Between Linearizability and Quiescent Consistency

Radha Jagadeesan James Riely

DePaul University
Chicago, USA

ICALP 2014
Linearizability (Herlihy/Wing 1990)

- “Each method call should appear to take effect instantaneously at some moment between its invocation and response.” (Herlihy/Shavit 2008)
- I.e., for every invocation, exists a linearization point such that
 - linearization point is between call and return
 - real-time order corresponds to some sequential execution

Specification

Implementation

- Compositional (Herlihy/Wing 1990)
 Composition of the histories of two non-interfering linearizable objects is linearizable

- Intrinsically inefficient (Dwork/Herlihy/Waarts 1997)
 Trade-off between high contention and using many variables

Data Structures in the Multicore Age (Shavit 2011, CACM)
Linearizability (Herlihy/Wing 1990)

- “Each method call should appear to take effect instantaneously at some moment between its invocation and response.” (Herlihy/Shavit 2008)

- I.e., for every invocation, exists a *linearization point* such that
 - linearization point is between call and return
 - real-time order corresponds to some sequential execution

Compositional (Herlihy/Wing 1990)
Composition of the histories of two non-interfering linearizable objects is linearizable

Intrinsically inefficient (Dwork/Herlihy/Waarts 1997)
Trade-off between high contention and using many variables
Data Structures in the Multicore Age (Shavit 2011, CACM)
Linearizability (Herlihy/Wing 1990)

- “Each method call should appear to take effect instantaneously at some moment between its invocation and response.” (Herlihy/Shavit 2008)
- I.e., for every invocation, exists a linearization point such that
 - linearization point is between call and return
 - real-time order corresponds to some sequential execution

- Compositional (Herlihy/Wing 1990)
 Composition of the histories of two non-interfering linearizable objects is linearizable

- Intrinsically inefficient (Dwork/Herlihy/Waarts 1997)
 Trade-off between high contention and using many variables

Data Structures in the Multicore Age (Shavit 2011, CACM)
Linearizability (Herlihy/Wing 1990)

- “Each method call should appear to take effect instantaneously at some moment between its invocation and response.” (Herlihy/Shavit 2008)

- I.e., for every invocation, exists a *linearization point* such that
 - linearization point is between call and return
 - real-time order corresponds to some sequential execution

Compositional (Herlihy/Wing 1990)
Composition of the histories of two non-interfering linearizable objects is linearizable

Intrinsically inefficient (Dwork/Herlihy/Waarts 1997)
Trade-off between high contention and using many variables

Data Structures in the Multicore Age (Shavit 2011, CACM)
Linearizability (Herlihy/Wing 1990)

- “Each method call should appear to take effect instantaneously at some moment between its invocation and response.” (Herlihy/Shavit 2008)
- I.e., for every invocation, exists a *linearization point* such that
 - linearization point is between call and return
 - real-time order corresponds to some sequential execution

![Diagram of Linearizability](attachment:image.png)

- **Compositional** (Herlihy/Wing 1990)
 Composition of the histories of two non-interfering linearizable objects is linearizable

- **Intrinsically inefficient** (Dwork/Herlihy/Waarts 1997)
 Trade-off between high contention and using many variables

Data Structures in the Multicore Age (Shavit 2011, CACM)
Quiescent Consistency (Aspnes/Herlihy/Shavit 1991)

- Weaker than Linearizability (Lin \(\Rightarrow\) QC)
- Compositional
- “Method calls separated by a period of quiescence should appear to take effect in their real-time order.” (Herlihy/Shavit 2008)

Aspnes/Herlihy/Shavit (1991) actually prove other things

- Step property (weaker than QC)
 - Concretely: When quiescent, state is “very sensible”
 - Abstractly: *If at any point accessed sequentially, behaves sequentially*

- Gap property (morally “stronger” than QC)
 - Concretely: Even when not quiescent, state is “pretty sensible”
 - Abstractly: ??? *This paper*
Quiescent Consistency (Aspnes/Herlihy/Shavit 1991)

- Weaker than Linearizability (Lin ⇒ QC)
- Compositional
- “Method calls separated by a period of quiescence should appear to take effect in their real-time order.” (Herlihy/Shavit 2008)

Aspnes/Herlihy/Shavit (1991) actually prove other things
- Step property (weaker than QC)
 Concretely: When quiescent, state is “very sensible”
 Abstractly: If at any point accessed sequentially, behaves sequentially
- Gap property (morally “stronger” than QC)
 Concretely: Even when not quiescent, state is “pretty sensible”
 Abstractly: ??? This paper
Quiescent Consistency (Aspnes/Herlihy/Shavit 1991)

- Weaker than Linearizability (Lin ⇒ QC)
- Compositional
- “Method calls separated by a period of quiescence should appear to take effect in their real-time order.” (Herlihy/Shavit 2008)

Aspnes/Herlihy/Shavit (1991) actually prove other things
- Step property (weaker than QC)
 Concretely: When quiescent, state is “very sensible”
 Abstractly: *If at any point accessed sequentially, behaves sequentially*
- Gap property (morally “stronger” than QC)
 Concretely: Even when not quiescent, state is “pretty sensible”
 Abstractly: ??? *This paper*
Quiescent Consistency (Aspnes/Herlihy/Shavit 1991)

- Weaker than Linearizability (Lin ⇒ QC)
- Compositional
- “Method calls separated by a period of quiescence should appear to take effect in their real-time order.” (Herlihy/Shavit 2008)

Aspnes/Herlihy/Shavit (1991) actually prove other things

- Step property (weaker than QC)
 Concretely: When quiescent, state is “very sensible”
 Abstractly: If at any point accessed sequentially, behaves sequentially

- Gap property (morally “stronger” than QC)
 Concretely: Even when not quiescent, state is “pretty sensible”
 Abstractly: ??? This paper
Quiescent Consistency (Aspnes/Herlihy/Shavit 1991)

- Weaker than Linearizability (Lin ⇒ QC)
- Compositional
- “Method calls separated by a period of quiescence should appear to take effect in their real-time order.” (Herlihy/Shavit 2008)

Aspnes/Herlihy/Shavit (1991) actually prove other things

- Step property (weaker than QC)
 - Concretely: When quiescent, state is “very sensible”
 - Abstractly: If at any point accessed sequentially, behaves sequentially
- Gap property (morally “stronger” than QC)
 - Concretely: Even when not quiescent, state is “pretty sensible”
 - Abstractly: ??? This paper

is a quiescent point
Quiescent Consistency (Aspnes/Herlihy/Shavit 1991)

- Weaker than Linearizability (Lin \Rightarrow QC)
- Compositional
- “Method calls separated by a period of quiescence should appear to take effect in their real-time order.” (Herlihy/Shavit 2008)

Aspnes/Herlihy/Shavit (1991) actually prove other things
- Step property (weaker than QC)
 - Concretely: When quiescent, state is “very sensible”
 - Abstractly: If at any point accessed sequentially, behaves sequentially
- Gap property (morally “stronger” than QC)
 - Concretely: Even when not quiescent, state is “pretty sensible”
 - Abstractly: ??? This paper
Quiescent Consistency (Aspnes/Herlihy/Shavit 1991)

- Weaker than Linearizability (Lin \Rightarrow QC)
- Compositional
- “Method calls separated by a period of quiescence should appear to take effect in their real-time order.” (Herlihy/Shavit 2008)

Aspnes/Herlihy/Shavit (1991) actually prove other things

- Step property (weaker than QC)
 Concretely: When quiescent, state is “very sensible”
 Abstractly: *If at any point accessed sequentially, behaves sequentially*

- Gap property (morally “stronger” than QC)
 Concretely: Even when not quiescent, state is “pretty sensible”
 Abstractly: ??? *This paper*
But first. . . Weak Quiescent Consistency

- Abstract view of “step property”
- If at any point accessed sequentially, behaves sequentially

Spec [] () () ← →

Exec ← () () () () () () () () →

- No comment about periods of concurrency
 QC requires permutation
 Weak QC does not (may be no spec trace with same set of events)
But first... Weak Quiescent Consistency

- Abstract view of “step property”
- If at any point accessed sequentially, behaves sequentially

No comment about periods of concurrency
QC requires *permutation*
Weak QC does not (may be no spec trace with same set of events)
But first... Weak Quiescent Consistency

- Abstract view of “step property”
- If at any point accessed sequentially, behaves sequentially

Spec

Exec

- No comment about periods of concurrency
 QC requires *permutation*
 Weak QC does not (may be no spec trace with same set of events)
This paper... Quantitative Quiescent Consistency

- Between Linearizability and QC (Lin \Rightarrow QQC \Rightarrow QC)
- Compositional
- “Nonlinearizable behavior proportional to number of *early concurrent* calls”
This paper... Quantitative Quiescent Consistency

- Between Linearizability and QC (Lin \Rightarrow QQC \Rightarrow QC)
- Compositional
- “Nonlinearizable behavior proportional to number of early concurrent calls”
Between Linearizability and QC (Lin \Rightarrow QQC \Rightarrow QC)

Compositional

“Nonlinearizable behavior proportional to number of early concurrent calls”
Between Linearizability and QC (Lin \Rightarrow QQC \Rightarrow QC)

- Compositional
- “Nonlinearizable behavior proportional to number of early concurrent calls”

Called early
This paper... Quantitative Quiescent Consistency

- Between Linearizability and QC (Lin \Rightarrow QQC \Rightarrow QC)
- Compositional
- “Nonlinearizable behavior proportional to number of early concurrent calls”

![Diagram showing the relationship between Spec and Impl, with arrows indicating the flow of calls and return actions.]

- Called early
- Returns late
This paper... Quantitative Quiescent Consistency

- Between Linearizability and QC (Lin \Rightarrow QQC \Rightarrow QC)
- Compositional
- “Nonlinearizable behavior proportional to number of early concurrent calls”

- Early concurrent calls enable out-of-order behavior

Called early

Returns late
Definitions

- Number the call/return pairs of the specification

\[[1,1] (2,2) \{3,3\} (4,4) \{5,5\} [6,6] \ldots \]

- Linearizability: If \(i \stackrel{\text{precedes}}{\longrightarrow} j \) then \(i < j \) (Herlihy/Wing 1990)

- QC: If \(i \stackrel{\text{quiescent}}{\longrightarrow} j \) then \(i < j \) (Definition 3.1)

- Linearizability: If \(i < j \) then \([i, i \stackrel{\text{precedes}}{\longrightarrow}] j \) (Theorem 2.2)

- Linearizability: \(\{i \mid i \stackrel{\text{precedes}}{\longrightarrow} j\} \supseteq \{1, \ldots, j\} \) (Calculation)

- QQC: \(|\{i \mid i \stackrel{\text{precedes}}{\longrightarrow} j\}| \geq |\{1, \ldots, j\}| = j \) (Theorem 4.3)
Definitions

- Number the call/return pairs of the specification

![Spec diagram]

- **Linearizability:** If \(i \) precedes \(j \) then \(i < j \)
 (Herlihy/Wing 1990)

- **QC:** If \(i \) quiescent precedes \(j \) then \(i < j \)
 (Definition 3.1)

- **Linearizability:** If \(i < j \) then \([i \to j] \)
 (Theorem 2.2)

- **Linearizability:** \(\{ i \mid [i \to] \} \supseteq \{1, \ldots, j\} \)
 (Calculation)

- **QQC:** \(|\{ i \mid [i \to] \}| \geq |\{1, \ldots, j\}| = j \)
 (Theorem 4.3)
Definitions

- Number the call/return pairs of the specification

Spec: [] () []

- Linearizability: If \(i \) precedes \(j \) then \(i < j \) (Herlihy/Wing 1990)
- QC: If \(i \) quiescent \(j \) then \(i < j \) (Definition 3.1)
- Linearizability: If \(i < j \) then \(i \) precedes \(j \) (Theorem 2.2)
- Linearizability: \(\{ i \mid i \) precedes \(j \} \supseteq \{ 1, \ldots, j \} \) (Calculation)
- QQC: \(\left| \{ i \mid i \) precedes \(j \} \right| \geq \left| \{ 1, \ldots, j \} \right| = j \) (Theorem 4.3)
Definitions

- Number the call/return pairs of the specification

\[\text{Spec} \]

- Linearizability: If \(i \xrightarrow{\text{precedes}} j \) then \(i < j \) (Return-to-call)

- QC: If \(i \xrightarrow{\text{quiescent}} j \) then \(i < j \) (Definition 3.1)

- Linearizability: If \(i < j \) then \([i \xrightarrow{\text{precedes}} j] \) (Call-to-return)

- Linearizability: \(\{ i \mid [i \xrightarrow{\text{precedes}} j] \} \supseteq \{1, \ldots, j\} \) (Calculation)

- QQC: \(|\{ i \mid [i \xrightarrow{\text{precedes}} j] \}| \geq |\{1, \ldots, j\}| = j \) (Theorem 4.3)
Definitions

- Number the call/return pairs of the specification

\[\text{Spec} \]

- **Linearizability:** If \(i \xrightarrow{\text{precedes}} j \) then \(i < j \) (Herlihy/Wing 1990)

- **QC:** If \(i \xrightarrow{\text{quiescent}} j \) then \(i < j \) (Definition 3.1)

- **Linearizability:** If \(i < j \) then \(i \xrightarrow{\text{precedes}} j \) (Theorem 2.2)

- **Linearizability:** \(\{ i \mid i \xrightarrow{\text{precedes}} j \} \supseteq \{1, \ldots, j\} \) (Calculation)

- **QQC:** \(\left| \{ i \mid i \xrightarrow{\text{precedes}} j \} \right| \geq \left| \{1, \ldots, j\} \right| = j \) (Theorem 4.3)
Definitions

- Number the call/return pairs of the specification

- **Linearizability**: If \(i \) precedes \(j \) then \(i < j \)
 (Herlihy/Wing 1990)

- **QC**: If \(i \) quiescent precedes \(j \) then \(i < j \)
 (Definition 3.1)

- **Linearizability**: If \(i < j \) then \([i] \) precedes \(j \)
 (Theorem 2.2)

- **Linearizability**:
 \(\{ i \mid [i] \) precedes \(j \} \supseteq \{1, \ldots, j\} \)
 (Calculation)

- **QQC**:
 \(\mid \{ i \mid [i] \) precedes \(j \} \mid \geq \mid \{1, \ldots, j\} \mid = j \)
 (Theorem 4.3)
Definitions

- Number the call/return pairs of the specification

Spec

- **Linearizability:** If \(i \xleftarrow{\text{precedes}} j \) then \(i < j \)
- **QC:** If \(i \xrightarrow{\text{quiescent}} j \) then \(i < j \)
- **Linearizability:** If \(i < j \) then \(\{i \leftarrow j\} \supseteq \{1, \ldots, j\} \)
- **Linearizability:** \(\left| \{i \leftarrow j\} \right| \geq \left| \{1, \ldots, j\} \right| = j \)
- **QQC:**
Interesting examples

- Enabling early call can be used repeatedly

- Enablers can accumulate

- Enablers can themselves be out-of-order
Interesting examples

- Enabling early call can be used repeatedly

- Enablers can accumulate

- Enablers can themselves be out-of-order
Interesting examples

- Enabling early call can be used repeatedly

- Enablers can accumulate

- Enablers can themselves be out-of-order
Quiescently Consistent Data Structures

- Counting networks
 - Bitonic Networks (Aspnes/Herlihy/Shavit 1991)
 - Diffracting Trees (Shavit/Zemach 1994)
 - Decrement/increment (Shavit/Touitou 1995)
 (Aiello/Busch/Herlihy/Mavronicolas/Shavit/Touitou 1999)

- Stacks and Bags (aka, Pools)
 - Elimination Arrays/Trees (Shavit/Touitou 1995)

- “Almost” Linearizable
 - Experimental results
 - Theory involving max/min times (Lynch/Shavit/Shvartsman/Touitou 1996)

- *The Art of Multiprocessor Programming* (Herlihy/Shavit 2008)
N-counter (simplified from Aspnes/Herlihy/Shavit 1991)

```java
class Counter<N:Int> {
    field b:[0..N-1] = 0; // 1 balancer
    field c:Int[] = [0, 1, ..., N-1]; // N counters
    method getAndIncrement():Int {
        val i:[0..N-1];
        atomic { i = b; b++; }
        atomic { val v = c[i]; c[i] += N; return v; } }
}
```

\[\langle b = 0, c = [0, 1] \rangle \xrightarrow{inc} \langle b = 1, c = [0, 1] \rangle \xrightarrow{inc} \langle b = 1, c = [2, 1] \rangle \]

\[\langle b = 0, c = [2, 1] \rangle \xrightarrow{inc} \langle b = 0, c = [2, 1] \rangle \xrightarrow{inc} \langle b = 0, c = [2, 3] \rangle \]

\[\langle b = 1, c = [2, 1] \rangle \xrightarrow{inc} \langle b = 1, c = [2, 3] \rangle \xrightarrow{inc} \langle b = 1, c = [4, 3] \rangle \]

Behaves sequentially ☺️
N-counter (simplified from Aspnes/Herlihy/Shavit 1991)

```java
class Counter<N:Int> {  
  field b:[0..N-1] = 0;  // 1 balancer
  field c:Int[] = [0, 1, ..., N-1];  // N counters
  method getAndIncrement():Int {  
    val i:[0..N-1];  
    atomic { i = b; b++; }  
    atomic { val v = c[i]; c[i] += N; return v; } } }
```

\[
\langle b = 0, c = [0, 1]\rangle \xrightarrow{\text{inc}} \langle b = 1, c = [0, 1]\rangle \xrightarrow{\text{inc}} \langle b = 1, c = [2, 1]\rangle
\]

\[
\langle b = 0, c = [2, 1]\rangle \xrightarrow{\text{inc}} \langle b = 0, c = [2, 3]\rangle
\]

\[
\langle b = 1, c = [2, 3]\rangle \xrightarrow{\text{inc}} \langle b = 1, c = [4, 3]\rangle
\]

Behaves sequentially 😊
\[N \text{-counter} \] (simplified from Aspnes/Herlihy/Shavit 1991)

```java
class Counter<N:Int> {
    field b:[0..N-1] = 0; // 1 balancer
    field c:Int[] = [0, 1, ..., N-1]; // N counters
    method getAndIncrement():Int {
        val i:[0..N-1];
        atomic { i = b; b++; }
        atomic { val v = c[i]; c[i] += N; return v; } } }
```

\[\langle b = 0, c = [0, 1] \rangle \xrightarrow{inc} \langle b = 1, c = [0, 1] \rangle \xrightarrow{inc} \langle b = 1, c = [2, 1] \rangle \]

\[\langle b = 0, c = [2, 1] \rangle \xrightarrow{inc} \langle b = 0, c = [2, 3] \rangle \]

\[\langle b = 1, c = [2, 1] \rangle \xrightarrow{inc} \langle b = 1, c = [2, 3] \rangle \xrightarrow{inc} \langle b = 1, c = [4, 3] \rangle \]

Behaves sequentially ☺️
N-counter (simplified from Aspnes/Herlihy/Shavit 1991)

```java
class Counter<N:Int> {
    field b:[0..N-1] = 0; // 1 balancer
    field c:[Int[]] = [0, 1, ..., N-1]; // N counters
    method getAndIncrement():Int {
        val i:[0..N-1];
        atomic { i = b; b++; } // For illustrative purposes, we can consider atomic operations.
        atomic { val v = c[i]; c[i] += N; return v; } // Ensure consistency in operations.
    }
}
```

\[
\langle b = 0, c = [0, 1] \rangle \xrightarrow{\text{inc}^0} \langle b = 1, c = [0, 1] \rangle \xrightarrow{\text{inc}^1} \langle b = 1, c = [2, 1] \rangle
\]

\[
\langle b = 0, c = [2, 1] \rangle \xrightarrow{\text{inc}^1} \langle b = 0, c = [2, 1] \rangle \xrightarrow{\text{inc}^2} \langle b = 0, c = [2, 3] \rangle
\]

\[
\langle b = 1, c = [2, 3] \rangle \xrightarrow{\text{inc}^2} \langle b = 1, c = [4, 3] \rangle
\]

Behaves sequentially 😊
N-counter (simplified from Aspnes/Herlihy/Shavit 1991)

```java
class Counter<N: Int> {
    field b: [0..N-1] = 0; // 1 balancer
    field c : Int[] = [0, 1, ..., N-1]; // N counters
    method getAndIncrement() : Int {
        val i: [0..N-1];
        atomic { i = b; b++; }
        atomic { val v = c[i]; c[i] += N; return v; } } }
```

\[
\langle b = 0, c = [0, 1] \rangle \xrightarrow{\text{inc}} \langle b = 1, c = [0, 1] \rangle \xrightarrow{\text{inc}} \langle b = 1, c = [2, 1] \rangle \\
\langle b = 0, c = [2, 1] \rangle \xrightarrow{\text{inc}} \langle b = 0, c = [2, 3] \rangle \\
\langle b = 1, c = [2, 1] \rangle \xrightarrow{\text{inc}} \langle b = 1, c = [2, 3] \rangle \xrightarrow{\text{inc}} \langle b = 1, c = [4, 3] \rangle
\]

Behaves sequentially 😊
N-counter (simplified from Aspnes/Herlihy/Shavit 1991)

```scala
class Counter<N: Int> {
    field b: [0..N-1] = 0; // 1 balancer
    field c: Int[] = [0, 1, ..., N-1]; // N counters
    method getAndIncrement(): Int {
        val i: [0..N-1];
        atomic { i = b; b++; }
        atomic { val v = c[i]; c[i] += N; return v; } }
}
```

Behaves sequentially 🌼

\[
\langle b = 0, c = [0, 1]\rangle \xrightarrow{\text{inc}_0} \langle b = 1, c = [0, 1]\rangle \xrightarrow{\text{inc}_2} \langle b = 1, c = [2, 1]\rangle \\
\langle b = 0, c = [0, 1]\rangle \xrightarrow{\text{inc}_1} \langle b = 1, c = [2, 1]\rangle \xrightarrow{\text{inc}_4} \langle b = 1, c = [4, 3]\rangle \\
\langle b = 0, c = [2, 3]\rangle \xrightarrow{\text{inc}_0} \langle b = 1, c = [2, 3]\rangle \xrightarrow{\text{inc}_1} \langle b = 1, c = [4, 3]\rangle
\]
N-counter (simplified from Aspnes/Herlihy/Shavit 1991)

```java
class Counter<N:Int> {
    field b:[0..N-1] = 0; // 1 balancer
    field c:Int[] = [0, 1, ... , N-1]; // N counters
    method getAndIncrement():Int {
        val i:[0..N-1];
        atomic { i = b; b++; }
        atomic { val v = c[i]; c[i] += N; return v; }
    }
}
```

\[
\langle b = 0, c = [0, 1] \rangle \xrightarrow{\text{inc}_0} \langle b = 1, c = [0, 1] \rangle \xrightarrow{\text{inc}_0} \langle b = 1, c = [2, 1] \rangle
\]

\[
\langle b = 0, c = [2, 1] \rangle \xrightarrow{\text{inc}_1} \langle b = 0, c = [2, 3] \rangle
\]

\[
\langle b = 1, c = [2, 3] \rangle \xrightarrow{\text{inc}_2} \langle b = 1, c = [4, 3] \rangle
\]

Behaves sequentially 😊
class Counter<N: Int> {
 field b: [0..N-1] = 0; // 1 balancer
 field c: Int[] = [0, 1, ..., N-1]; // N counters
 method getAndIncrement(): Int {
 val i: [0..N-1];
 atomic { i = b; b++; }
 atomic { val v = c[i]; c[i] += N; return v; } } }

\langle b = 0, c = [0, 1] \rangle \xrightarrow{inc} \langle b = 1, c = [0, 1] \rangle
\langle b = 0, c = [0, 1] \rangle \xrightarrow{inc} \langle b = 0, c = [0, 3] \rangle
\langle b = 0, c = [0, 1] \rangle \xrightarrow{inc} \langle b = 1, c = [0, 3] \rangle
\langle b = 1, c = [0, 3] \rangle \xrightarrow{inc} \langle b = 1, c = [2, 3] \rangle
\langle b = 1, c = [2, 3] \rangle \xrightarrow{inc} \langle b = 1, c = [4, 3] \rangle

\langle b = 0, c = [0, 1] \rangle \xrightarrow{inc} \langle b = 1, c = [0, 1] \rangle
\langle b = 1, c = [0, 1] \rangle \xrightarrow{inc} \langle b = 0, c = [0, 3] \rangle
\langle b = 0, c = [0, 3] \rangle \xrightarrow{inc} \langle b = 1, c = [0, 3] \rangle
\langle b = 1, c = [0, 3] \rangle \xrightarrow{inc} \langle b = 1, c = [2, 3] \rangle
\langle b = 1, c = [2, 3] \rangle \xrightarrow{inc} \langle b = 1, c = [4, 3] \rangle

b=0
\begin{array}{c}
/ \\
| \\
/ \\
\end{array}
\begin{array}{c}
c[0]=0 \\
c[1]=1
\end{array}

Not Linearizable 😞, but QQK 🎉
class Counter<N: Int> {
 field b: [0..N-1] = 0; // 1 balancer
 field c: Int[] = [0, 1, ..., N-1]; // N counters
 method getAndIncrement(): Int {
 val i: [0..N-1];
 atomic { i = b; b++; } // inc
 atomic { val v = c[i]; c[i] += N; return v; } // inc
 }
}
\(N\)-counter — Execution 2

class Counter\(<N: Int>\) {
 field \(b: [0..N-1] = 0;\) // 1 balancer
 field \(c: \text{Int}[] = [0, 1, \ldots, N-1];\) // \(N\) counters
 method getAndIncrement(): \text{Int} {
 val \(i: [0..N-1];\)
 atomic \{ i = b; b++; \}
 atomic \{ val \(v = c[i]; c[i] += N; \text{return } v; \}\}
 }
}

\[
\begin{align*}
\langle b = 0, c = [0, 1] \rangle &\xrightarrow{\text{inc}} \langle b = 1, c = [0, 1] \rangle \\
\langle b = 0, c = [0, 1] \rangle &\xrightarrow{\text{inc}} \langle b = 0, c = [0, 3] \rangle \\
\langle b = 0, c = [0, 3] \rangle &\xrightarrow{\text{inc}} \langle b = 1, c = [2, 3] \rangle \\
\langle b = 1, c = [2, 3] \rangle &\xrightarrow{\text{inc}} \langle b = 1, c = [4, 3] \rangle
\end{align*}
\]

Not Linearizable ☹, but QQC ☺
N-counter — Execution 2

class Counter<N:Int> {
 field b:[0..N-1] = 0; // 1 balancer
 field c:Int[] = [0, 1, ..., N-1]; // N counters
 method getAndIncrement():Int {
 val i:[0..N-1];
 atomic { i = b; b++; }
 atomic { val v = c[i]; c[i] += N; return v; } } }
\(N\)-counter — Execution 2

```kotlin
class Counter<N:Int> {
    field b:[0..N-1] = 0;  // 1 balancer
    field c:Int[] = [0, 1, ..., N-1];  // N counters
    method getAndIncrement():Int {
        val i:[0..N-1];
        atomic { i = b; b++; }
        atomic { val v = c[i]; c[i] += N; return v; } } } 
```

\[
\langle b = 0, c = [0, 1]\rangle \xrightarrow{\text{inc}} \langle b = 1, c = [0, 1]\rangle \\
\langle b = 0, c = [0, 1]\rangle \xrightarrow{\text{inc}} \langle b = 0, c = [0, 3]\rangle \\
\langle b = 1, c = [0, 3]\rangle \xrightarrow{\text{inc}} \langle b = 1, c = [2, 3]\rangle \\
\langle b = 1, c = [2, 3]\rangle \xrightarrow{\text{inc}} \langle b = 1, c = [4, 3]\rangle \\
\]

Not Linearizable ☹️, but QQKC 😊
N-counter — Execution 2

```java
class Counter<N:Int> {
    field b: [0..N-1] = 0; // 1 balancer
    field c: Int[] = [0, 1, ..., N-1]; // N counters
    method getAndIncrement(): Int {
        val i: [0..N-1];
        atomic { i = b; b++; }
        atomic { val v = c[i]; c[i] += N; return v; } }
}
```

\[
\langle b = 0, c = [0, 1] \rangle \xrightarrow{\text{inc}} \langle b = 1, c = [0, 1] \rangle
\]

\[
\langle b = 0, c = [0, 1] \rangle \xrightarrow{\text{inc}} \langle b = 0, c = [0, 3] \rangle
\]

\[
\langle b = 0, c = [0, 3] \rangle \xrightarrow{\text{inc}} \langle b = 0, c = [2, 3] \rangle
\]

\[
\langle b = 0, c = [2, 3] \rangle \xrightarrow{\text{inc}} \langle b = 0, c = [4, 3] \rangle
\]

Not Linearizable 😞, but QQC 😊
N-counter — Execution 2

```kotlin
class Counter<N:Int> {
    field b:[0..N-1] = 0; // 1 balancer
    field c:Int[] = [0, 1, ..., N-1]; // N counters
    method getAndIncrement():Int {
        val i:[0..N-1];
        atomic { i = b; b++; }
        atomic { val v = c[i]; c[i] += N; return v; } } }
```

\[
\langle b = 0, c = [0, 1]\rangle \xrightarrow{\text{inc}} \langle b = 1, c = [0, 1]\rangle
\]

\[
\langle b = 0, c = [0, 1]\rangle \xrightarrow{\text{inc}} \langle b = 0, c = [0, 3]\rangle
\]

\[
\langle b = 1, c = [0, 3]\rangle \xrightarrow{\text{inc}} \langle b = 1, c = [2, 3]\rangle
\]

\[
\langle b = 1, c = [4, 3]\rangle
\]

Not Linearizable 😞, but QQC ☺️
Increment/Decrement counter

```kotlin
class Counter<N: Int> {
    field b: [0..N-1] = 0;       // 1 balancer
    field c: Int[] = [0, 1, ..., N-1]; // N counters
    method getAndIncrement(): Int {
        val i: [0..N-1];
        atomic { i = b; b++; }
        atomic { val v = c[i]; c[i] += N; return v; } }
    method decrementAndGet(): Int {
        val i: [0..N-1];
        atomic { i = b-1; b--; }
        atomic { c[i] -= N; return c[i]; }
    }
}
```

\[\langle b = 0, c = [0, 1] \rangle \xrightarrow{\text{inc}} \langle b = 1, c = [0, 1] \rangle \xrightarrow{\text{inc}} \langle b = 0, c = [0, 1] \rangle \]

\[\langle b = 0, c = [0, 1] \rangle \xrightarrow{\text{dec}} \langle b = 1, c = [0, 1] \rangle \xrightarrow{\text{dec}} \langle b = 0, c = [0, 1] \rangle \]

\[\langle b = 0, c = [-2, 1] \rangle \xrightarrow{\text{inc}} \langle b = 0, c = [0, 1] \rangle \]

\[\langle b = 0, c = [0, 3] \rangle \xrightarrow{\text{inc}} \langle b = 0, c = [0, 1] \rangle \]

\[\langle b = 0, c = [0, 1] \rangle \xrightarrow{\text{dec}} \langle b = 0, c = [0, 1] \rangle \]

\[\langle b = 0, c = [0, 1] \rangle \xrightarrow{\text{dec}} \langle b = 0, c = [0, 1] \rangle \]

Only weak QC 😊

not a permutation of any spec trace!
Increment/Decrement counter

class Counter<N:Int> {
 field b:[0..N-1] = 0; // 1 balancer
 field c:Int[] = [0, 1, ..., N-1]; // N counters
 method getAndIncrement():Int {
 val i:[0..N-1];
 atomic { i = b; b++; }
 atomic { val v = c[i]; c[i] += N; return v; } }
 method decrementAndGet():Int {
 val i:[0..N-1];
 atomic { i = b-1; b--; }
 atomic { c[i] -= N; return c[i]; } }
}

⟨
 b = 0, c = [0, 1]
⟩ \xrightarrow{\text{inc}} ⟨b = 1, c = [0, 1]⟩ \xrightarrow{\text{inc}} ⟨b = 0, c = [0, 1]⟩

⟨b = 0, c = [0, 1]⟩ \xrightarrow{\text{dec}} ⟨b = 1, c = [0, 1]⟩ \xrightarrow{\text{dec}} ⟨b = 0, c = [0, 1]⟩

⟨b = 0, c = [0, 1]⟩ \xrightarrow{\text{inc}} ⟨b = 0, c = [0, 3]⟩ \xrightarrow{\text{dec}} ⟨b = 0, c = [0, 1]⟩

Only weak QC 😊

Not a permutation of any spec trace!

\[\text{dec} \quad \text{inc} \quad \text{inc} \quad \text{inc} \quad \text{dec} \]

\[-2 \quad -2 \quad 1 \quad 1 \]
Increment/Decrement counter

```java
class Counter<N:Int> {
    field b:[0..N-1] = 0; // 1 balancer
    field c:Int[] = [0, 1, ..., N-1]; // N counters
    method getAndIncrement():Int {
        val i:[0..N-1];
        atomic { i = b; b++; }
        atomic { val v = c[i]; c[i] += N; return v; } }
    method decrementAndGet():Int {
        val i:[0..N-1];
        atomic { i = b-1; b--; }
        atomic { c[i] -= N; return c[i]; } }
}
```

Only weak QC 
not a permutation of any spec trace!
class Counter<N: Int> {
 field b: [0..N-1] = 0; // 1 balancer
 field c: Int[] = [0, 1, ..., N-1]; // N counters
 method getAndIncrement(): Int {
 val i: [0..N-1];
 atomic { i = b; b++; }
 atomic { val v = c[i]; c[i] += N; return v; } }
 method decrementAndGet(): Int {
 val i: [0..N-1];
 atomic { i = b-1; b--; }
 atomic { c[i] -= N; return c[i]; } }
 }

\<b = 0, c = [0, 1]\> \xrightarrow{\text{inc}} \langle b = 1, c = [0, 1]\rangle \xrightarrow{\text{inc}} \langle b = 0, c = [0, 1]\rangle
\langle b = 0, c = [0, 1]\rangle \xrightarrow{\text{dec}} \langle b = 1, c = [0, 1]\rangle \xrightarrow{\text{dec}} \langle b = 0, c = [0, 1]\rangle
\langle b = 0, c = [0, 1]\rangle \xrightarrow{\text{inc}} \langle b = 0, c = [0, 3]\rangle \xrightarrow{\text{dec}} \langle b = 0, c = [0, 1]\rangle
\langle b = 0, c = [0, 1]\rangle

Only weak QC 😊
not a permutation of any spec trace!
Increment/Decrement counter

```java
class Counter<N:Int> {
    field b:[0..N-1] = 0; // 1 balancer
    field c:Int[] = [0, 1, ..., N-1]; // N counters
    method getAndIncrement():Int {
        val i:[0..N-1];
        atomic { i = b; b++; }
        atomic { val v = c[i]; c[i] += N; return v; } }
    method decrementAndGet():Int {
        val i:[0..N-1];
        atomic { i = b-1; b--; }
        atomic { c[i] -= N; return c[i]; } }
}
```

The counter operates on two fields, `b` and `c`, where `b` is a single counter and `c` is an array of counters. The `getAndIncrement()` method increments `b` and returns the value from the corresponding `c[i]` field. The `decrementAndGet()` method decrements `b` and updates `c[i]` accordingly.

![Sequence diagram of counter operations]

Only weak QC ☹️

Not a permutation of any spec trace!
Increment/Decrement counter

```java
class Counter<N:Int> {
    field b:[0..N-1] = 0;  // 1 balancer
    field c:Int[] = [0, 1, ..., N-1];  // N counters
    method getAndIncrement():Int {
        val i:[0..N-1];
        atomic { i = b; b++; }
        atomic { val v = c[i]; c[i] += N; return v; } } } } 
```

```
\[
\begin{array}{c}
\langle b = 0, c = [0, 1]\rangle \xrightarrow{\text{inc}} \langle b = 1, c = [0, 1]\rangle \xrightarrow{\text{inc}} \langle b = 0, c = [0, 1]\rangle \\
\langle b = 1, c = [0, 1]\rangle \xrightarrow{\text{dec}} \langle b = 0, c = [0, 1]\rangle \xrightarrow{\text{dec}} \langle b = 0, c = [0, 1]\rangle \\
\langle b = 0, c = [-2, 1]\rangle \xrightarrow{\text{dec}} \langle b = 0, c = [0, 1]\rangle \xrightarrow{\text{inc}} \langle b = 0, c = [0, 1]\rangle \\
\langle b = 0, c = [0, 3]\rangle \xrightarrow{\text{dec}} \langle b = 0, c = [0, 1]\rangle \xrightarrow{\text{dec}} \langle b = 0, c = [0, 1]\rangle \\
\end{array}
\]
```

Only weak QC 😞 not a permutation of any spec trace!
Increment/Decrement counter

```java
class Counter<N: Int> {
    field b: [0..N-1] = 0; // 1 balancer
    field c: Int[] = [0, 1, ..., N-1]; // N counters
    method getAndIncrement(): Int {
        val i: [0..N-1];
        atomic { i = b; b++; }
        atomic { val v = c[i]; c[i] += N; return v; }
    }
    method decrementAndGet(): Int {
        val i: [0..N-1];
        atomic { i = b-1; b--; }
        atomic { c[i] -= N; return c[i]; }
    }
}
```

\[
\langle b = 0, c = [0, 1]\rangle \xrightarrow{\text{inc}} \langle b = 1, c = [0, 1]\rangle \xrightarrow{\text{inc}} \langle b = 0, c = [0, 1]\rangle
\]
\[
\xrightarrow{\text{dec}} \langle b = 1, c = [0, 1]\rangle \xrightarrow{\text{dec}} \langle b = 0, c = [0, 1]\rangle
\]
\[
\xrightarrow{\text{dec}_{-2}} \langle b = 0, c = [-2, 1]\rangle \xrightarrow{\text{inc}_{-2}} \langle b = 0, c = [0, 1]\rangle
\]
\[
\xrightarrow{\text{inc}} \langle b = 0, c = [0, 3]\rangle \xrightarrow{\text{dec}} \langle b = 0, c = [0, 1]\rangle
\]

Only weak QC 😞

not a permutation of any spec trace!
Increment/Decrement counter

class Counter<N:Int> {
 field b:[0..N-1] = 0; // 1 balancer
 field c:Int[] = [0, 1, ..., N-1]; // N counters
 method getAndIncrement():Int {
 val i:[0..N-1];
 atomic { i = b; b++; }
 atomic { val v = c[i]; c[i] += N; return v; } }
 method decrementAndGet():Int {
 val i:[0..N-1];
 atomic { i = b-1; b--; }
 atomic { c[i] -= N; return c[i]; } }
}

\begin{align*}
\langle b = 0, c = [0, 1] \rangle & \xrightarrow{\text{inc}} \langle b = 1, c = [0, 1] \rangle \\
& \xrightarrow{\text{dec}} \langle b = 1, c = [0, 1] \rangle \\
& \xrightarrow{\text{inc}} \langle b = 0, c = [0, 1] \rangle \\
& \xrightarrow{\text{dec}} \langle b = 0, c = [0, 1] \rangle \\
& \xrightarrow{\text{inc}} \langle b = 0, c = [0, 3] \rangle \\
& \xrightarrow{\text{dec}} \langle b = 0, c = [0, 1] \rangle \\
\end{align*}

Only weak QC 😊

Not a permutation of any spec trace!
Increment/Decrement counter

class Counter<N:Int> {
 field b:[0..N-1] = 0; // 1 balancer
 field c:Int[] = [0, 1, ..., N-1]; // N counters
 method getAndIncrement():Int {
 val i:[0..N-1];
 atomic { i = b; b++; }
 atomic { val v = c[i]; c[i] += N; return v; } }
 method decrementAndGet():Int {
 val i:[0..N-1];
 atomic { i = b-1; b--; }
 atomic { c[i] -= N; return c[i]; } }
}

\[
\langle b = 0, c = [0, 1] \rangle \xrightarrow{\text{inc}} \langle b = 1, c = [0, 1] \rangle \xrightarrow{\text{inc}} \langle b = 0, c = [0, 1] \rangle
\]

Only weak QC 😃
not a permutation of any spec trace!
class Stack<N:Int> {
 field b:[0..N-1] = 0; // 1 balancer
 field s:Stack[] = [[], [], ..., []]; // N stacks of values
 method push(x:Object):Unit {
 val i:[0..N-1];
 atomic { i = b; b++; }
 atomic { val v = s[i].push(x); return v; } }
 method pop():Object {
 val i:[0..N-1];
 atomic { i = b-1; b--; }
 atomic { val v = s[i].pop(); return v; } }
}

\[\langle b = 0, s = [[]], [[]] \rangle \]
\[
\begin{align*}
\text{psh}_a &\rightarrow \langle b = 1, s = [[]], [[]] \rangle \\
\text{psh}_b &\rightarrow \langle b = 0, s = [[]], [[]] \rangle \\
\text{pop} &\rightarrow \langle b = 1, s = [[]], [[]] \rangle \\
\text{pop}_\text{fail} &\rightarrow \langle b = 0, s = [[]], [[]] \rangle \\
\text{psh} &\rightarrow \langle b = 0, s = [[a]], [[]] \rangle \\
\text{psh} &\rightarrow \langle b = 0, s = [[a], [b]] \rangle \\
\text{pop}_b &\rightarrow \langle b = 0, s = [[a], [[]] \rangle \\
\end{align*}
\]

Linearizable 😊
Stack

```java
class Stack<N: Int> {
    field b: [0..N-1] = 0; // 1 balancer
    field s: Stack[] = [[]], [], ..., []]; // N stacks of values
    method push(x: Object): Unit {
        val i: [0..N-1];
        atomic { i = b; b++; }
        atomic { val v = s[i].push(x); return v; } }
    method pop(): Object {
        val i: [0..N-1];
        atomic { i = b-1; b--; }
        atomic { val v = s[i].pop(); return v; } }
}
```

\[
\begin{align*}
\langle b = 0, s = [[]], [] \rangle & \xrightarrow{[\text{psh}]} \langle b = 1, s = [[]], [] \rangle \xrightarrow{[\text{psh}]} \langle b = 0, s = [[]], [] \rangle \\
\langle b = 1, s = [[]], [] \rangle & \xrightarrow{[\text{pop}]} \langle b = 0, s = [[]], [] \rangle \\
\langle b = 0, s = [[]], [] \rangle & \xrightarrow{[\text{pop}]} \langle b = 0, s = [[]], [] \rangle \\
\langle b = 0, s = [[]], [] \rangle & \xrightarrow{[\text{pop}]} \langle b = 0, s = [[]], [] \rangle \\
\langle b = 0, s = [[a]], [] \rangle & \xrightarrow{[\text{psh}]} \langle b = 0, s = [[a]], [] \rangle \\
\langle b = 0, s = [[a]], [] \rangle & \xrightarrow{[\text{psh}]} \langle b = 0, s = [[a]], [] \rangle \\
\langle b = 0, s = [[a]], [b] \rangle & \xrightarrow{[\text{psh}]} \langle b = 0, s = [[a]], [b] \rangle \\
\langle b = 0, s = [[a]], [b] \rangle & \xrightarrow{[\text{psh}]} \langle b = 0, s = [[a]], [b] \rangle \\
\langle b = 0, s = [[a]], [b] \rangle & \xrightarrow{[\text{psh}]} \langle b = 0, s = [[a]], [b] \rangle \\
\langle b = 0, s = [[a]], [b] \rangle & \xrightarrow{[\text{psh}]} \langle b = 0, s = [[a]], [b] \rangle \\
\langle b = 0, s = [[a]], [b] \rangle & \xrightarrow{[\text{psh}]} \langle b = 0, s = [[a]], [b] \rangle \\
\end{align*}
\]
Stack

```java
class Stack<N:Int> {
    field b:[0..N-1] = 0; // 1 balancer
    field s:Stack[] = [[]], [[], ...], [[]]; // N stacks of values
    method push(x:Object):Unit {
        val i:[0..N-1];
        atomic { i = b; b++; }
        atomic { val v = s[i].push(x); return v; } }
    method pop():Object {
        val i:[0..N-1];
        atomic { i = b-1; b--; }
        atomic { val v = s[i].pop(); return v; } }
}
```

\[\langle b = 0, s = [[]], [[]] \rangle \xrightarrow{[psh]_a} \langle b = 1, s = [[]], [[]] \rangle \xrightarrow{[psh]_b} \langle b = 0, s = [[]], [[]] \rangle \]

Between Linearizability and Quiescent Consistency
Stack

class Stack<N: Int> {
 field b: [0..N-1] = 0; // 1 balancer
 field s: Stack[] = [[]], [], ..., []]; // N stacks of values

 method push(x: Object): Unit {
 val i: [0..N-1];
 atomic { i = b; b++; }
 atomic { val v = s[i].push(x); return v; } }

 method pop(): Object {
 val i: [0..N-1];
 atomic { i = b-1; b--; }
 atomic { val v = s[i].pop(); return v; } }
 }

 ⟨b = 0, s = [[]], []] ⟷[psh] b = 1, s = [[]], []] ⟷[psh] b = 0, s = [[]], []]

 ⟨b = 0, s = [[]], []] ⟷[pop] b = 1, s = [[]], []] ⟷[pop] b = 0, s = [[]], []]

 ⟨b = 0, s = [[]], []] ⟷[pop] b = 1, s = [[]], []] ⟷[pop] b = 0, s = [[]], []]

 ⟨b = 0, s = [[]], []] ⟷[pop] b = 1, s = [[]], []] ⟷[pop] b = 0, s = [[]], []]

 ⟨b = 0, s = [[]], []] ⟷[pop] b = 1, s = [[]], []] ⟷[pop] b = 0, s = [[]], []]

 ⟨b = 0, s = [[]], []] ⟷[pop] b = 1, s = [[]], []] ⟷[pop] b = 0, s = [[]], []]

 ⟨b = 0, s = [[]], []] ⟷[pop] b = 1, s = [[]], []] ⟷[pop] b = 0, s = [[]], []]

 ⟨b = 0, s = [[]], []] ⟷[pop] b = 1, s = [[]], []] ⟷[pop] b = 0, s = [[]], []]

 ⟨b = 0, s = [[]], []] ⟷[pop] b = 1, s = [[]], []] ⟷[pop] b = 0, s = [[]], []]

 ⟨b = 0, s = [[]], []] ⟷[pop] b = 1, s = [[]], []] ⟷[pop] b = 0, s = [[]], []]

 ⟨b = 0, s = [[]], []] ⟷[pop] b = 1, s = [[]], []] ⟷[pop] b = 0, s = [[]], []]
Stack

```java
class Stack<N:Int> {
  field b:[0..N-1] = 0; // 1 balancer
  field s:Stack[] = [[], [], ..., []]; // N stacks of values
  method push(x:Object):Unit {
    val i:[0..N-1];
    atomic { i = b; b++; }
    atomic { val v = s[i].push(x); return v; } }
  method pop():Object {
    val i:[0..N-1];
    atomic { i = b-1; b--; }
    atomic { val v = s[i].pop(); return v; } }
}
```

\[
\langle b = 0, s = [[], []] \rangle \xrightarrow{psh} \langle b = 1, s = [[], []] \rangle \xrightarrow{psh} \langle b = 0, s = [[], []] \rangle \\
\langle b = 0, s = [[], []] \rangle \xrightarrow{pop} \langle b = 1, s = [[], []] \rangle \xrightarrow{pop} \langle b = 0, s = [[], []] \rangle \\
\langle b = 0, s = [[], []] \rangle \xrightarrow{pop} \langle b = 0, s = [[], []] \rangle \xrightarrow{psh} \langle b = 0, s = [[a], []] \rangle \\
\langle b = 0, s = [[a], [b]] \rangle \xrightarrow{psh} \langle b = 0, s = [[a], [b]] \rangle \xrightarrow{pop} \langle b = 0, s = [[a], []] \rangle \\
\]

Linearizable 😊
class Stack<N:Int> {
 field b:[0..N-1] = 0; // 1 balancer
 field s:Stack[] = [[], [], ..., []]; // N stacks of values
 method push(x:Object):Unit {
 val i:[0..N-1];
 atomic { i = b; b++; }
 atomic { val v = s[i].push(x); return v; } }
 method pop():Object {
 val i:[0..N-1];
 atomic { i = b-1; b--; }
 atomic { val v = s[i].pop(); return v; } }
}

\langle b = 0, s = [[], []] \rangle \xrightarrow{psh_a} \langle b = 1, s = [[], []] \rangle \xrightarrow{psh_b} \langle b = 0, s = [[], []] \rangle
\langle b = 1, s = [[], []] \rangle \xrightarrow{pop} \langle b = 0, s = [[], []] \rangle
\langle b = 0, s = [[], []] \rangle \xrightarrow{fail} \langle b = 0, s = [[], []] \rangle
\langle b = 0, s = [[], []] \rangle \xrightarrow{pop_a} \langle b = 0, s = [[a], []] \rangle
\langle b = 0, s = [[a], [b]] \rangle \xrightarrow{psh_b} \langle b = 0, s = [[a], [b]] \rangle
\langle b = 0, s = [[a], [b]] \rangle \xrightarrow{pop_b} \langle b = 0, s = [[a], []] \rangle

Linearizable 😊
class Stack<N: Int> {
 field b: [0..N-1] = 0; // 1 balancer
 field s: Stack[] = [[]], [], ..., []]; // N stacks of values
 method push(x: Object): Unit {
 val i: [0..N-1];
 atomic { i = b; b++; }
 atomic { val v = s[i].push(x); return v; } }
 method pop(): Object {
 val i: [0..N-1];
 atomic { i = b-1; b--; }
 atomic { val v = s[i].pop(); return v; } }
}

\[
\langle b = 0, s = [[]], [] \rangle \xrightarrow{\text{psh}_a} \langle b = 1, s = [[]], [] \rangle \xrightarrow{\text{psh}_b} \langle b = 0, s = [[]], [] \rangle
\]

\[
\langle b = 1, s = [[]], [] \rangle \xrightarrow{\text{pop}} \langle b = 0, s = [[]], [] \rangle \xrightarrow{\text{pop}} \langle b = 0, s = [[]], [] \rangle
\]

\[
\langle b = 0, s = [[]], [] \rangle \xrightarrow{\text{pop}} \langle b = 0, s = [[a]], [] \rangle \xrightarrow{\text{psh}_a} \langle b = 0, s = [[a]], [] \rangle
\]

\[
\langle b = 0, s = [[a], [b]] \rangle \xrightarrow{\text{pop}_b} \langle b = 0, s = [[a], []] \rangle
\]

Linearizable 🤪
Stack

```java
class Stack<N:Int> {
    field b:[0..N-1] = 0; // 1 balancer
    field s:Stack[] = [[], [], ..., []]; // N stacks of values

    method push(x:Object):Unit {
        val i:[0..N-1];
        atomic { i = b; b++; }
        atomic { val v = s[i].push(x); return v; } }

    method pop():Object {
        val i:[0..N-1];
        atomic { i = b-1; b--; }
        atomic { val v = s[i].pop(); return v; } }
}
```

Between Linearizability and Quiescent Consistency

Linearizable 😊
Stack

class Stack<N:Int> {
 field b:[0..N-1] = 0; // 1 balancer
 field s:Stack[] = [[], [], ..., []]; // N stacks of values
 method push(x:Object):Unit {
 val i:[0..N-1];
 atomic { i = b; b++; }
 atomic { val v = s[i].push(x); return v; } }
 method pop():Object {
 val i:[0..N-1];
 atomic { i = b-1; b--; }
 atomic { val v = s[i].pop(); return v; } }
}

⟨b = 0, s = [[]], []⟩ \xrightarrow{\text{psh}_a} ⟨b = 1, s = [[]], []⟩ \xrightarrow{\text{psh}_b} ⟨b = 0, s = [[]], []⟩
\xrightarrow{\text{pop}} ⟨b = 1, s = [[]], []⟩ \xrightarrow{\text{pop}} ⟨b = 0, s = [[]], []⟩
\xrightarrow{\text{fail}} ⟨b = 0, s = [[]], []⟩ \xrightarrow{\text{psh}} ⟨b = 0, s = [[a]], []⟩
\xrightarrow{\text{psh}} ⟨b = 0, s = [[a], [b]]⟩ \xrightarrow{\text{pop}_b} ⟨b = 0, s = [[a]], []⟩

b=0
/ \
[] a s[0]=a s[1]=[]
\xrightarrow{\text{psh}_a} \xrightarrow{\text{pop}_b} \xrightarrow{\text{psh}_b} \xrightarrow{\text{pop}} \xrightarrow{\text{fail}} \xrightarrow{\text{psh}} \xrightarrow{\text{pop}_b}

Linearizable 😊
Stack — Execution 2

```kotlin
class Stack<N:Int> {
    field b:[0..N-1] = 0; // 1 balancer
    field s:Stack[] = [[], [], ..., []]; // N stacks of values
    method push(x:Object):Unit {
        val i:[0..N-1];
        atomic { i = b; b++; }
        atomic { val v = s[i].push(x); return v; } } } // N stacks

⟨b = 0, s = [[], []]⟩ ↘↓ psh a ↘↓ psh b ↘↓ psh c ↘↓ pop a ↘↓ pop b ↘↓ psh d ↘↓ (Not even quiescent consistent 😊)
```

Not even quiescent consistent 😊

 vợ chồng nên tập trung vào vấn đề của mình sau khi kết thúc việc làm.
Stack — Execution 2

class Stack<N:Int> {
 field b:[0..N-1] = 0; // 1 balancer
 field s:Stack[] = [[]], [], ..., []]; // N stacks of values
 method push(x:Object):Unit {
 val i:[0..N-1];
 atomic { i = b; b++; }
 atomic { val v = s[i].push(x); return v; } }
 method pop():Object {
 val i:[0..N-1];
 atomic { i = b-1; b--; }
 atomic { val v = s[i].pop(); return v; } }
}

⟨b = 0, s = [[]], [[]]⟩ \xrightarrow{psh} ⟨b = 1, s = [[]], [[]]⟩ \xrightarrow{psh} ⟨b = 1, s = [[a], [[]]]⟩

b=1
/ \
\begin{array}{c}
\text{s[0]} = \text{[psh} \text{a} \\
\text{s[1]} = \text{[psh} \text{c} \\
\end{array}

Not even quiescent consistent 😊

\longleftrightarrow \text{should pop from } \longleftrightarrow \text{ or } \longleftrightarrow, \text{ but not } \longleftrightarrow
class Stack<N:Int> {
 field b:[0..N-1] = 0; // 1 balancer
 field s:Stack[] = [[], [], ..., []]; // N stacks of values
 method push(x:Object):Unit {
 val i:[0..N-1];
 atomic { i = b; b++; }
 atomic { val v = s[i].push(x); return v; } }
 method pop():Object {
 val i:[0..N-1];
 atomic { i = b-1; b--; }
 atomic { val v = s[i].pop(); return v; } }
}

⟨
b = 0, s = [[]], []⟩ \xrightarrow{\text{psh}^a} ⟨b = 1, s = [[]], []⟩ \xrightarrow{\text{psh}^j} ⟨b = 1, s = [[a]], []⟩

\begin{align*}
&\xrightarrow{\{\text{psh}^b\}} ⟨b = 0, s = [[a]], []⟩ \xrightarrow{\text{psh}^j} ⟨b = 0, s = [[a], [b]]⟩ \\
&\xrightarrow{\{\text{psh}^c\}} ⟨b = 1, s = [[a], [b]]⟩ \xrightarrow{\text{pop}^g} ⟨b = 0, s = [[a], [b]]⟩ \\
&\xrightarrow{\text{pop}^a} ⟨b = 0, s = [[], [b]]⟩ \xrightarrow{\text{psh}^j} ⟨b = 0, s = [[c], [b]]⟩
\end{align*}

Not even quiescent consistent 😊

\text{←→ should pop from } ←→ \text{ or } ←→, \text{ but not } ←→
Stack — Execution 2

```java
class Stack<N:Int> {
  field b:[0..N-1] = 0; // 1 balancer
  field s:Stack[] = [[], [], ..., []]; // N stacks of values
  method push(x:Object):Unit {
    val i:[0..N-1];
    atomic { i = b; b++; }
    atomic { val v = s[i].push(x); return v; } }
  method pop():Object {
    val i:[0..N-1];
    atomic { i = b-1; b--; }
    atomic { val v = s[i].pop(); return v; } }
}
```

\[
\begin{align*}
\langle b = 0, s = [[]], [] \rangle & \xrightarrow{psh_a} \langle b = 1, s = [[]], [] \rangle \xrightarrow{psh}\langle b = 1, s = [a], [] \rangle \\
\langle b = 0, s = [a], [] \rangle & \xrightarrow{psh_b} \langle b = 0, s = [a], [a] \rangle \\
\langle b = 1, s = [a], [b] \rangle & \xrightarrow{psh}\langle b = 0, s = [a], [b] \rangle \\
\langle b = 1, s = [a], [b] \rangle & \xrightarrow{pop}\langle b = 0, s = [a], [b] \rangle \\
\langle b = 0, s = [_], [b] \rangle & \xrightarrow{psh}\langle b = 0, s = [c], [b] \rangle \\
\end{align*}
\]

Not even quiescent consistent 😐

Should pop from ← or →, but not ←
class Stack<N:Int> {
 field b:[0..N-1] = 0; // 1 balancer
 field s:Stack[] = [[], [], ..., []]; // N stacks of values
 method push(x:Object):Unit {
 val i:[0..N-1];
 atomic { i = b; b++; }
 atomic { val v = s[i].push(x); return v; } }
 method pop():Object {
 val i:[0..N-1];
 atomic { i = b-1; b--; }
 atomic { val v = s[i].pop(); return v; } }
}

\[
\begin{align*}
 \langle b = 0, s = [[], []] \rangle & \xrightarrow{psh} \langle b = 1, s = [[], []] \rangle \\
 \langle b = 0, s = [[], []] \rangle & \xrightarrow{\{psh\}} \langle b = 1, s = [[a], []] \rangle \\
 \langle b = 0, s = [[a], []] \rangle & \xrightarrow{psh} \langle b = 0, s = [[a], [b]] \rangle \\
 \langle b = 1, s = [[a], [b]] \rangle & \xrightarrow{\langle pop \rangle} \langle b = 0, s = [[a], [b]] \rangle \\
 \langle b = 0, s = [[a], [b]] \rangle & \xrightarrow{\langle pop \rangle} \langle b = 0, s = [[c], [b]] \rangle \\
\end{align*}
\]

Not even quiescent consistent 😞

← should pop from ← or →, but not ←
Stack — Execution 2

```java
class Stack<N: Int> {
    field b: [0..N-1] = 0;  // 1 balancer
    field s: Stack[] = [[]] // N stacks of values
    method push(x: Object): Unit {
        val i: [0..N-1];
        atomic { i = b; b++; }
        atomic { val v = s[i].push(x); return v; }
    }
    method pop(): Object {
        val i: [0..N-1];
        atomic { i = b-1; b--; }
        atomic { val v = s[i].pop(); return v; }
    }

    ⟨b = 0, s = [[]]⟩ →[psh] ⟨b = 1, s = [[]]⟩ →[psh] ⟨b = 1, s = [[a]]⟩
    \langle b = 0, s = [[]] \rangle \xrightarrow{psh}[a] \langle b = 1, s = [[a]] \rangle \xrightarrow{psh} \langle b = 1, s = [[a], [a]] \rangle
    \langle b = 0, s = [[]] \rangle \xrightarrow{psh}[b] \langle b = 1, s = [[a], [a]] \rangle \xrightarrow{psh} \langle b = 1, s = [[a], [b]] \rangle
    \langle b = 0, s = [[]] \rangle \xrightarrow{psh}[c] \langle b = 1, s = [[a], [b]] \rangle \xrightarrow{pop} \langle b = 0, s = [[a], [b]] \rangle
    \langle b = 0, s = [[]] \rangle \xrightarrow{pop}[a] \langle b = 0, s = [__, [b]] \rangle \xrightarrow{psh} \langle b = 0, s = [__, [b]] \rangle
    \langle b = 0, s = [[]] \rangle \xrightarrow{pop}[b] \langle b = 0, s = [__, [b]] \rangle \xrightarrow{psh} \langle b = 0, s = [__, [b]] \rangle
    \langle b = 0, s = [[]] \rangle \xrightarrow{pop}[c] \langle b = 0, s = [__, [b]] \rangle \xrightarrow{psh} \langle b = 0, s = [__, [b]] \rangle

    Not even quiescent consistent 😊

    Should pop from [→→] or [→→], but not [←←]
}
```

Not even quiescent consistent 😊

Should pop from [→→] or [→→], but not [←←]
Stack — Execution 2

class Stack<N: Int> {
 field b: [0..N-1] = 0; // 1 balancer
 field s: Stack[] = [[], [], ..., []]; // N stacks of values
 method push(x: Object): Unit {
 val i: [0..N-1];
 atomic { i = b; b++; }
 atomic { val v = s[i].push(x); return v; }
 }
 method pop(): Object {
 val i: [0..N-1];
 atomic { i = b-1; b--; }
 atomic { val v = s[i].pop(); return v; }
 }
}

⟨ b = 0, s = [[], []] ⟩ \xrightarrow{[a]} ⟨ b = 1, s = [[], []] ⟩ \xrightarrow{[psh]} ⟨ b = 1, s = [[a], []] ⟩
\xrightarrow{[b]} ⟨ b = 0, s = [[a], []] ⟩ \xrightarrow{[psh]} ⟨ b = 0, s = [[a], [b]] ⟩
\xrightarrow{[c]} ⟨ b = 1, s = [[a], [b]] ⟩ \xrightarrow{[psh]} ⟨ b = 0, s = [[a], [b]] ⟩
\xrightarrow{[a]} ⟨ b = 0, s = [[a], [b]] ⟩ \xrightarrow{[psh]} ⟨ b = 0, s = [[c], [b]] ⟩
Not even quiescent consistent 😊

\xrightarrow{←} should pop from \xrightarrow{←} or \xrightarrow{←}, but not \xrightarrow{←}
Stack — Execution 2

class Stack<N:Int> {
 field b:[0..N-1] = 0; // 1 balancer
 field s:Stack[] = [[], [], ..., []]; // N stacks of values
 method push(x:Object):Unit {
 val i:[0..N-1];
 atomic { i = b; b++; }
 atomic { val v = s[i].push(x); return v; } }
 method pop():Object {
 val i:[0..N-1];
 atomic { i = b-1; b--; }
 atomic { val v = s[i].pop(); return v; } } }

\[
\begin{align*}
\langle b = 0, s = [[], []] \rangle & \xrightarrow{psh_a} \langle b = 1, s = [[], []] \rangle & \xrightarrow{psh_a} \langle b = 1, s = [[a], []] \rangle \\
\langle b = 0, s = [[a], []] \rangle & \xrightarrow{psh_b} \langle b = 0, s = [[a], [b]] \rangle \\
\langle b = 1, s = [[a], [b]] \rangle & \xrightarrow{pop_c} \langle b = 0, s = [[a], [b]] \rangle \\
\langle b = 0, s = [[a], [b]] \rangle & \xrightarrow{psh_b} \langle b = 0, s = [[c], [b]] \rangle \\
\end{align*}
\]

Not even quiescent consistent 😐

← should pop from → or ←, but not →
class Stack<N:Int> {
 field b:[0..N-1] = 0; // 1 balancer
 field s:Stack[] = [[]], [[], ...], [[]]; // N stacks of values
 method push(x:Object):Unit {
 val i:[0..N-1];
 atomic { i = b; b++; }
 atomic { val v = s[i].push(x); return v; } }
 method pop():Object {
 val i:[0..N-1];
 atomic { i = b-1; b--; }
 atomic { val v = s[i].pop(); return v; } }
}

⟨b = 0, s = [[]], [[]]⟩ \xrightarrow{\text{psh}} ⟨b = 1, s = [[]], [[]]⟩ \xrightarrow{\text{psh}} ⟨b = 1, s = [[a]], [[]]⟩
\xrightarrow{\text{psh}} ⟨b = 0, s = [[a]], [[]]⟩ \xrightarrow{\text{psh}} ⟨b = 0, s = [[a], [b]]⟩
\xrightarrow{\text{psh}} ⟨b = 0, s = [[a], [b]]⟩ \xrightarrow{\text{pop}} ⟨b = 0, s = [[a], [b]]⟩
\xrightarrow{\text{pop}} ⟨b = 0, s = [[b]], [b]]⟩ \xrightarrow{\text{psh}} ⟨b = 0, s = [[], [b]]⟩

Not even quiescent consistent ☹

\[\text{\longleftrightarrow should pop from \{} or \text{\longleftrightarrow}, but not \text{\{}\]}\]
Results

Three characterizations of QQC

- Call-to-return
- Return-to-call (à la Herlihy/Wing)
- Proxy for sequential implementation (flat combiner + speculation)
 - Single thread accesses sequential structure
 - Upon receiving actual call, speculatively execute any method with any args
 - Only return when speculative call matches actual call

Proof of compositionality

- Global constraints that are solvable because of “flow” properties

Proofs and counterexamples for tree-based structures

- Increment/decrement N-counter (weak QC)
- Increment-only N-counter (QQC)
- General N-stack (QC)
- “Properly popped” N-stack (QQC)
 - Pop must wait for concurrent push on same underlying stack
 - Not sufficient for pop to wait on empty stack
 - Proof uses instrumented N-stack that emits a QQC specification trace

- Tree of N-stacks (same as single N-stack)
Results

- Three characterizations of QQC
 - Call-to-return (given earlier)
 - Return-to-call (à la Herlihy/Wing)
 - Proxy for sequential implementation (flat combiner + speculation)
 - Single thread accesses sequential structure
 - Upon receiving actual call, speculatively execute any method with any args
 - Only return when speculative call matches actual call

- Proof of compositionality
 - Global constraints that are solvable because of “flow” properties

- Proofs and counterexamples for tree-based structures
 - Increment/decrement N-counter (weak QC)
 - Increment-only N-counter (QQC)
 - General N-stack (QC)
 - “Properly popped” N-stack (QQC)
 - Pop must wait for concurrent push on same underlying stack
 - Not sufficient for pop to wait on empty stack
 - Proof uses instrumented N-stack that emits a QQC specification trace

- Tree of N-stacks (same as single N-stack)
Return-to-call characterization

Linearizability:
\[\forall \text{prefix/ suffix } = \text{exec} \]
\[\forall \text{ret } \in \text{prefix} \]
\[\forall \text{call } \in \text{suffix} \]
\[\text{ret } \xrightarrow{\text{exec}} \text{call} \quad \text{implies} \quad \text{ret } \xrightarrow{\text{spec}} \text{call} \]
Return-to-call characterization

Quiescent consistency:

∀ prefix/suffix = exec

if prefix has 0 open calls, then

∀ ret ∈ prefix

∀ call ∈ suffix

\[\text{ret } \xrightarrow{\text{exec}} \text{call} \quad \text{implies} \quad \text{ret } \xrightarrow{\text{spec}} \text{call} \]
Return-to-call characterization

QQC:
∀prefix/suffix = exec
if prefix has \(k \) open/early calls, then there exists \(\left| \text{ignoredCalls} \right| \leq k \)
∀ret ∈ prefix
∀call ∈ suffix − ignoredCalls

\[
ret \xrightarrow{\text{exec}} call \quad \text{implies} \quad ret \xrightarrow{\text{spec}} call
\]
Results

- Three characterizations of QQC
 - Call-to-return (given earlier)
 - Return-to-call (à la Herlihy/Wing)
 - Proxy for sequential implementation (flat combiner + speculation)
 - Single thread accesses sequential structure
 - Upon receiving actual call, speculatively execute any method with any args
 - Only return when speculative call matches actual call

- Proof of compositionality
 - Global constraints that are solvable because of “flow” properties

- Proofs and counterexamples for tree-based structures
 - Increment/decrement N-counter (weak QC)
 - Increment-only N-counter (QQC)
 - General N-stack (QC)
 - “Properly popped” N-stack (QQC)
 - Pop must wait for concurrent push on same underlying stack
 - Not sufficient for pop to wait on empty stack
 - Proof uses instrumented N-stack that emits a QQC specification trace
 - Tree of N-stacks (same as single N-stack)
Results

- Three characterizations of QQC
 - Call-to-return
 - Return-to-call
 - Proxy for sequential implementation
 - Single thread accesses sequential structure
 - Upon receiving actual call, speculatively execute any method with any args
 - Only return when speculative call matches actual call

- Proof of compositionality
 - Global constraints that are solvable because of “flow” properties

- Proofs and counterexamples for tree-based structures
 - Increment/decrement \(N \)-counter (weak QC)
 - Increment-only \(N \)-counter (QQC)
 - General \(N \)-stack (QC)
 - “Properly popped” \(N \)-stack (QQC)
 - Pop must wait for concurrent push on same underlying stack
 - Not sufficient for pop to wait on empty stack
 - Proof uses instrumented \(N \)-stack that emits a QQC specification trace

- Tree of \(N \)-stacks (same as single \(N \)-stack)
Results

- Three characterizations of QQC
 - Call-to-return (given earlier)
 - Return-to-call (à la Herlihy/Wing)
 - Proxy for sequential implementation (flat combiner + speculation)
 - Single thread accesses sequential structure
 - Upon receiving actual call, speculatively execute any method with any args
 - Only return when speculative call matches actual call

- Proof of compositionality
 - Global constraints that are solvable because of “flow” properties

- Proofs and counterexamples for tree-based structures
 - Increment/decrement N-counter (weak QC)
 - Increment-only N-counter (QQC)
 - General N-stack (QC)
 - “Properly popped” N-stack (QQC)
 - Pop must wait for concurrent push on same underlying stack
 - Not sufficient for pop to wait on empty stack
 - Proof uses instrumented N-stack that emits a QQC specification trace
 - Tree of N-stacks (same as single N-stack)
Results

- Three characterizations of QQC
 - Call-to-return (given earlier)
 - Return-to-call (à la Herlihy/Wing)
 - Proxy for sequential implementation (flat combiner + speculation)
 - Single thread accesses sequential structure
 - Upon receiving actual call, speculatively execute any method with any args
 - Only return when speculative call matches actual call

- Proof of compositionality
 - Global constraints that are solvable because of “flow” properties

- Proofs and counterexamples for tree-based structures
 - Increment/decrement \(N \)-counter (weak QC)
 - Increment-only \(N \)-counter (QQC)
 - General \(N \)-stack (QC)
 - “Properly popped” \(N \)-stack (QQC)
 - Pop must wait for concurrent push on same underlying stack
 - Not sufficient for pop to wait on empty stack
 - Proof uses instrumented \(N \)-stack that emits a QQC specification trace

- Tree of \(N \)-stacks (same as single \(N \)-stack)
Results

- Three characterizations of QQC
 - Call-to-return (given earlier)
 - Return-to-call (à la Herlihy/Wing)
 - Proxy for sequential implementation (flat combiner + speculation)
 - Single thread accesses sequential structure
 - Upon receiving actual call, speculatively execute any method with any args
 - Only return when speculative call matches actual call

- Proof of compositionality
 - Global constraints that are solvable because of “flow” properties

- Proofs and counterexamples for tree-based structures
 - Increment/decrement N-counter (weak QC)
 - Increment-only N-counter (QQC)
 - General N-stack (QC)
 - “Properly popped” N-stack (QQC)
 - Pop must wait for concurrent push on same underlying stack
 - Not sufficient for pop to wait on empty stack
 - Proof uses instrumented N-stack that emits a QQC specification trace

- Tree of N-stacks (same as single N-stack)
Results

- Three characterizations of QQC
 - Call-to-return (given earlier)
 - Return-to-call (à la Herlihy/Wing)
 - Proxy for sequential implementation (flat combiner + speculation)
 - Single thread accesses sequential structure
 - Upon receiving actual call, speculatively execute any method with any args
 - Only return when speculative call matches actual call

- Proof of compositionality
 - Global constraints that are solvable because of “flow” properties

- Proofs and counterexamples for tree-based structures
 - Increment/decrement N-counter (weak QC)
 - Increment-only N-counter (QQC)
 - General N-stack (QC)
 - “Properly popped” N-stack (QQC)
 - Pop must wait for concurrent push on same underlying stack
 - Not sufficient for pop to wait on empty stack
 - Proof uses instrumented N-stack that emits a QQC specification trace

- Tree of N-stacks (same as single N-stack)
Results

- Three characterizations of QQC
 - Call-to-return
 - Return-to-call
 - Proxy for sequential implementation
 - Single thread accesses sequential structure
 - Upon receiving actual call, speculatively execute any method with any args
 - Only return when speculative call matches actual call

- Proof of compositionality
 - Global constraints that are solvable because of “flow” properties

- Proofs and counterexamples for tree-based structures
 - Increment/decrement N-counter
 - Increment-only N-counter
 - General N-stack
 - “Properly popped” N-stack
 - Pop must wait for concurrent push on same underlying stack
 - Not sufficient for pop to wait on empty stack
 - Proof uses instrumented N-stack that emits a QQC specification trace

- Tree of N-stacks
Results

- Three characterizations of QQC
 - Call-to-return (given earlier)
 - Return-to-call (à la Herlihy/Wing)
 - Proxy for sequential implementation (flat combiner + speculation)
 - Single thread accesses sequential structure
 - Upon receiving actual call, speculatively execute any method with any args
 - Only return when speculative call matches actual call

- Proof of compositionality
 - Global constraints that are solvable because of “flow” properties

- Proofs and counterexamples for tree-based structures
 - Increment/decrement N-counter (weak QC)
 - Increment-only N-counter (QQC)
 - General N-stack (QC)
 - “Properly popped” N-stack (QQC)
 - Pop must wait for concurrent push on same underlying stack
 - Not sufficient for pop to wait on empty stack
 - Proof uses instrumented N-stack that emits a QQC specification trace
 - Tree of N-stacks (same as single N-stack)
Related work

- **Quantitative Relaxation of Concurrent Data Structures**
 (Henzinger/Kirsch/Payer/Sezgin/Sokolova 2013)

- Incomparable

 - Stack that is 1-out-of-order but not QQC:
 $$(\text{psh} \ [a] \ \text{psh} \ [b] \ \text{psh} \ < \text{pop} \ >_a)$$
 However,
 $$(\text{psh} \ [a] \ \text{psh} \ [b] \ \text{psh} \ < \text{pop} \ >_a \ \text{psh} \ [c])$$
 is QQC w.r.t. the stack spec
 $$(\text{psh} \ [a] \ \text{psh} \ [b] \ \text{psh} \ < \text{pop} \ >_a \ (\text{psh} \ [c]))$$

- For stacks, it may be that QQC is finer that n-out-of-order (arbitrary n)

- Queue that is QQC but not $(n - 1)$-out-of-order:
 $$(\text{psh} \ [a_1] \ \text{psh} \ [a_1] \ \text{psh} \ \ldots \ \text{psh} \ [a_n] \ \text{psh} \ < \text{pop} \ >_c \ \text{psh} \ [c])$$
 This is QQC w.r.t.
 $$(\text{psh} \ [a_1] \ \text{psh} \ [a_1] \ \text{psh} \ \ldots \ \text{psh} \ [a_n] \ \text{psh} \ < \text{pop} \ >_c \ \text{psh} \ [a])$$
Related work

- **Quantitative Relaxation of Concurrent Data Structures**
 (Henzinger/Kirsch/Payer/Sezgin/Sokolova 2013)

- Incomparable
 - Stack that is 1-out-of-order but not QQC:
 \[
 (\text{psh}_c [\text{psh}_a] \text{psh} \{\text{psh}_b\} \text{psh} < \text{pop}_a > \text{pop}_a)
 \]
 However,
 \[
 (\text{psh}_c [\text{psh}_a] \text{psh} \{\text{psh}_b\} \text{psh} < \text{pop}_a > \text{pop}_a) \text{psh}
 \]
 is QQC w.r.t. the stack spec
 \[
 \{\text{psh}_b\} \text{psh} [\text{psh}_a] \text{psh} < \text{pop}_a > \text{pop}_a (\text{psh}_c) \text{psh}
 \]

- For stacks, it may be that QQC is finer that \(n\)-out-of-order (arbitrary \(n\))

- Queue that is QQC but not \((n - 1)\)-out-of-order:
 \[
 (\text{psh}_a [\text{psh}_{b_1}] \text{psh} [\text{psh}_{b_1}] \text{psh} \ldots [\text{psh}_{b_n}] \text{psh} \{\text{psh}_c\} \text{psh} < \text{pop}_c > \text{pop}_c) \text{psh}
 \]
 This is QQC w.r.t.
 \[
 \{\text{psh}_c\} \text{psh} [\text{psh}_{b_1}] \text{psh} [\text{psh}_{b_1}] \text{psh} \ldots [\text{psh}_{b_n}] \text{psh} < \text{pop}_c > \text{pop}_c (\text{psh}_a) \text{psh}
 \]
Related work

- **Quantitative Relaxation of Concurrent Data Structures**
 (Henzinger/Kirsch/Payer/Sezgin/Sokolova 2013)
 (Examples from Sezgin)

- **Incomparable**
 - Stack that is 1-out-of-order but not QQ:
 \[
 (\text{psh}_c \ [\text{psh}_a \]\text{psh} \ \{\text{psh}_b \} \text{psh} < \text{pop} > \text{pop}_a)
 \]

 However,
 \[
 (\text{psh}_c \ [\text{psh}_a \]\text{psh} \ \{\text{psh}_b \} \text{psh} < \text{pop} > \text{pop}_a \) \text{psh}
 \]
 is QQ w.r.t. the stack spec
 \[
 \{\text{psh}_b \} \text{psh} [\text{psh}_a \] \text{psh} < \text{pop} > \text{pop}_a \ (\text{psh}_c \) \text{psh}
 \]

- For stacks, it may be that QQ is finer than n-out-of-order (arbitrary n)
- Queue that is QQ but not $(n - 1)$-out-of-order:
 \[
 (\text{psh}_a \ [\text{psh}_{b_1} \]\text{psh} [\text{psh}_{b_1} \]\text{psh} \ldots [\text{psh}_{b_n} \]\text{psh} \ \{\text{psh}_c \} \text{psh} < \text{pop} > \text{pop}_c \) \text{psh}
 \]
 This is QQ w.r.t.
 \[
 \{\text{psh}_c \} \text{psh} [\text{psh}_{b_1} \]\text{psh} [\text{psh}_{b_1} \]\text{psh} \ldots [\text{psh}_{b_n} \]\text{psh} < \text{pop} > \text{pop}_c \ (\text{psh}_a \) \text{psh}
 \]
Related work

- **Quantitative Relaxation of Concurrent Data Structures**
 (Henzinger/Kirsch/Payer/Sezgin/Sokolova 2013)
 (Examples from Sezgin)

- Incomparable
 Stack that is 1-out-of-order but not QQ:
 $$\langle psh_c \ [psh_a \]psh \ {psh_b \ }psh \ psh < pop > pop_a \rangle$$

 However, $$\langle psh_c \ [psh_a \]psh \ {psh_b \ }psh < pop > pop_a \ psh \rangle$$ is QQ w.r.t. the stack spec

 $$\{ psh_b \ psh \ [psh_a \]psh < pop > pop_a \ (psh_c \ psh) \rangle$$

- For stacks, it may be that QQ is finer than n-out-of-order (arbitrary n)

- Queue that is QQ but not (n – 1)-out-of-order:
 $$\langle psh_a \ [psh_{b_1} \]psh \ [psh_{b_1} \]psh \ … \ [psh_{b_n} \]psh \ {psh_c \ psh < pop > pop_c \ psh \rangle$$

 This is QQ w.r.t.

 $$\{ psh_c \ psh \ [psh_{b_1} \]psh \ [psh_{b_1} \]psh \ … \ [psh_{b_n} \]psh < pop > pop_c \ (psh_a \ psh \rangle$$
Proxy characterization code

interface Object {
 method run(i: Invocation): Response;
 method predict(): Invocation; }

class QQCProxy<o:Object> {
 field called: ThreadSafeMultiMap<Invocation, Semaphore> = [];
 field returned: ThreadSafeMap <Semaphore, Response> = [];

 method run(i: Invocation): Response {
 // proxy for external access to o
 val m: Semaphore = [];
 called.add(i, m);
 m.wait();
 return returned.remove(m); }

 thread {
 // single thread to interact with o
 val received: MultiMap<Invocation, Semaphore> = [];
 val executed: MultiMap<Invocation, Response> = [];
 repeatedly choose {
 choice if called.notEmpty() {
 received.add(called.removeAny());
 val i: Invocation = o.predict();
 val r: Response = o.run(i);
 executed.add(i, r); } }

 choice if exists i in received.keys() intersect executed.keys() {
 val m: Semaphore = received.remove(i);
 val r: Response = executed.remove(i);
 returned.add(m, r);
 m.signal(); } } } }