I Ignores real time
I Erase empty transactions, singletons
I Li� includes nontransactional⇒ Strong isolation



DRAFT
6/12

A simple idea

I Load bu�ering example: Allowed under TSO, without atomics

Initially: x=y=0

Thread 1: atomic{x:=1;read y}

Thread 2: atomic{y:=1;read x}

init

Wx1 Ry0

Wy1 Rx0

po

po

co

co

rf

rf

fr

fr

I Transaction shown as boxes

I To achieve atomicity, li� relations across transactions

I Independent discovery by Chong, Sorensen and Wickerson
I Not AMT valid: Cycle appears between the reads

I Consequences:

I AMT valid⇒ acyclicity⇒ Causal serializability
I Ignores real time
I Erase empty transactions, singletons
I Li� includes nontransactional⇒ Strong isolation



DRAFT
6/12

A simple idea

I Load bu�ering example: Allowed under TSO, without atomics

Initially: x=y=0

Thread 1: atomic{x:=1;read y}

Thread 2: atomic{y:=1;read x}

init

Wx1 Ry0

Wy1 Rx0

po

po

fr

fr fr

fr

co

co

co

co

rf

rf

rf

rf

I Transaction shown as boxes
I To achieve atomicity, li� relations across transactions

I Independent discovery by Chong, Sorensen and Wickerson

I Not AMT valid: Cycle appears between the reads
I Consequences:

I AMT valid⇒ acyclicity⇒ Causal serializability
I Ignores real time
I Erase empty transactions, singletons
I Li� includes nontransactional⇒ Strong isolation



DRAFT
6/12

A simple idea

I Load bu�ering example: Allowed under TSO, without atomics

Initially: x=y=0

Thread 1: atomic{x:=1;read y}

Thread 2: atomic{y:=1;read x}

init

Wx1 Ry0

Wy1 Rx0

po

po

fr

fr fr

fr

co

co

co

co

rf

rf

rf

rf

I Transaction shown as boxes
I To achieve atomicity, li� relations across transactions

I Independent discovery by Chong, Sorensen and Wickerson
I Not AMT valid: Cycle appears between the reads

I Consequences:

I AMT valid⇒ acyclicity⇒ Causal serializability
I Ignores real time
I Erase empty transactions, singletons
I Li� includes nontransactional⇒ Strong isolation



DRAFT
6/12

A simple idea

I Load bu�ering example: Allowed under TSO, without atomics

Initially: x=y=0

Thread 1: atomic{x:=1;read y}

Thread 2: atomic{y:=1;read x}

init

Wx1 Ry0

Wy1 Rx0

po

po

fr

fr fr

fr

co

co

co

co

rf

rf

rf

rf

I Transaction shown as boxes
I To achieve atomicity, li� relations across transactions

I Independent discovery by Chong, Sorensen and Wickerson
I Not AMT valid: Cycle appears between the reads

I Consequences:
I AMT valid⇒ acyclicity⇒ Causal serializability

I Ignores real time
I Erase empty transactions, singletons
I Li� includes nontransactional⇒ Strong isolation



DRAFT
6/12

A simple idea

I Load bu�ering example: Allowed under TSO, without atomics

Initially: x=y=0

Thread 1: atomic{x:=1;read y}

Thread 2: atomic{y:=1;read x}

init

Wx1 Ry0

Wy1 Rx0

po

po

fr

fr fr

fr

co

co

co

co

rf

rf

rf

rf

I Transaction shown as boxes
I To achieve atomicity, li� relations across transactions

I Independent discovery by Chong, Sorensen and Wickerson
I Not AMT valid: Cycle appears between the reads

I Consequences:
I AMT valid⇒ acyclicity⇒ Causal serializability
I Ignores real time

I Erase empty transactions, singletons
I Li� includes nontransactional⇒ Strong isolation



DRAFT
6/12

A simple idea

I Load bu�ering example: Allowed under TSO, without atomics

Initially: x=y=0

Thread 1: atomic{x:=1;read y}

Thread 2: atomic{y:=1;read x}

init

Wx1 Ry0

Wy1 Rx0

po

po

fr

fr fr

fr

co

co

co

co

rf

rf

rf

rf

I Transaction shown as boxes
I To achieve atomicity, li� relations across transactions

I Independent discovery by Chong, Sorensen and Wickerson
I Not AMT valid: Cycle appears between the reads

I Consequences:
I AMT valid⇒ acyclicity⇒ Causal serializability
I Ignores real time
I Erase empty transactions, singletons

I Li� includes nontransactional⇒ Strong isolation



DRAFT
6/12

A simple idea

I Load bu�ering example: Allowed under TSO, without atomics

Initially: x=y=0

Thread 1: atomic{x:=1;read y}

Thread 2: atomic{y:=1;read x}

init

Wx1 Ry0

Wy1 Rx0

po

po

fr

fr fr

fr

co

co

co

co

rf

rf

rf

rf

I Transaction shown as boxes
I To achieve atomicity, li� relations across transactions

I Independent discovery by Chong, Sorensen and Wickerson
I Not AMT valid: Cycle appears between the reads

I Consequences:
I AMT valid⇒ acyclicity⇒ Causal serializability
I Ignores real time
I Erase empty transactions, singletons
I Li� includes nontransactional⇒ Strong isolation



DRAFT
7/12

Some goals

I Nested transactions
I Weak isolation (Example under TSO)

Rx1

Wx1 Wx2
po

rf fr 7 strong 3weak

I Abort models (Example under TSO)

init Wx2

Rx0 Wy1

Rx2 Ry0

rf

fr

fr

rf

rf

7 opaque 3non-opaque



DRAFT
8/12

Definition

I Execution is correct if AMT valid with li�ed relations

and
∀d ∈ Aborted.∀e ∈ E . d

rwdep

−−−−→ e implies e ∈ Aborted

I e li�(o)
−−−−→ d when either
1. e o
−→ d

2. or e′ o
−→ d for some e′ ∈ trans(e), d < trans(e)

,

either

e′ ∈ StrongIsolated or d ∈ Transactional

3. or symmetrically for d ′

I Refinements:

I Nesting: e′ in same or sub-transaction of e
I Weak isolated not seen atomically

, except by transactions

I Opacity: aborteds ordered w.r.t. commi�eds

⇒ No changed to li�
Aborteds only a�ect aborteds: rwdep = rf ∪ data ∪ addr ∪ ctrl

I Consequences: Causal serializability, No real time, Singletons
I What about standard serializability?



DRAFT
8/12

Definition

I Execution is correct if AMT valid with li�ed relations

and
∀d ∈ Aborted.∀e ∈ E . d

rwdep

−−−−→ e implies e ∈ Aborted

I e li�(o)
−−−−→ d when either
1. e o
−→ d

2. or e′ o
−→ d for some e′ ∈ descend(e), d < descend(e)

,

either

e′ ∈ StrongIsolated or d ∈ Transactional

3. or symmetrically for d ′

I Refinements:
I Nesting: e′ in same or sub-transaction of e

I Weak isolated not seen atomically

, except by transactions

I Opacity: aborteds ordered w.r.t. commi�eds

⇒ No changed to li�
Aborteds only a�ect aborteds: rwdep = rf ∪ data ∪ addr ∪ ctrl

I Consequences: Causal serializability, No real time, Singletons
I What about standard serializability?



DRAFT
8/12

Definition

I Execution is correct if AMT valid with li�ed relations

and
∀d ∈ Aborted.∀e ∈ E . d

rwdep

−−−−→ e implies e ∈ Aborted

I e li�(o)
−−−−→ d when either
1. e o
−→ d

2. or e′ o
−→ d for some e′ ∈ descend(e), d < descend(e),

either

e′ ∈ StrongIsolated

or d ∈ Transactional

3. or symmetrically for d ′

I Refinements:
I Nesting: e′ in same or sub-transaction of e
I Weak isolated not seen atomically

, except by transactions
I Opacity: aborteds ordered w.r.t. commi�eds

⇒ No changed to li�
Aborteds only a�ect aborteds: rwdep = rf ∪ data ∪ addr ∪ ctrl

I Consequences: Causal serializability, No real time, Singletons
I What about standard serializability?



DRAFT
8/12

Definition

I Execution is correct if AMT valid with li�ed relations

and
∀d ∈ Aborted.∀e ∈ E . d

rwdep

−−−−→ e implies e ∈ Aborted

I e li�(o)
−−−−→ d when either
1. e o
−→ d

2. or e′ o
−→ d for some e′ ∈ descend(e), d < descend(e),

either e′ ∈ StrongIsolated or d ∈ Transactional
3. or symmetrically for d ′

I Refinements:
I Nesting: e′ in same or sub-transaction of e
I Weak isolated not seen atomically, except by transactions

I Opacity: aborteds ordered w.r.t. commi�eds

⇒ No changed to li�
Aborteds only a�ect aborteds: rwdep = rf ∪ data ∪ addr ∪ ctrl

I Consequences: Causal serializability, No real time, Singletons
I What about standard serializability?



DRAFT
8/12

Definition

I Execution is correct if AMT valid with li�ed relations

and
∀d ∈ Aborted.∀e ∈ E . d

rwdep

−−−−→ e implies e ∈ Aborted

I e li�(o)
−−−−→ d when either
1. e o
−→ d

2. or e′ o
−→ d for some e′ ∈ descend(e), d < descend(e),

either e′ ∈ StrongIsolated or d ∈ Transactional
3. or symmetrically for d ′

I Refinements:
I Nesting: e′ in same or sub-transaction of e
I Weak isolated not seen atomically, except by transactions
I Opacity: aborteds ordered w.r.t. commi�eds⇒ No changed to li�

Aborteds only a�ect aborteds: rwdep = rf ∪ data ∪ addr ∪ ctrl

I Consequences: Causal serializability, No real time, Singletons
I What about standard serializability?



DRAFT
8/12

Definition

I Execution is correct if AMT valid with li�ed relations and
∀d ∈ Aborted.∀e ∈ E . d

rwdep

−−−−→ e implies e ∈ Aborted

I e li�(o)
−−−−→ d when either
1. e o
−→ d

2. or e′ o
−→ d for some e′ ∈ descend(e), d < descend(e),

either e′ ∈ StrongIsolated or d ∈ Transactional
3. or symmetrically for d ′

I Refinements:
I Nesting: e′ in same or sub-transaction of e
I Weak isolated not seen atomically, except by transactions
I Opacity: aborteds ordered w.r.t. commi�eds⇒ No changed to li�

Aborteds only a�ect aborteds

: rwdep = rf ∪ data ∪ addr ∪ ctrl

I Consequences: Causal serializability, No real time, Singletons
I What about standard serializability?



DRAFT
8/12

Definition

I Execution is correct if AMT valid with li�ed relations and
∀d ∈ Aborted.∀e ∈ E . d rwdep

−−−−→ e implies e ∈ Aborted

I e li�(o)
−−−−→ d when either
1. e o
−→ d

2. or e′ o
−→ d for some e′ ∈ descend(e), d < descend(e),

either e′ ∈ StrongIsolated or d ∈ Transactional
3. or symmetrically for d ′

I Refinements:
I Nesting: e′ in same or sub-transaction of e
I Weak isolated not seen atomically, except by transactions
I Opacity: aborteds ordered w.r.t. commi�eds⇒ No changed to li�

Aborteds only a�ect aborteds: rwdep = rf ∪ data ∪ addr ∪ ctrl

I Consequences: Causal serializability, No real time, Singletons
I What about standard serializability?



DRAFT
8/12

Definition

I Execution is correct if AMT valid with li�ed relations and
∀d ∈ Aborted.∀e ∈ E . d rwdep

−−−−→ e implies e ∈ Aborted

I e li�(o)
−−−−→ d when either
1. e o
−→ d

2. or e′ o
−→ d for some e′ ∈ descend(e), d < descend(e),

either e′ ∈ StrongIsolated or d ∈ Transactional
3. or symmetrically for d ′

I Refinements:
I Nesting: e′ in same or sub-transaction of e
I Weak isolated not seen atomically, except by transactions
I Opacity: aborteds ordered w.r.t. commi�eds⇒ No changed to li�

Aborteds only a�ect aborteds: rwdep = rf ∪ data ∪ addr ∪ ctrl

I Consequences: Causal serializability, No real time, Singletons

I What about standard serializability?



DRAFT
8/12

Definition

I Execution is correct if AMT valid with li�ed relations and
∀d ∈ Aborted.∀e ∈ E . d rwdep

−−−−→ e implies e ∈ Aborted

I e li�(o)
−−−−→ d when either
1. e o
−→ d

2. or e′ o
−→ d for some e′ ∈ descend(e), d < descend(e),

either e′ ∈ StrongIsolated or d ∈ Transactional
3. or symmetrically for d ′

I Refinements:
I Nesting: e′ in same or sub-transaction of e
I Weak isolated not seen atomically, except by transactions
I Opacity: aborteds ordered w.r.t. commi�eds⇒ No changed to li�

Aborteds only a�ect aborteds: rwdep = rf ∪ data ∪ addr ∪ ctrl

I Consequences: Causal serializability, No real time, Singletons
I What about standard serializability?



DRAFT
9/12

Standard Serializability?

I Independent Reads of Independent Writes (IRIW)
Forbidden for Multi-copy atomic, e.g. SC, TSO, ARMv8

init

Wx1

Wy1

Rx1 Ry0

Ry1 Rx0

co

co

addr

addr

rf

rf

fr

fr

I Allowed under ARMv7: Writes seen in di�erent orders
I With transactions: 3causal serializable 7 serializable

Li� /⇒ Standard serializability, in general
I Li�⇒ Standard serializability, for multi-copy atomic

Formalized using Global Happens Before [Alglave 2010]



DRAFT
9/12

Standard Serializability?

I Independent Reads of Independent Writes (IRIW)
Forbidden for Multi-copy atomic, e.g. SC, TSO, ARMv8

init

Wx1

Wy1

Rx1 Ry0

Ry1 Rx0

co

co

addr

addr

rf

rf

fr

fr

I Allowed under ARMv7: Writes seen in di�erent orders

I With transactions: 3causal serializable 7 serializable
Li� /⇒ Standard serializability, in general

I Li�⇒ Standard serializability, for multi-copy atomic
Formalized using Global Happens Before [Alglave 2010]



DRAFT
9/12

Standard Serializability?

I Independent Reads of Independent Writes (IRIW)
Forbidden for Multi-copy atomic, e.g. SC, TSO, ARMv8

init

Wx1

Wy1

Rx1 Ry0

Ry1 Rx0

co

co

addr

addr

rf

rf

fr

fr

I Allowed under ARMv7: Writes seen in di�erent orders
I With transactions: 3causal serializable 7 serializable

Li� /⇒ Standard serializability, in general

I Li�⇒ Standard serializability, for multi-copy atomic
Formalized using Global Happens Before [Alglave 2010]



DRAFT
9/12

Standard Serializability?

I Independent Reads of Independent Writes (IRIW)
Forbidden for Multi-copy atomic, e.g. SC, TSO, ARMv8

init

Wx1

Wy1

Rx1 Ry0

Ry1 Rx0

co

co

addr

addr

rf

rf

fr

fr

I Allowed under ARMv7: Writes seen in di�erent orders
I With transactions: 3causal serializable 7 serializable

Li� /⇒ Standard serializability, in general
I Li�⇒ Standard serializability, for multi-copy atomic

Formalized using Global Happens Before [Alglave 2010]



DRAFT
10/12

NonOpaque Aborts

I Forbidden if all commit (Example under TSO)

init Wx2

Rx0 Wy1

Rx2 Ry0

rf

fr

fr

rf

rf

I What if bo�om transaction aborts?

I Forbidden under opacity: Aborteds ordered w.r.t. commi�eds
I Allowed under weaker conditions, e.g. VWC (and possibly TMS1)

I Our solution:

I Check commi�eds and opaques together, ignoring non-opaques
I Check each non-opaque w.r.t. its causal history

I New formal footing for weaker conditions, e.g. VWC and TMS1



DRAFT
10/12

NonOpaque Aborts

I Forbidden if all commit (Example under TSO)

init Wx2

Rx0 Wy1

Rx2 Ry0

rf

fr

fr

rf

rf

I What if bo�om transaction aborts?

I Forbidden under opacity: Aborteds ordered w.r.t. commi�eds
I Allowed under weaker conditions, e.g. VWC (and possibly TMS1)

I Our solution:

I Check commi�eds and opaques together, ignoring non-opaques
I Check each non-opaque w.r.t. its causal history

I New formal footing for weaker conditions, e.g. VWC and TMS1



DRAFT
10/12

NonOpaque Aborts

I Forbidden if all commit (Example under TSO)

init Wx2

Rx0 Wy1

Rx2 Ry0

rf

fr

fr

rf

rf

I What if bo�om transaction aborts?
I Forbidden under opacity: Aborteds ordered w.r.t. commi�eds
I Allowed under weaker conditions, e.g. VWC (and possibly TMS1)

I Our solution:

I Check commi�eds and opaques together, ignoring non-opaques
I Check each non-opaque w.r.t. its causal history

I New formal footing for weaker conditions, e.g. VWC and TMS1



DRAFT
10/12

NonOpaque Aborts

I Forbidden if all commit (Example under TSO)

init Wx2

Rx0 Wy1

Rx2 Ry0

rf

fr

fr

rf

rf

I What if bo�om transaction aborts?
I Forbidden under opacity: Aborteds ordered w.r.t. commi�eds
I Allowed under weaker conditions, e.g. VWC (and possibly TMS1)

I Our solution:
I Check commi�eds and opaques together, ignoring non-opaques

I Check each non-opaque w.r.t. its causal history

I New formal footing for weaker conditions, e.g. VWC and TMS1



DRAFT
10/12

NonOpaque Aborts

I Forbidden if all commit (Example under TSO)

init Wx2

Rx0 Wy1

Rx2 Ry0

rf

fr

fr

rf

rf

I What if bo�om transaction aborts?
I Forbidden under opacity: Aborteds ordered w.r.t. commi�eds
I Allowed under weaker conditions, e.g. VWC (and possibly TMS1)

I Our solution:
I Check commi�eds and opaques together, ignoring non-opaques
I Check each non-opaque w.r.t. its causal history

I New formal footing for weaker conditions, e.g. VWC and TMS1



DRAFT
10/12

NonOpaque Aborts

I Forbidden if all commit (Example under TSO)

init Wx2

Rx0 Wy1

Rx2 Ry0

rf

fr

fr

rf

rf

I What if bo�om transaction aborts?
I Forbidden under opacity: Aborteds ordered w.r.t. commi�eds
I Allowed under weaker conditions, e.g. VWC (and possibly TMS1)

I Our solution:
I Check commi�eds and opaques together, ignoring non-opaques
I Check each non-opaque w.r.t. its causal history

I New formal footing for weaker conditions, e.g. VWC and TMS1



DRAFT
11/12

In the paper

I Non-Opaques: Comparison with VWC and TMS1

I Automaton to check violations of Global Happens Before
Used to prove li�⇒ total order on transactions (for GHB)

I Formalized in Memalloy [Wickerson, et al 2017]

I TSO, Power and ARMv8 using non-opaque aborts
I Compared to HW transactions (≤ 5 events)
I HW hides aborted from di�erent aborted
I Otherwise, our model strictly more expressive

I HW enforces coherence with aborted
I HW places fences before/a�er each transaction

HW allows We allow We allow We allow



DRAFT
11/12

In the paper

I Non-Opaques: Comparison with VWC and TMS1
I Automaton to check violations of Global Happens Before

Used to prove li�⇒ total order on transactions (for GHB)

I Formalized in Memalloy [Wickerson, et al 2017]

I TSO, Power and ARMv8 using non-opaque aborts
I Compared to HW transactions (≤ 5 events)
I HW hides aborted from di�erent aborted
I Otherwise, our model strictly more expressive

I HW enforces coherence with aborted
I HW places fences before/a�er each transaction

HW allows We allow We allow We allow



DRAFT
11/12

In the paper

I Non-Opaques: Comparison with VWC and TMS1
I Automaton to check violations of Global Happens Before

Used to prove li�⇒ total order on transactions (for GHB)
I Formalized in Memalloy [Wickerson, et al 2017]

I TSO, Power and ARMv8 using non-opaque aborts
I Compared to HW transactions (≤ 5 events)

I HW hides aborted from di�erent aborted
I Otherwise, our model strictly more expressive

I HW enforces coherence with aborted
I HW places fences before/a�er each transaction

HW allows We allow We allow We allow



DRAFT
11/12

In the paper

I Non-Opaques: Comparison with VWC and TMS1
I Automaton to check violations of Global Happens Before

Used to prove li�⇒ total order on transactions (for GHB)
I Formalized in Memalloy [Wickerson, et al 2017]

I TSO, Power and ARMv8 using non-opaque aborts
I Compared to HW transactions (≤ 5 events)
I HW hides aborted from di�erent aborted

I Otherwise, our model strictly more expressive

I HW enforces coherence with aborted
I HW places fences before/a�er each transaction

HW allows We allow

We allow We allow



DRAFT
11/12

In the paper

I Non-Opaques: Comparison with VWC and TMS1
I Automaton to check violations of Global Happens Before

Used to prove li�⇒ total order on transactions (for GHB)
I Formalized in Memalloy [Wickerson, et al 2017]

I TSO, Power and ARMv8 using non-opaque aborts
I Compared to HW transactions (≤ 5 events)
I HW hides aborted from di�erent aborted
I Otherwise, our model strictly more expressive

I HW enforces coherence with aborted
I HW places fences before/a�er each transaction

HW allows We allow We allow We allow



DRAFT
12/12

Inspiration

I What do High-Level Memory Models Mean for Transactions?
Grossman, Manson and Pugh, 2006

I Transactions As the Foundation of a Memory Consistency Model
Dalessandro, Sco� and Spear, 2010

I A Shared Memory Poetics
Alglave, 2010

I Herding Cats: Modeling, Simulation, Testing, and Data Mining . . .
Alglave, Maranget and Tautschnig, 2014

I Automatically comparing memory consistency models,
Wickerson, Ba�y, Sorensen and Constantinides, 2017

I The Semantics of Transactions . . . in x86, Power, ARMv8, and C++
Chong, Sorensen and Wickerson, 2017

I Our contribution: High-level view of low-level model



DRAFT
12/12

Inspiration

I What do High-Level Memory Models Mean for Transactions?
Grossman, Manson and Pugh, 2006

I Transactions As the Foundation of a Memory Consistency Model
Dalessandro, Sco� and Spear, 2010

I A Shared Memory Poetics
Alglave, 2010

I Herding Cats: Modeling, Simulation, Testing, and Data Mining . . .
Alglave, Maranget and Tautschnig, 2014

I Automatically comparing memory consistency models,
Wickerson, Ba�y, Sorensen and Constantinides, 2017

I The Semantics of Transactions . . . in x86, Power, ARMv8, and C++
Chong, Sorensen and Wickerson, 2017

I Our contribution: High-level view of low-level model



DRAFT
12/12

Inspiration

I What do High-Level Memory Models Mean for Transactions?
Grossman, Manson and Pugh, 2006

I Transactions As the Foundation of a Memory Consistency Model
Dalessandro, Sco� and Spear, 2010

I A Shared Memory Poetics
Alglave, 2010

I Herding Cats: Modeling, Simulation, Testing, and Data Mining . . .
Alglave, Maranget and Tautschnig, 2014

I Automatically comparing memory consistency models,
Wickerson, Ba�y, Sorensen and Constantinides, 2017

I The Semantics of Transactions . . . in x86, Power, ARMv8, and C++
Chong, Sorensen and Wickerson, 2017

I Our contribution: High-level view of low-level model



DRAFT
12/12

Inspiration

I What do High-Level Memory Models Mean for Transactions?
Grossman, Manson and Pugh, 2006

I Transactions As the Foundation of a Memory Consistency Model
Dalessandro, Sco� and Spear, 2010

I A Shared Memory Poetics
Alglave, 2010

I Herding Cats: Modeling, Simulation, Testing, and Data Mining . . .
Alglave, Maranget and Tautschnig, 2014

I Automatically comparing memory consistency models,
Wickerson, Ba�y, Sorensen and Constantinides, 2017

I The Semantics of Transactions . . . in x86, Power, ARMv8, and C++
Chong, Sorensen and Wickerson, 2017

I Our contribution: High-level view of low-level model


