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Abstract We address the fundamental issue of interfaces that arises in the con-
text of cloud computing; namely, what does it mean for a replicated and dis-
tributed implementation of a data structure to satisfy its standard sequential spec-
ification. The main contribution of this paper is a new definition of eventual con-
sistency that liberalizes the linear time regime of linearizability to partial orders.
Any implementation that conforms to our definitions satisfies the Principle of
Permutation Equivalence enunciated in the literature : “If all sequential permuta-
tions of updates lead to equivalent states, then it should also hold that concurrent
executions of the updates lead to equivalent states.” Our definition also coincides
with linearizability when the system is only accessed at a single replica, or when
the system follows a single-master regime.
More generally, we establish the following key properties:
Expressiveness: We account for a wide range of extant replicated implemen-
tations of distributed data structures, including ORSET [Shapiro, Preguiça, Ba-
quero, and Zawirski 2011] and Collaborative Text Editors [Attiya, Burckhardt,
Gotsman, Morrison, Yang, and Zawirski 2016].
Composition: We show how to reason about composite data structures in terms
of their components, in the style of Herlihy and Wing [1990]. This enables us
to reason with a distributed implementation of a composite object (e.g., a graph)
by compositionally building on assumptions about the simpler distributed objects
(e.g., sets implementing vertices and sets implementing edges).
Abstraction: We prove an abstraction theorem in the style of Filipovic, O’Hearn,
Rinetzky, and Yang [2010]. This demonstrates how a client’s view of the dis-
tributed data structure can be simplified to reasoning with an automaton generated
from the sequential specification.

1 Introduction

An example serves to motivate the problem addressed in this paper. Consider an inte-
ger SET interface with mutator methods add and remove and a single, boolean-valued
accessor method contains. The sequential behavior of such a SET can be defined as a
set of strings such as 70 +0 30 71 and +0 +1 30 31 -1 30 71, where +k represents
a call to add with argument k, -k represents remove(k), 3k represents contains(k)
returning true and 7k represents contains(k) returning false.

Consider the implementation of such a SET by replication of the data structure. Re-
quiring the replicas to achieve consensus on a global total order [Lamport 1978] on
the operations on the data structure faces two impediments: (a) the associated serializa-
tion bottleneck negatively affects performance and scalability (eg, see [Ellis and Gibbs
1989]), and (b) the CAP theorem [Gilbert and Lynch 2002] imposes a tradeoff between
consistency and partition-tolerance.
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In alternative approaches based on eventual consistency and optimistic replication
[Vogels 2009; Saito and Shapiro 2005], a replica may execute an operation without
synchronizing with other replicas. The other replicas are updated asynchronously with
the update operation. However, due to the vagaries of the network, even if every replica
eventually receives and applies all updates, it could happen in possibly different orders.
So, there has to be some mechanism to reconcile conflicting updates (e.g., see [Terry
et al. 1995; Shapiro et al. 2011]).

A recent survey by Shapiro et al. [2011] on convergent or commutative replicated
datatypes (CRDTs) provides a systematic attempt to design such data structures. The
most expressive SET considered in this survey is the OR-set. Other examples that are
addressed by such a paradigm include collaborative text editing [Attiya et al. 2016].

Consider the following diagram, in the style of this survey. This execution is initi-
ated by a client of the form (add(0); contains(1); . . .)||(add(1); contains(0); . . .).

+0 71 30 31 30

+1 70 31 30 31
(1)

In this sample execution, the mutators +0 and +1 are executed at distinct replicas. The
actions in each replica are temporally ordered from left to right, as indicated by the hor-
izontal arrows. We assume the local updates are atomic. After a local update, the replica
forwards messages to the other replicas; in the diagram, the diagonal arrows between
replicas indicate messages that propagate such local updates, with the interpretation
that the operation is guaranteed to be finished at the recipient at the point the arrow
appears on the recipients timeline. The accessors are executed locally and atomically at
each replica. Of course, there is a consistent global state, testified by 30 and 31 at both
replicas, after both messages have been delivered.

The CRDT based analysis of SET proceeds by considering the commutativity prop-
erties of mutator operations. Mutator operations on different elements, e.g., +0,+1 com-
mute. For conflicting operations, +0,-0, assuming that we wish the outcome to be de-
fined, there are two possible design choices:

– In OR-set, the add wins; thus, +0|-0 results in 30.
– The 2P-set, the remove wins; thus, +0|-0 results in 70.

For example, OR-set allows the following execution.

+0 -0 70 30

+0

70 30 30

The choices made by OR-set are deceptively simple. They can result in complicated
executions, such as the one below.

+0 -0 30 70

+0 -0 30 70
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On the other hand, the OR-set does not permit the following behaviors.

+0 31 71

+1
30 +0 (2)

This motivates the basic question: In what sense does the OR-set implementation
realize a SET?

The traditional correctness idea is that of eventual consistency: when all messages
are delivered, all the replicas agree on the outcome. This view is adequate for exam-
ples where we are interested only in the final state of the data structure. However, this
standard definition of eventual consistency is quite weak since it ignores the intermedi-
ate states in the evolution of the system. Thus, eventual consistency does not rule out
the problematic examples of (2). More generally, eventual consistency does not cap-
ture the following properties that simplify the client perspective by showing a degree of
coherence with the sequential specification.

STS: The principle of single threaded semantics: A correct implementation should
behave according to the sequential semantics if accessed at a single replica (inspired
by [Haas et al. 2015]).
PPE: The principle of permutation equivalence: “If all sequential permutations of
updates lead to equivalent states, then it should also hold that concurrent executions
of the updates lead to equivalent states.” Bieniusa et al. [2012] demonstrate that this
principle holds for the OR-set and does not hold for the Amazon Dynamo shopping
cart [DeCandia et al. 2007] and the C-Set [Aslan et al. 2011].
SINGLE-MASTER: The principle of client-server linearizability: Any execution
of a correct implementation on a client-server system should be linearizable. [Bud-
hiraja et al. 1993] identify executions where at any point there is a unique server
that accepts updates in the form of mutators, and all other servers can only process
non-mutators. In such a restricted distributed system, eventual consistency should
imply linearizability.

It is noteworthy that OR-set satisfies the above properties; thus, eventual consistency
provides a more complex picture for the client of an OR-set than is warranted.

There have been several attempts in the literature to formally characterize and ana-
lyze notions of eventual consistency. However, these attempts suffer from at least one
of the following inadequacies:

– Inability to address the full expressiveness of CRDTs (e.g., Burckhardt et al. [2012],
Jagadeesan and Riely [2015] are unable to fully address OR-set), or

– Inability to validate STS,PPE, SINGLE-MASTER (e.g., Burckhardt et al. [2014],[Boua-
jjani et al. 2014]).

This motivates a first statement of the problem addressed by this paper: a definition of
eventual consistency that is expressive enough to include all CRDTs and yet constrained
enough to ensure that any valid implementation satisfies STS, PPE and SINGLE-MAS-
TER.

Of course, the particular choice of the criteria STS, PPE and SINGLE-MASTER is
arguably ad-hoc. So, our investigations explore these (and other such criteria) as special
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cases of an abstraction theorem (in the sense of [Filipovic et al. 2010]) for clients of a
data structure that is eventually consistent in our sense.

Abstraction theorems. We begin by briefly reviewing linearizability, the standard for
correctness criterion of shared memory concurrent systems,

The execution of a concurrent system involves the evolution of multiple sequential
threads in global linear time, perhaps communicating with each other via the shared
memory. Given a specification Σ , an execution u is considered linearizable if it is a
permutation of some σ ∈ Σ that respects thread order and the order of non-overlapping
method calls. An object is linearizable if all its executions are. From a client perspec-
tive, the set of linearizations of a linearizable object is an operational refinement of the
object [Filipovic et al. 2010], i.e., the client is able to soundly substitute the specification
for the implementation. Thus, a client of a linearizable object can abstract away concur-
rency, take an atomic view of method invocations, and program against the sequential
interface.

Let us take an alternative view of linearizability inspired by the proof techniques
of [Filipovic et al. 2010]. For each specification Σ , we generate an automaton ltslin(Σ).
Similarly, for each set U of executions, we generate a set of automata ltslin(U).

In a partial order notion of time, multiple events do not need to be related. So, the
transitions in ltslin(Σ) are labelled by pomsets of events. The intuition is that the new
events that are arriving simultaneously are the maximal elements of the pomset; the rest
of the pomset merely elucidates the causal histories of the new arrivals.

Thus, each state of the automaton corresponds to a linearization of a cut of the dis-
tributed system. The labels of the automaton are partial orders whose maximal elements
represent the events that are being executed; the remaining prefix represent the visibil-
ity relation at the point of execution. As an example of such an automaton, consider the
binary SET.

+071+131

+0+13031

+170+030

+071+1

+0+131

+1+030

+170+0

+130

+130

+031

+031

+071

+0+1

+170

+1

+031

+130

+0

+0

+1

+071

+1

+0

+170

ε

+0

+1

+0|+1 +031|+130

+071|+1

+0|+170

The diagram above shows the portion of ltslin(SET) corresponding to interaction the
client (add(0); contains(1))||(add(1); contains(0)). To keep the diagram small, we
quotient by bisimilarity; the state labels in the diagram are chosen from among the
bisimilar states.

This perspective allows us to rephrase linearizability as a simulation: an object sys-
tem U is linearizable if and only if ∀u ∈ U. ltslin(u) ∼< ltslin(Σ), i.e., lts(u) is simu-
lated by ltslin(Σ). The abstraction theorem of [Filipovic et al. 2010] then is seen as a
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precongruence property of a suitable parallel composition; i.e., for every client C: lts
(U)∼< ltslin(Σ) implies C |d lts(U)∼<C |d ltslin(Σ).

For example, the execution given in (1) is not simulated by the example specification
automaton, and therefore is not linearizable.

The peculiarities of linearizability are made evident by this formulation. In a lin-
earizable execution, nothing is ever forgotten: a state of the automaton fully reflects all
of the order of all operations that lead to the state. In addition, the source of every edge
is a prefix of the target.

Moving onto eventual consistency. Eventual consistency is strictly weaker than lin-
earizability. Thus, when adapting this framework to EC, we expect the label set to be
smaller. As a result of shrinking the label set, the number of distinct states in the bisim-
ulation quotient is also smaller.

Rather than recording the entire downclosure in a label, the EC automaton records
only the dependent downclosure. The dependent downclosure includes only the muta-
tors that precede and are dependent on the maximal events. When applied to the pre-
vious example, we arrive at the automaton on the left below. Unlike the automaton for
linearizability, this automaton will simulate the execution in (1).

+0+1

+0

+1

ε

+0 +1

+1 +0

+0|+1

71

+131

+030

70

+0+1

+0

+1

ε

+0 +1

+1 +0

+0|+1

70
,+0

30 71

71,+131

70,+0
30

70
71,+131

71

70

Because the bisimulation collapse of the EC automaton is much smaller than that
for linearizability, we can show the individual accessors available in each state without
increasing the number of states. We show the enriched automaton on the right above.
As expected, the cut after +0 permits the accessor +030. Perhaps surprisingly, it also
permits 70. The difference between these is manifest in the prefix: 30 is possible after
+0 has been seen, whereas 70 is possible when +0 has not been seen.

In SET, the operators on different values are symmetric, leading to a great deal of
symmetry in the preceding figures. The dependencies between operators on the same
values lead to asymmetries.

In a distributed system, a newly arriving event is not necessarily an extension of the
future: it could also be the receipt of an update generated in the concurrent past, but
only received now. Consider the automata for +0-0 and -0+0 given at the top of the
next page. Depending on the order chosen, the paths to the final state differ.

Let us focus on the automaton for +0-0, on the left. The transition +0
+0-07−−→ +0-0

corresponds to an execution of -0 after +0. The transition +0
-07−→ +0-0 corresponds to

an execution of -0 concurrently with +0. While there is also a transition -0
+07−→ +0-0,
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ε

+0

-0

+0-0

+0

-0

-0+0-0

+0

-0|+0

70
,+0

30
,(-0|+0

)70
,+0-0

70

70,+030

7
0

70,-070

ε

+0

-0

-0+0

+0

-0

-0

-0
+0

+0

+0|-0

70
,-0

70
,(+0|-0

)30
,-0+0

30
70,+030

7
0

70,-070

there is no transition of the form -0
-0+07−−→ +0-0 since the order on the label would

contradict the order at the target. Note also that whereas the source of +0
-07−→ +0-0 is a

prefix of the target, this does not hold for -0
+07−→ +0-0. In the latter case, the source is a

subsequence of the target, rather than a prefix. We will see in section 4 that even using
the standard notion of subsequence here is too strong: we must consider subsequences
up to stuttering equivalence.

This perspective allows us to characterize eventual consistency as a simulation. As
for linearizability, the abstraction theorem provides a simplified programming model for
clients: U ∼< ltsec(Σ) implies C |dU ∼<C |d ltsec(Σ). The properties STS, PPE, SINGLE-
MASTER can be viewed as simple corollaries of this abstraction theorem.

The programming model is completely abstract with respect to replica identity. A
client of an object that is eventually consistent in this sense is able to abstract away
from the mechanics of replication and distribution and take an atomic view of method
invocations. However, in contrast to [Filipovic et al. 2010], such general clients must
account for the partial order aspects incorporated into ltsec(Σ).

As a consequence of abstraction, the following implementation strategy is sound:
Each client is attached to a replica which fulfills its requests. The service may move
clients, e.g., based on network and load-balancing considerations. During execution,
the client can be moved to any other replica, with the proviso that the target replica has
received all of the update messages that have been received by the source replica.

Prior work. We refer the reader to a recent survey paper by Viotti and Vukolic [2016]
for a taxonomy of the various possibilities for consistency in non-transactional dis-
tributed systems using the vocabulary of [Burckhardt et al. 2014].

The basic problem of relating replicated datatypes to their sequential specifications
is addressed by the seminal paper of Burckhardt et al. [2012]. Intuitively, Burckhardt
et al. [2012] define a notion of eventual consistency (EC) for transactions as compatibil-
ity with a serialization of them. Our prior paper [Jagadeesan and Riely 2015] builds on
[Burckhardt et al. 2012] to provide a weaker definition of EC. Neither definition, how-
ever, is able to validate every implementation deemed correct by Shapiro et al. [2011].
In particular, they fail for data structures whose mutators do not fully commute, such as
non-monotone sets. For example, Shapiro et al.’s OR-set (observed remove SET), that is
not considered EC by either [Burckhardt et al. 2012] or [Jagadeesan and Riely 2015].
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Burckhardt et al. [2014] take an alternate approach: to view the interface of a repli-
cated data structure as a concurrent specification. In this approach, the valid result of an
accessor is determined from the context of a prior concurrent history. [Bouajjani et al.
2014] extends this approach to allow for bounded rollbacks. In this style, the above ex-
amples are declared invalid; for example in figure (2), the result 71 is deemed invalid in
the context of its prior history. This approach has the advantage of flexibility. It is pos-
sible to validate the structures in [Shapiro et al. 2011] as well as the Amazon Dynamo
shopping cart [DeCandia et al. 2007].

However, this gain in flexibility comes at the cost of a clear connection to any
sequential specification. In particular, the principles of PPE, STS and SINGLE-MAS-
TER are not necessarily validated in this approach. For example, Bieniusa et al. [2012]
demonstrate that this principle holds for the OR-set and does not hold for the Amazon
Dynamo shopping cart [DeCandia et al. 2007] and the C-Set [Aslan et al. 2011].

A key technical influence on our work comes from the study of relaxed memory. We
are inspired in particular by the RMO models that cannot be implemented with buffers
and a central store [Higham and Kawash 2000]; thus, in our opinion, capturing one
essential artifact of peer-to-peer distributed systems that do not have a master replica.
Our particular technical treatment is reminiscent of the approach of Alglave [2012].

While we show that our definitions are applicable to a variety of CRDTs, in this
paper, we do not explore systematic proof principles for validating that data structures.
The proof rules, in particular the event based proof rule, explored in Gotsman et al.
[2016] are highly relevant here.

Organization of paper The rest of the paper is organized as follows.

– In section 2, we define alphabets and specifications over those alphabets. Our al-
phabets come equipped with a dependency relation. We define equivalence up to
stuttering and use this to define a liberalization of traditional subsequence order.

– In section 3, we describe our model of execution for a replicated and distributed
data structure. Our model is flexible enough to accommodate non-causal (intransi-
tive) systems. We define the notion of dependent cut, which is used throughout the
remainder of the paper.

– In section 4, we define our notion of EC and discuss the definition with several
examples that illustrate the design decisions, including a collaborative text editor.

– In section 5, we prove that OR-set satisfies our definition.
– In section 6, we provide an alternative characterization of EC as a simulation. The-

orem 21 shows that the simulation characterization is sound and complete for EC.
– In section 7, we explore how a client can make use of the fact that it is running

against an data structure that is EC. We prove abstraction (Theorem 25) and com-
position (Proposition 26) and show the use of these results with the example of a
graph implemented using two concurrent sets.

2 Specifications

We define alphabets and specifications over those alphabets. We then provide example
specifications and define dependency between actions, relative to a specification. The
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central contribution in this section is the notion of stuttering equivalence of strings in
a specification that is used to describe an order between strings of a specification that
liberalizes the subsequence order.

2.1 Alphabets

An alphabet is a quadruple 〈L, M, A , #〉 where

– L is a set of actions (also known as labels),
– M⊆ L is a distinguished set of mutator actions,
– A ⊆ 2L is a partitioning1 of L into accessor sets, and
– #⊆ (L×L) is a symmetric and reflexive dependency relation.

We write M for the set of non-mutators; that is, M = L\M.
For example, a binary SET uses the following alphabet:

– M = {+0, -0, +1, -1}, representing addition and removal of elements 0 and 1,
– M = {70, 30, 71, 31}, representing membership tests returning false or true,
– L = M∪M,
– A = {{+0}, {-0}, {70, 30}, {+1}, {-1}, {71, 31}}, and
– # = {+0, -0, 70, 30}2∪{+1, -1, 71, 31}2, where D2 = D×D.

2.2 Specifications

Fix an alphabet 〈L, M, A , #〉.
Let σ and τ range over strings in L∗ and Σ and T range over specifications, which

are sets of strings subject to certain closure properties, listed below. We use standard
notation for strings and specifications, including the empty string (ε), concatenation
(ΣT ), Kleene star (Σ ∗), choice (Σ |T ) and interleaving (Σ 9T ).

Let σ �#a be the subsequence of σ that includes exactly the actions dependent on a:
(b1 ··· bn) � #a = bk1 ··· bkm where k1, . . . , km is the increasing sequence drawn from
{k ∈ [1, n] | bk # a}.
Definition 1. A set Σ ⊆ L∗ is a specification if it satisfies the following.

– prefix closed:
∀σ , τ ∈ Σ . στ ∈ Σ implies σ ∈ Σ

– non-mutators are closed under stuttering, mumbling and commutation:
∀σ , τ ∈ Σ . ∀a ∈M . σaτ ∈ Σ implies σa∗τ ⊆ Σ

∀σ ∈ Σ . ∀a, b ∈M . {σa, σb} ⊆ Σ implies {σab, σba} ⊆ Σ

– independent labels can be removed:
∀σ ∈ Σ . ∀a ∈M . {σ , σ �#a} ⊆ Σ implies σa ∈ Σ ⇔ (σ �#a)a ∈ Σ

– accessor partitions are deterministic:
∀σ ∈ Σ . ∀A ∈A . ∀a, b ∈ A. σa ∈ Σ and σb ∈ Σ imply a = b

– accessor partitions are input-enabled:
∀σ ∈ Σ . ∀A ∈A . ∃a ∈ A. σa ∈ Σ 2

1 Ie, L =
⋃

A∈A A and ∀A, A′ ∈A . A∩A′ = /0.
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Independence of two actions requires that there be no single operation that can affect
both. Thus, all actions of SET become dependent if we include an single operation that
tests whether a pair of elements is present in the set.

The SET specification illustrates an important special case of the above definition
when # is also transitive, i.e., it is an equivalence relation. In this special case, the
specification is a shuffle of essentially disjoint specifications. Concretely, in the case of
set, let JrK denote the prefix closure of the set of strings satisfying regular expression r.
Valid set strings with values in I are the defined: 9i∈I J7i∗

(
(+i 3i∗) | (-i 7i∗)

)∗K.
As a negative example, note that Ja∗ |b∗K is not a specification. Commutation of non-

mutators requires that at least one of a or b is a mutator, since {εa, εb} ⊆ Ja∗ |b∗K but
εab /∈ Ja∗ |b∗K. If both a and b are mutators, the specification cannot be input enabled:
if the actions are assigned the same accessor partition, then determinism fails at prefix
ε; if they are assigned separate accessor partitions, then input enabledness fails at every
prefix.

Notation 2. Each specification Σ is associated with an alphabet specification. When
necessary for clarity, we write the alphabet as 〈LΣ , MΣ , AΣ , #Σ 〉. To keep the notation
light, we drop the subscript when possible. The associated alphabet should be clear
from context. 2

2.3 Stuttering equivalence

Fix a specification Σ . Let state equivalence, ≈⊆ L∗×L∗, be defined as follows.

(σ ≈ σ
′)
M
= (σ = σ

′) or (σ ∈ Σ , σ
′ ∈ Σ and ∀τ ∈ L∗. στ ∈ Σ iff σ

′
τ ∈ Σ)

The definition equates specification strings that permit the same suffixes. For non-
specification strings, the definition allows σ ≈ σ ′ only when σ = σ ′. For binary sets,
we have ε ≈ +0-0 and ε ≈ 70≈ 71≈ 7071 but ε 6≈30.

Let stuttering equivalence,∼⊆L∗×L∗, be the least equivalence relation generated
by the following rules, where a ranges over L.

ε ∼ ε

σ ∼ σ ′

σa∼ σ ′a
σ ∼ σ ′ σ ′ ≈ σ ′a

σ ∼ σ ′a

Our definition of stuttering equivalence adapts Brookes [1996] to sequences of labels.
Stuttering equivalence inherits some of the relaxation of state equivalence. Thus, for

binary sets, we have ε ∼ 70∼ 71∼ 7071,+0+0∼ +0 and ε 6∼30.
Stuttering equivalence additionally demands that intermediate states match. Thus

ε 6∼ +0-0.
For non-specification strings, the definition allows stuttering only in the prefix that

is a specification string. Thus +0∼ 70+0+0 but +0 6∼30+0+0.
In combination with the closure of specifications under stuttering of mutators, we

can deduce: ∀a ∈M . ∀σaτ ∈ Σ . ∀ρ ∈ Jσa∗τK. ρ ∈ Σ and ρ ∼ στ.
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2.4 Notions of consistency between strings

The basic combinator for strings is concatenation, from which several relations are
derived, including prefix, substring, and subsequence. For example, abc has one prefix
of length two (ab), two substrings of length two (ab and bc), and three subsequences of
length two (ab, ac and bc).

The definitions are as follows. On the left, we give the strict (standard) versions of
these definitions. On the right, we give the definitions up to stuttering.

σ1 ≤pre σ1τ1 σ .pre τ if ∃σ ′ ∼ σ . ∃τ ′ ∼ τ. σ
′ ≤pre τ

′

σ1 ≤str τ0σ1τ1 σ .str τ if ∃σ ′ ∼ σ . ∃τ ′ ∼ τ. σ
′ ≤str τ

′

σ1 ···σn ≤seq τ0σ1τ1 ···σnτn σ .seq τ if ∃σ ′ ∼ σ . ∃τ ′ ∼ τ. σ
′ ≤seq τ

′

The strict relations on the left can be understood in isolation, whereas the non-strict
relations on the right can only be understood with respect to a given specification. For
example, on binary sets we have +0+0.pre +0+1 although +0+0 6≤pre +0+1.

The strict relations are partial orders, but the non-strict relations are only preorders.
For example, on sets we have +0+0 .pre +0 .pre +0+0. We can recover a partial order
by considering the relation over equivalence classes up to ∼.

For our purposes, the most important of these relations are the strongest and the
weakest. Let prefix(τ) = {σ | σ ≤pre τ} and subseq(τ) = {σ | σ .seq τ}. The partial
order 〈subseq(τ),.seq〉 satisfies the “M property” of Gunter [1987]: every finite T ⊆
subseq(τ) has a finite and complete set of minimal upper bounds in 〈subseq(τ),.seq〉.

In general, specifications choose a subset of subsequences, and thus upper bounds
may not exists. However, if an upper bound for T ⊆ Σ does exists in 〈Σ ,.seq〉, then T
has a finite and complete set of minimal upper bounds in 〈Σ ,.seq〉.

In the case of sets over a single element 0, the canonical representatives of the
specification strings of mutators are of the form (+0-0)∗, since stuttering equivalence
allows us to remove duplicate +0 without an intervening -0, and symmetrically -0
without intervening +0.

3 Implementations

We model implementations abstractly as sets of LVOs, which we also call traces and
define below.

A labelled partial order (LPO) is a labelled relation that is reflexive, antisymmetric,
and transitive. We define a labelled visibility order (LVO) to be a potentially intransitive
generalization of an LPO, with two labelling functions.

Transitivity can be seen as a causality requirement. Many CRDTs satisfy this causal-
ity requirement, including state-based CRDTs. Other CRDTs assume a causal delivery
model for messages. In particular, all of the examples from Shapiro et al. [2011] either
impose transitivity or assume it. However, the framework of CRDTs is more general; we
adopt LVOs to capture this generality.

Definition 3. A quadruple u = 〈E, λ, ρ, 〉 is labeled visibility order (LVO), if E is a
finite set of events, λ ∈ (E 7→ L), ρ ∈ (E 7→ R), and ⊆ (E×E) is reflexive, acyclic
and per-replica total: if ρ(d) = ρ(e) then either d e or e d 2
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The labels of an LVO have two components, which we divide into two labeling func-
tions: The action labelling λ ∈ (E 7→ L) maps events to actions. The replica labelling
ρ ∈ (E 7→ R) maps events to replica identifiers, where R is a set of replica identifiers.

Like an LPO, the most important component of an LVO is a relation  ⊆ (E×E)
defined over a carrier set E. Unlike LPOs, LVOs do not require that be transitive and
antisymmetric, but merely acyclic. Acyclicity ensures that the transitive closure of an
LVOs is an LPO. We do require per-replica transitivity, to model local computation.

When drawing traces, we typically elide event and replica identifiers. We use straight
lines for “transitive” edges, with the intuitive reading that “this and all preceding actions
are delivered”. We reserve the use of the zigzag arrow to intransitive communications,
such as the following. Here +1 is received before +0, even though +0 precedes +1.

+0 +1
31 70 30

Two LPOs are isomorphic if they differ only in the carrier set. For LVOs, we addi-
tionally ignore the replica identifier.

Definition 4. LVOs u and v are (replica insensitive) isomorphic (notation u =iso v) if
there exists a bijection α : Eu→ Ev such that λu(d) = λv(α(d)) and d u e precisely
when α(d) v α(e). 2

Many concepts defined for LPOs extend smoothly to LVOs. For example, restriction,
downclosure, cut (or prefix) and suborder can be defined as follows.

Definition 5. When D⊆ Eu, write u �D for the LVO derived by restricting to the events
in D. That is u �D = 〈D, λu �D, ρu �D, u �D〉, where restriction on functions and
relations is standard: Given a function f : E → X and D ⊆ E, define f �D = {〈d,
f (d)〉 | d ∈ D}. Given a relation R: E → E and D ⊆ E, define R �D = {〈d1, d2〉 | d1,
d2 ∈ D and d1 R d2}.

Event set D ⊆ Eu is downclosed if ∀e ∈ D. ∀d ∈ Eu. d ∈ D whenever d  u e and
e is maximal in D. Let cuts(v) = {u | ∃D⊆ Ev. D is downclosed and u = v �D}.

Trace u is an suborder of v (notation u ⊆ v) if Eu ⊆ Ev, λu ⊆ λv, ρu ⊆ ρv, and
( v)⊆ ( u). 2

Note that the definition of downclosed (and therefore prefix) is unusual. In particu-
lar, note that {d, e} is a downclosed subset of c d e when ¬(c e). On LPOs the
definition degenerates to the usual one.

Notation 6. Let L be the set of all LVOs.
We write the components of an LVO u as 〈Eu, λu, ρu, u〉.
Each trace u is associated with a specification. When necessary for clarity, we write

Σu for the specification associated with u, likewise the alphabet 〈LΣu , MΣu , AΣu , #Σu〉.
To keep the notation light, we drop the subscript when possible. The associated specifi-
cation and alphabet should be clear from context. 2

3.1 Dependent cuts

A key technical tool in our approach is the liberalization of the order of an LVO by
removing order from non-mutators and between independent labels. This treatment is
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reminiscent of the approach of Alglave [2012]. In this subsection, we develop this in-
frastructure.

When considering the correctness of an LVO u, there are two ways that dependence
affects the definitions. First we restrict u to the suborder u � #, which includes only
the visibility that must be maintained when checking correctness. Second, we restrict
attention to the cuts of u �# that contain only independent non-mutators. We call these
dependent cuts. We define cuts#(u) to be the dependent cuts of u and L# to be the set
of all possible dependent cuts.

We write d # u e when d is a mutator that is both dependent on and visible to e.

(d # u e) iff (d = e) or (λu(d) ∈M, λu(d) # λu(e) and d u e)

Let u � # = 〈Eu, λu, ρu,
# u〉 be the dependent restriction of u. Note that u � # ⊆ u. We

define # u so that it is reflexive; thus u �# is an LVO whenever u is. Except for reflexive
edges, non-mutators may only appear on the right of # u.

For p ∈L , let EM(p) = {e ∈ Ep | λp(e) ∈M} be the non-mutator events of p. Let

cuts#(u) = {p ∈ cuts(u �#) | ∀d, e ∈ EM(p). ¬(λp(d) # λp(e))}

be the dependent cuts of u. Thus a dependent cut may not contain two dependent non-
mutators, such as two occurrences of 70 in SET.

Define L# =
⋃

u∈L cuts#(u) to be the set of all possible dependent cuts.
Note that L# ⊆L .

3.2 Linearization

Partial orders and interval orders are subclasses of LVOs. For example, since the transi-
tive closure of an acyclic relation is antisymmetric, the transitive closure of an LVO is
an LPO. A trace u is a labelled partial order (LPO) if u is transitive. An LPO u is an
labelled interval order (LIO) if ∀d, e, d′, e′ ∈ Eu. (d u e and d′ u e′) imply (d u e′

or d′ u e). An LPO u is an labelled total order (LTO) if ∀d, e ∈ Eu. d u e or e u d.
The definitions are related by inclusion: LTO⊂ LIO⊂ LPO⊂ LVO. These restrictions

correspond different views of the nature of events over time and space. An LTO captures
the idea that events have no duration and time is global. LIOs give events duration, but
retain global time — we expand on this in the next subsection. LPOs capture distributed
systems without the requirement of globally agreed time. The transitivity requirement
of an LPO can be seen as a restriction on communication in such systems: events must
be communicated in the order they are seen. LVOs generalize LPOs by allowing out-of-
order communication.

Definition 7. For ai ∈ L, we say that a1 . . .an is a linearization of E ⊆ Eu if there exists
a bijection α : E→ [1, n] such that ∀e∈ E. λu(e) = aα(e) and ∀d, e∈ E. d u e implies
α(d)≤ α(e). 2

Linearization gives rise to a natural definition of linearizability, which generalizes
the original definition [Herlihy and Wing 1990]. There, linearizability is defined in
terms of complete histories, H, which are strings of matching invocations and responses.
The order <H is defined as follows: e0 <H e1 if response(e0) precedes invocation(e1) in
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H. It is straightforward to establish that <H is an interval order. The following definition
generalizes linearizability from interval orders to LVOs.

Definition 8. Trace u is linearizable if there exists σ ∈ Σu that linearizes Eu. 2

When restricted to interval orders, this notion coincides with that of Herlihy and Wing.

4 Eventual Consistency

The definition of eventual consistency follows from two simple principles.

Linearization: Each “cut” of events should linearize to a specification string.
Monotonicity: The strings chosen for a “future” cut should be “consistent” with
the string chosen for the current cut.

Definition 9. Trace u is eventually consistent if there exists a function τ : cuts#(u)→ Σ

such that:

– ∀p ∈ cuts#(u). p linearizes to τ(p), and
– ∀p, q ∈ cuts#(u). p⊆ q implies τ(p).seq τ(q). 2

Because the range of τ is Σ , the first condition ensures that every event set in cuts#(u)
linearizes to some specification string. The second condition ensures monotonicity2.

We consider a series of examples to explain the various choices in this definition.
Most of these use the SET specification. We also consider the collaborative text editing
protocol of [Attiya et al. 2016]. Many positive examples use OR-set executions, and
some of the negative examples use variations of SET.

– Example 10 shows that EC requires agreement on the order of mutators.
– Example 11 shows that you must consider only one conflicting accessor at a time.

This example also demonstrates that EC is weaker than linearizability.
– Example 12 establishes that we must allow different events to match the same action

in the global order σ . It is important to match actions, rather than events.
– Example 13 establishes that we cannot strengthen the definition to consider prefixes

instead of subsequences.
– Example 14 shows that we must consider all dependent cuts, including the depen-

dent downclosure of single events.
– Example 15 establishes that the use of independency is necessary.
– Example 16 establishes that the use of stuttering is necessary.
– Example 17 gives an example that requires an intransitive dependency relation.

Example 10. The following execution is not EC for SET.

+0
a

30
c

-0
b

70
d

2 The corresponding definition for linearizability uses cuts rather than cuts# and ≤pre rather
than .seq.
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The cuts {+0a, -0b, 30c} and {+0a, -0b, 70d} are both supersets of {+0a, -0b}, and
therefore they must agree on the order of these events. There is no SET trace that gives
both 70 and 30 in the same state. 2

Example 11. The following execution is EC for SET, but is not linearizable.

+0
a

71
c

+1
b

70
d

In the dependent restriction, there is no order. Therefore to demonstrate that the execu-
tion is EC, we can linearize the dependent cuts to subsequences of 71c70d+0a+1b.

Let us now consider a SET variant in which it is possible to atomically test for mem-
bership of two elements. As a result, all labels become mutually dependent and the
dependent projection is identical to the execution itself. Even in this case, the exam-
ple remains EC. We can linearize {a, b} either as +0a+1b or +1b+0a. Either way, the
non-mutators linearize as +0a71c and +1b70d . Note, however, that there is no way to
linearize all four events. To allow examples such as this to be EC, we limit dependent
cuts so that no two dependent non-mutators can occur in the same cut. 2

Example 12. Consider the following OR-set execution.

+0
a

-0
b

30
c

70
d

+0
e

-0
f 30 g

70
h

This is EC taking the mutator witnesses to be subsequences of +0-0+0-0, as follows.
(We show {a, e} twice to emphasize the symmetry.)

+0a

+0a+0e

+0a-0b

+0a-0b+0e

+0a-0b+0e30c

+0a-0b+0e-0 f

+0a-0b+0e-0 f 70d

+0e

+0e+0a

+0e-0 f

+0e-0 f +0a

+0e-0 f +0a30g

+0e-0 f +0a-0b

+0e-0 f +0a-0b70h

Were we to linearize events rather than actions (as in [Jagadeesan and Riely 2015]), this
execution would fail to be validated. Suppose we were to pick the event order as abe f .
(All other choices lead to similar problems.) Since g sees f , every possible witness
for g must end with mutator f . Indeed the only possible witness is ae f g. However,
+0+0-030 is not a valid specification string. 2

Example 13. Consider the following OR-set execution.

+0
a

+0
b

-0
c

70
d

+0
e

-0
f

70
g
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This is EC taking the mutator witnesses to be subsequences of any interleaving of
+0+0-0 and +0-0. The witnesses for the two accessors are as follows.

+0a+0b-0c70d +0e-0 f 70g

There is no interleaving that has both of these as prefixes. Thus, we must consider
subsequences in the definition, rather than restricting attention to prefixes. 2

Example 14. Consider the following execution using the standard SET interface.

+0
a

-0
b

30
f

+0
c

70
g

+0
d

-0
e

This execution is not EC as a SET. The only hope is to derive witnesses from +0-0+0+0-0.
Looking only at the accessors, this is fine:

+0d-0e+0a+0c30 f +0a+0c+0d-0e70g

However, there is no choice for {a, c, d, e} that is consistent with both of these strings.
It is important that this execution not be deemed EC, since the prefix without b is

not EC. 2

Example 15. In the SET specification, the mutators involving 0 and 1 are independent.
We do not require preservation of order across independent operations. Consider the
following SET trace.

+0
a

+1
b

-1
c

+1
d

+0
e

-0
f

30 g 31 h

The trace is EC, as can be seen by taking the mutator witness for each event set to be
subsequences of +0-0+0 and +1-1+1, as follows.

+0a

+0e

+0e-0 f

+0e+0a

+0e-0 f +0a

+0e-0 f +0a30g

+1d

+1b

+1b-1c

+1b+1d

+1b-1c+1d

+1b-1c+1d31h

This example fails to be EC if we ignore dependency, as in [Jagadeesan and Riely
2015]. There is no interleaving of +0-0+0 and +1-1+1 that linearizes the accessors in
the execution, and thus no way to satisfy both affirmative responses.

Our approach is reminiscent of RMO’s treatment of different variables: recall that
RMO does not require any preservation of order among operations on different vari-
ables. 2
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Example 16. The aim of this example is to demonstrate that stuttering is essential when
looking at subsequences. This example also uses the standard SET interface. It is in-
tended to be an execution of the OR-set. Because of the large number of mutators, we
don’t describe any accessors, instead recalling that in the OR-set a cut validates 30 if
and only if it has a maximal +0.

+0
a -0

b

-0
c +0

d
-0

e
+0

f -0
g

-0
h

This execution is EC. Anticipating our proof for the OR-set, we provide a recipe for the
mutator sequence for each cut; namely, when linearizing a SET, we will maximize the
number of alternations from -0 to +0 and use stuttering to remove adjacent and identical
mutators. This results in the following table, where we show the sequence of labels (on
the right) for the cuts (on the left, identified by their set of maximal events).

{a},{d} : +0
{b},{c},{b,c},{e} : +0-0
{b,d},{c,d},{b,c,d},{e,a} : +0-0+0
{g},{h},{g,h},{b,e},{c,e},{b,c,e} : +0-0+0-0
{g,a},{h,a},{g,h,a},{b, f},{c, f},{b,c, f}: +0-0+0-0+0
{b,c,g},{b,c,h},{b,c,g,h} : +0-0+0-0+0-0

We will show that this execution is not EC if we do not use stuttering equivalences
in the definition of subsequence. Consider the cut with maximal elements {c,b,e}. The
sequence +0-0+0-0-0 cannot be used since it doesn’t permit the validation of the sub-
cut {c,b,d} using a subsequence. Thus, the cut has to be linearized to: +0-0-0+0-0.
Thus, monotonicity forces the cut with maximal elements {c,b, f} has to be associated
with: +0-0-0+0-0+0.

Now, consider the set of all mutators. The sequence +0-0-0+0-0+0-0-0 cannot be
used since there is no subsequence to validate the cut with maximal events {g,h,a}.
So, the sequence to linearize the set of all mutators has to be: +0-0+0-0-0+0-0-0.
However, this choice does not permit the linearization for {c,b, f} as a subsequence.2

Example 17 (Distributed text editors). We consider a variant of the collaborative text
editing protocol of [Attiya et al. 2016]. Let a, b range over text identifiers. Labels have
the following forms:

– Mutator !a initializes the text to a.
– Mutator a<b adds a immediately before b.
– Mutator a>b adds a immediately after b.
– Mutator -a removes a.
– Non-mutator ?a1 ···an returns the current state of the document.

Two labels from this alphabet are dependent if they mention overlapping sets of text
identifiers, or if one is a query and the other is a remove.

The following is an example specification string.

!c; b<c; d>c; ?bcd; a<b; e>d; -b; -d; ?ace
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The following execution is EC with respect to this specification trace.

!c
b<c

d>c
?bcd

-d a>b

-b e<d
?ace

Crucially, label -b is independent of e>d, and label -d is independent of a<b. Thus, the
dependent restriction of this execution is as follows.

!c

b<c

d>c

?bcd
-b

a<b

-d

e>d

?ace

We speculate that all executions of this variant of [Attiya et al. 2016] are EC, so long
as each text identified is inserted at most once. 2

5 Establishing that a data structure is EC

In this section, we look at the problem of establishing that a data structure implementa-
tion is EC, using the OR-set as an example. In the process, we show that definition of EC
is expressive enough to validate the OR-set. We note that this implicitly also validates
the grow only G-set that doesn’t permit removes.

Rather than speak about a particular implementation of OR-set, we identify a prop-
erty of the order-relation in the LVOs generated by an OR-set implementation (see
[Shapiro et al. 2011] for details).

– Every -k is preceded by a +k with no intervening -k.
– Every 3k is preceded by an +k with no intervening -k. Every path from an +k to 7k

contains an intervening -k.
– The order relation is transitive.

The first property captures the constraint in OR− set that the remove has to specify
an “observable” element that is present in the SET. The second constraint captures the
priority given to +k when it is concurrent with -k. The only way for an accessor to k to
return false is if every +k is masked by an intervening -k. The transitivity of the LVO
follows from the assumption of causal delivery [Shapiro et al. 2011].

We show that any LVO u that satisfies the above properties is eventually consistent
against the standard sequential SET specification.

Since the methods on different elements are independent, and the dependency rela-
tion for the SET interface is an equivalence, we are able to simplify the verification (in
a sense made completely precise by composition Proposition 26. For now, we proceed
formally as follows:
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Definition 18. D ⊆ 2L is a dependency partitioning of L if

– ∀D ∈D . ∀a, b ∈ D. a # b, and
– ∀D, D′ ∈D . either D = D′ or ∀a ∈ D. ∀b ∈ D′. ¬(a # b). 2

Lemma 19. Let D ⊆ 2L be a dependency partitioning of L.
∀D ∈D . ∀σ ∈ D∗. ∀τ ∈ (L\D)∗. (σ 9 τ)∩Σ 6= /0 implies (σ 9 τ)⊆ Σ . 2

Thus, without loss of generality, it suffices for us to address the case when u only
involves operations on a single element, say 0. We proceed as follows.

To any such LVO u, we associate the linearization, say τu, that has the maximum
number of adjacent labels of the form -0+0, i.e., the maximum number of changes
from a -0 to an +0 label. Below, we summarize some of the key properties of such a
linearization that follow immediately from the definition.

(a) τu ends with +0 if and only if there is an +0 that is not followed by any -0 in u.
(b) For any LVO v⊆ u, τv has at most as many changes from a -0 to an +0 label as τu.

We need to check that these linearizations satisfy all the desired properties. The first
property above ensures that the accessors are validated correctly, i.e., 0 is deemed to be
present iff there is an +0 that is not followed by any -0. The second property ensures
monotonicity, i.e., if v⊆ u, then τv .seq τu (see examples in subsection 2.4).

6 Simulation

In this section, we define maps from traces and specifications to LTSs, such that the
following holds: u is EC iff lts(u) ∼< lts(Σu). The purpose of the intermediate LTS is
to make explicit all of the paths through the trace (or specification). Whereas branch-
ing in an LVO represents concurrency, branching in the corresponding LTS represents
nondeterminism.

As usual for true concurrency semantics, the labels of the LTSs are LVOs rather than
single actions. We only consider LTSs with labels derived from L# (subsection 3.1).

Neither the carrier set nor the replica identifier matter for simulation, therefore we
treat labels up to isomorphism, as defined in section 3. When drawing LTSs, we use
standard pomset syntax for labels that are LPOs: concatenation of actions represents
sequencing and | is used to represents parallelism. Thus a(b|c)d corresponds to the
LPO:

a
b

c
d

The definitions of LTS and of simulation are standard. We state them here for com-
pleteness. Let µ, ν ∈ L# ] {ε} range over labels of the LTS, where ε represents the
silent transition (used in subsection 6.4).

Definition 20. An LTS is a triple P = 〈SP, p0, 7−→P〉 where p0 ∈ SP and 7−→P : SP ×
(L#]{ε})×SP. A relation R: SP×SQ is a (strong) simulation if p

µ7−→P p′ and p R q
implies that there exist ν =iso µ and q′ ∈ SQ such that q

ν7−→Q q′ and p′R q′. Write P∼<Q
if there exists a simulation R: SP× SQ such that p0 R q0. Write P h Q if P ∼< Q and
Q∼< P. For sets of LTSs, write P ∼< Q if ∀P ∈P. ∃Q ∈Q. P∼< Q. 2

As usual, we write p 7−→ p′ if p
µ7−→ p′ for some µ and (p

µ7−→) if p
µ7−→ p′ for some p′.
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6.1 Implementation LTS

Let max(v) be the suborder containing only the maximal elements of v, and max(v) to
be the suborder with the maximal elements removed.

max(v) = v �{e |6 ∃d ∈ Ev. e v d} max(v) = v �{e | ∃d ∈ Ev. e v d}

Let 7−→i : L ×L#×L be defined as follows: p
v7−→i q when3

p⊆ q

Emax(v) ⊆ Emax(q)

Emax(v)∪Ep = Eq

v⊆ q

max(v)⊆ p

Emax(v)∩Ep = /0

These conditions ensure that if p
v7−→i q, then v ∈ cuts#(q).

Let lts(u) = 〈cuts(u), /0, 7−→i〉. As an example, let u be the LPO on the left below,
which executes +0 in parallel with -0. Then lts(u) is given on the right below.

+0
a

-0
b

/0

{a}

{b}

{a, b}

+0

-0

-0

+0

-0|+0

In this simple example, the labels on the transitions do not have any causal history; so,
we only see (multisets of) labels rather than full pomsets.

6.2 Specification LTS

Let 7−→s : Σ ×L#×Σ be defined as follows: σ
v7−→s ρ when4

σ .seq ρ

ρ ∈ σ 9max(v)

∃ρ ′ .seq ρ. v linearizes to ρ
′

∃σ ′ .seq σ .max(v) linearizes to σ
′

Using the terminology from subsection 2.4, these conditions ensure that if σ
v7−→s ρ ,

then ρ is one of the minimal upper bounds of σ and v in 〈Σ ,.seq〉. Thus, the sequence
at a state reachable from the initial state can be seen as being one of the miminal upper
bounds of by the set of labels on the transitions verifying the reachability.

Let lts(Σ) = 〈Σ , ε, 7−→s〉.
When drawing pictures, it is useful to consider automata on single specification

strings. In order to use the smallest possible state set, define strict-subseq(σ) = {σ ′ | σ ′
≤seq σ} and let lts(σ) = 〈strict-subseq(σ), ε, 7−→s〉. We have that P∼< lts(Σ) iff ∃σ ∈

3 For linearizability, the definition is the same, except labels are chosen from L rather than L#.
4 For linearizability, the definition is the same, except labels are chosen from L rather than L#

and the order is defined using ≤pre rather than .seq.
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Σ . P∼< lts(σ). For example, the SET LTS for strings +0-0 and -0+0 are as follows.

ε

+0

-0

+0-0
+0

-0

-0

+0-0

+0

+0|-0
ε

+0

-0

-0+0

+0

-0

-0

-0
+0

+0

+0|-0

The specification LTS is not deterministic. For example there are the two transitions
with label +0|-0 from the initial state ε , shown over the two figures.

We draw attention to the two transitions from the -0 state to the -0+0 state in the
righthand figure. The transition labeled +0 has no causal history, so is concurrent with
the -0 label that is already received at this state. On the other hand, the transition labeled
-0+0 reflects a +0 transition that causally follows the -0 label that is already received
at this state.

6.3 Soundness and completeness of simulation

Theorem 21. u is EC iff lts(u)∼< lts(Σ).

PROOF. (Sketch) For the forward direction, since u is EC, there exists a function τ :
cuts#(u)→ Σ such that ∀E ∈ cuts#(u). τ(E) is a linearization of E, We define the re-
quired simulation R: cuts(u)×Σ as follows.

∀p ∈ cuts(u). p R τ(p �# �M)

Consider a transition p
v7−→i q . It follows from EC-monotonicity that τ(p �# �M).seq τ

(q �M). Since v ∈ cuts#(q), the mutators in τ(v) linearize to a subsequence that is
.seq τ(q�#�M). The non-mutators of τ(v) are consistent with this subsequence by EC-
monotonicity. Using the property that “Independent labels can be removed” in specifi-
cations, we deduce that the non-mutators of τ(v) are consistent with all of τ(q �# �M).
Thus, we deduce that τ(p �# �M)

v7−→s τ(q �# �M).
For the converse, we are given a simulation R: cuts(u)× Σ . A simple inductive

proof demonstrates that: (∀p ∈ cuts#(u)), there is a transition sequence of the form
/0 7−→i p which can be taken to be in a special form /0 7−→i q

v7−→i p in the case where there
exists v ∈ cuts#(u) such that Emax(v) = Emax(p). In particular, since the initial state /0 is
in the domain of the simulation relation, every v ∈ cuts#(u) is in the domain of R; the
label on the final transition into v ensures that the σ related to v is a linearization of v.
We define τ(v) = σ , choosing one amongst the possibly many σ that can be constructed
this way. A simple inductive proof shows that ∀p, q ∈ cuts(u). p ⊆ q implies p 7−→∗i q.
Thus τ(v).seq τ(w), by the properties of R and the definition of τ . 2

6.4 Client interaction

In [Jagadeesan and Riely 2015] we gave a concrete syntax for clients. Here we model
clients abstractly as sets of LPOs. For example, consider sequential SET client that
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checks for membership of 0, then checks for membership of 1, then adds 2 in the case
that the results where the same. This is modeled as the prefix closed set containing the
LTOs 3031+2, 3071, 7031, and 7071+2. As a second example, consider a client with
two threads, one adding 0 and testing membership for 0. This is modeled as the prefix
closed set containing the LPOs 30|+0 and 70|+0. Client LPOs can be converted into
LTSs, as described in subsection 6.1.

The relation |d is defined between LTSs so that P |d Q describes the system that
results when client P interacts with data structure Q. The definition is then lifted to sets:
P |dQ =

⋃
P∈P,Q∈Q P |d Q. The |d operator is asymmetric in two ways:

– All of the actions of the client P must be matched by Q. Otherwise P |d Q = /0.
Actions of the data structure Q may not be matched by P; they may instead be
propagated to other clients. We expect that (P1 | P2) |d Q h P1 |d (P2 |d Q).

– The data structure Q may introduce order not found in the clients. This ensures that
the composition of client 30|+0 with the SET data structure is nonempty.

The formal definition is as follows. From section 3, recall that we write ⊆ for sub-
order and =iso for isomorphism. From subsection 6.1, recall that max(u) is the suborder
including only the maximal elements of u.

Definition 22. For LTSs P and Q, define 7−→× inductively, as follows.

q
µ7−→Q q′

〈p, q〉 µ7−→× 〈p, q′〉
p

v7−→P p′ q
w7−→Q q′

〈p, q〉 ε7−→× 〈p′, q′〉
∃v′ =iso v. v′ ⊆ w and max(v′) =max(w)

Let S× = {〈p, q〉 | ∃〈p′, q′〉. 〈p, q〉 7−→∗× 〈p′, q′〉 and 6 ∃p′′. p 7−→P p′′}
Let P |d Q = 〈S×, 〈p0, q0〉, 7−→×〉. 2

In the case that S× is empty, the composition gives the empty LTS.
A couple of comments are in order about the operational consequences of this defi-

nition.

– Replica identities do not play a role in the definition. Thus, we are permitting im-
plicit mobility of the client amongst replicas. The only constraint — enforced by
the synchronization on the labels — is that the replica has at least as much history
on the current item of interaction as the client.

– The definition includes the case where the client itself is replicated. However, in this
case, it does not provide for out-of-band interaction between the clients at different
replicas. All interaction is assumed to happen through the data structure.

We can also define restriction, a lá CCS, simply by removing all edges with labels
from the given set A

Definition 23. P\A = 〈SP, p0, {〈p, a, q〉 | 〈p, a, q〉 ∈ (7−→P) and a 6∈ A}〉 2

The definitions lift to sets as follows: P |d Q = {(P |d Q) | P ∈P and Q ∈ Q}
and P\A = {(P\A) | P ∈P}. Simulation is a precongruence for composition and
restriction.

Lemma 24. If P ∼< P ′ and Q ∼< Q′ then P |dQ ∼< P ′ |dQ′ and P\A∼< P ′\A. 2
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7 Reasoning with eventual consistency

In this section, we address eventual consistency from the client’s perspective. How can
a client make use of the fact that it is running against an EC data structure? First we
consider a few basic properties.

7.1 Basic Properties

Prefix closure. If v is EC and u≤pre v, then u is also EC.

Quiescent extension. An EC trace can always be extended to an EC trace in which
all mutators are visible at every replica. We formalize this property as follows. Let 
u e = {d ∈ Eu | λu(d) ∈M and d e}. Fix trace u and let D = {d ∈ Eu | λu(d) ∈M} be

the set of mutators in u. Then u is quiescent if ∀p∈R. ∃e∈ Eu. ρu(e) = p and
 
u e = D.

If u is EC, then there exists a quiescent extension v≥pre u that is also EC.

Permutation equivalence. [Bieniusa et al. 2012] state the following principle of permu-
tation equivalence: “If all sequential permutations of updates lead to equivalent states,
then it should also hold that concurrent executions of the updates lead to equivalent
states.” Any EC implementation satisfies this principle because every dependent set of
mutators is linearized — so, in particular, we enforce a stronger property that there are
no new intermediate states of the data structure over a purely concurrent system.

Strong consistency Strong consistency, is defined in [Shapiro et al. 2011] to identify
those CRDTs that satisfy a kind of “Church-Rosser” theorem and do not permit rollback;
thus, in such a replicated implementation of a data structure, the arrival of new muta-
tors does not alter the ordering of old mutators. Every EC implementation is strongly
consistent in this sense, as a consequence of EC-monotonicity.

7.2 Abstraction results

A client can program against the specification if the implementation is EC. We demon-
strate this by showing that simulation is a congruence for the composition operator. The
structure of this proof directly follows the proof techniques of [Filipovic et al. 2010],
albeit in ma very different context.

Theorem 25. If u is EC for Σ , then P |d lts(u)∼< P |d lts(Σ).

PROOF. (Sketch) By Theorem 21, it suffices to show that: P ∼< lts(u) implies P |d lts
(u)∼<P |d lts(Σ). Let R be a witness for P∼< lts(u). The proof proceeds by constructing
a “product” simulation relation of the identity on the states of P with R, i.e.:

q R q′ implies 〈p, q〉S 〈p, q′〉 2

We view the simplicity of the proof of this theorem as a testament to the efficacy of our
framework.

In restricted situations, the client view is simplified further. We discuss briefly be-
low.
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Relation to linearizability Every linearizable trace is also EC. The converse also holds
under various assumptions. Suppose that u is EC.

If u contains only mutators, all of whom are pairwise dependent, then u is also
linearizable. Thus, EC affords extra freedom for non-mutators by ignoring order from
them and by not forcing non-mutators to be part of the linearization.

If there is a total order on the mutators of u and  u is transitive, then u is also
linearizable. Two special cases, STS and SINGLE-MASTER, are mentioned in the intro-
duction.

In our prior paper [Jagadeesan and Riely 2015], we explored a further special case
where the client can indeed assume that they are programming against the sequential
interface. Consider clients, all of whose executions are logically monotone in the sense
that they satisfy the CALM principle [Hellerstein 2010]. In a logically monotone execu-
tion, the arrival time of a concurrent mutator does not alter the evolution of the system,
i.e., there are no “1races” between concurrent mutators and mutators/accessors5. This
restriction is an analogue of the DRF property of relaxed memory models, and includes
those written in languages that realize the CALM principle, such as Bloom [Conway
et al. 2012]. The simplified programmer perspective mimics the guarantees provided for
data-race free programs. The treatment of this case follows our prior work Jagadeesan
and Riely [2015] and we do not describe it any further.

7.3 Composition

We turn our attention to a composition result in the style of [Herlihy and Wing 1990].
Given two non-interacting data structures whose replicated implementations satisfy
their sequential specifications, we show that the implementation that combines them
satisfies the interleaving of their specifications.

Given an trace u and L ⊆ L, write u �L for the trace that results by restricting u to
events with labels in L: u �L = u �{e ∈ Eu | λu(e) ∈ L}. This notation lifts to sets in the
standard way: U �L =

⋃
u∈U{u �L}.

Proposition 26 (Composition). Write u �ec Σu to mean that u is EC with respect to Σu.
Let L1 and L2 be mutually independent subsets of L, using the notion of dependency

from subsection 2.1. For i ∈ {1,2}, let Σi be a specification with labels chosen from
Li, such that Σ1 9Σ2 is also a specification. If (U �L1) �ec Σ1 and (U �L2) �ec Σ2 then
U �ec (Σ1 9Σ2). 2

It is also possible to formalize this result as using the interleaving operator on LTSs.
If the labels of Σ1 and Σ2 are independent, we have lts(Σ1 9Σ2)h lts(Σ1)9 lts(Σ2)

7.4 Graph is correct

We now show an example of the use of the results in the previous sections. Shapiro
et al. [2011] give a construction of a graph using OR-sets. We show that it is sound to
program the graph against the specification of SET.

5 Our formalization of logically monotone executions was inspired by Panangaden et al. [1990];
Panangaden and Stark [1988], where a monotone node is insensitive to the arrival order of the
inputs and a concurrent input action (mutator) does not disable an output action (accessor) at
a monotone node.
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We have two separate and independent sets: LΣ1 ∩LΣ2 = /0. Suppose we have two
implementations, each of which is correct individually: lts(Ui) ∼< lts(Σi). By composi-
tion, we have that they are correct when composed together: U1 9U2 ∼< Σ1 9Σ2.

Let P be the graph implementation, which is a client of the two sets. By abstraction,
we know that P |d (Σ1 9Σ2)∼< T implies P |d (U1 9U2)∼< T. Thus, by congruence of
these properties, we deduce:

(P |d (Σ1 9 Σ2))\(LΣ1 ∪LΣ2) ∼< T implies (P |d (U1 9U2))\(LΣ1 ∪LΣ2) ∼< T.

The hypothesis of the above implication involves the graph client interacting with
the specification automaton for the composition of two independent sets. The investi-
gation of the proof of the hypothesis is the matter of future work. In this paper, we
merely note that the methods of traditional concurrency apply. Indeed, this portion of
our paper is that it is provides an alternative perspective of the proof of the proof rules
in particular, the event based proof rule of Figure 8) of Gotsman et al. [2016].
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A Example specifications

The results of the paper are not limited to sets. In this appendix, we give other exam-
ple specifications. Some of these are parameterized by countable sets of values, I, and
variables, X.

Define specification REGX for registers over variables X and values N. Let Wx i de-
note a write to x with value i and Rx i denote a read of x returning i.

M = ∪x∈X {Wx0, Wx1, . . .}
M = ∪x∈X {Rx0, Rx1, . . .}
A = ∪x∈X

{
{Wx0}, {Wx1}, . . . , {Rx0, Rx1, . . .}

}
D = ∪x∈X

{
{Wx0, Wx1, . . . , Rx0, Rx1, . . .}

}
Σ = 9x∈X JRx0∗ ∑i∈N

(
Wx i Rx i∗

)∗K
Actions on different variables are independent.

It is interesting to consider the memory model that result by applying EC to this
specification. The EC model gives per-variable SC (a.k.a., coherence). For example
(wx1 | wx2 | rx1;rx2 | rx2;rx1) is not EC. Across variables, however, it is very
permissive, allowing out-of-thin-air. This is not surprising, since our model does not
track data or control dependencies. One could imaging adding such things to the de-
pendent restriction in order to forbid thin-air behaviors.

We now present some more inherently sequential specifications. While the defini-
tion of EC applies here, as to any specification, the flexibility afforded by EC is greatly
reduced by the fact that accessors and mutators overlap. In this light, it appears that

http://doi.acm.org/10.1145/2926965
http://doi.acm.org/10.1145/2926965
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the concurrency allowed by CRDTs is inherently tied to the separation of accessors as
non-mutators.

Define specification STACKI for stacks. Let +i denote the push of i, -i denote pop
returning i, and 3i denote top returning i. We let -7 represents an underflow of pop and
37 represent an underflow of top.

M = ∪i∈I {+i, -i}
L = {-7, 37} ∪

⋃
i∈I {3i}

A =
{
{+i}

∣∣ i ∈ I
}
∪
{
{-7}∪{-i | i ∈ I}

}
∪
{
{37}∪{3i | i ∈ I}

}
D = {L}
Σ = JSK where S ::= (37 |-7)

∗ (B (37 |-7)
∗)∗

B ::= ε |∑i∈I +i 3i∗ B 3i∗ -i B

Define specification INC for atomic get-and-increment over the naturals. Let +i de-
note get-and-increment returning i.

L = M = {+0, +1, . . .}
A = D = {L}

Σ = J+0 +1 +2 · · ·K

Define specification COUNT of increment/decrement counters, bottoming out at 0.
Let + denote increment, - denote decrement, and 3i denote a query of the value of the
counter, returning i. We presume that a decrement silently does nothing at 0; thus we
have strings such as 30 + 31 - 30 - 30.

M = {+, -}
M = {30, 31, . . .}
A =

{
{+}, {-}, {30, 31, . . .}

}
D = {L}


