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Abstract

Aspect-oriented programming (AOP) has been touted
as a promising paradigm for managing complex software-
security concerns. Roughly, AOP allows the secu-
rity-sensitive events in a system to be specified separately
from core functionality. The events of interest are spec-
ified in a pointcut. When a pointcut triggers, control is
redirected to advice, which intercepts the event, poten-
tially redirecting it to an error handler.

Many interesting security properties are history-
dependent; however, currently deployed pointcut lan-
guages cannot express history-sensitivity (mechanisms like
cflow in AspectJ capture only the current call stack.) We
present a language of pointcuts with past-time temporal op-
erators and discuss their implementation using a variant of
security automata. The main result is a proof that the im-
plementation is correct.

Refining our earlier work ([6]), we define a minimal lan-
guage of events and aspects in which “everything is an as-
pect”. The minimalist approach serves to clarify the issues
and may be of independent interest.

1. Introduction

Aspect-oriented programming (AOP) ([12]) is a rela-
tively new programming paradigm designed to address con-
cerns that cut across encapsulation boundaries of traditional
approaches. In this model, the programmer defines aspects,
each consisting of an advice body – a block of code – and
a pointcut, which states when the code is to be executed.
Current implementations allow for the user to define point-
cuts which trigger off of a specified atomic event, but facili-
ties for triggering of a program’s history is typically limited
to the current call stack (as in AspectJ’s cflow).

AOP has some potential for specifying and enforcing
security policies. However, many such policies are both
history-sensitive and dynamic (likely to change at runtime).
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In this paper, we define a syntax and operational semantics
for temporal aspects, which allow for pointcuts to be de-
fined temporally— that is, in terms of events which have
happened in the past. For instance, we would like to be able
to declare advice which triggers when some function f is
called, but only if a function g has been called at some point
in the program’s history. AspectJ’s cflow can only capture
the case where g lies in the call stack at the time when f is
invoked. An obvious solution is to record every single event
during the course of the program’s execution. Such an im-
plementation is clearly impractical for long-lived programs.
In this vein, we present an equivalent, automaton-based se-
mantics, to be used as a model for implementation, which
records only relevant events. The automaton state provides
an abstraction of the history, and our main result demon-
strates that this abstract view faithfully implements the orig-
inal semantics.

We use a variant of Schneider’s security automata [16].
A security automaton enforces a security policy by moni-
toring the execution of a target system, and intercepting in-
structions which would otherwise violate the specified pol-
icy. For instance, a user may specify that subsequent to a
FileRead operation, the user is forbidden from executing a
Send operation. The corresponding automaton would moni-
tor the target system, watching for instances of FileRead. If
one was seen, the automaton would then monitor the system
for an attempted Send, and if such an attempt were made, it
would intercept the call and presumably execute some er-
ror handling code instead.

Security automata have been widely investigated as a
means of implementing security policies. In [21], Walker
uses security automata to encode security policies to be en-
forced in automatically generated code. In [20], Erlingsson
and Schneider use security automata to implement software
fault isolation security policies, which prevent memory ac-
cesses outside of the allowable address space. In that work,
they discuss techniques used to merge security automata di-
rectly into binary code at the x86 assembler and Java Vir-
tual Machine Language (JVML) level. In [4], Barker and
Stuckey investigate role based and temporal role based ac-
cess control policies, implemented using constraint logic
specifications. In [18], Thiemann incorporates security au-



tomata into an interpreter for a simply typed call-by-value
lambda calculus, which he then translates to an equiva-
lent two-level lambda calculus, upon which type special-
ization removes all run-time operations involving security
state. The limitations of stack-based security policies are ex-
plored in [11]; history-based solutions are presented in [1].
Our work can be used as an alternative implementation tech-
nique for the ideas in the later paper.

Several recent projects have studied history sensitivity
in aspect languages. Douence, et. al. [10, 9] describe event-
based AOP, in which advice is defined in-line with the event
sequences that trigger it; the semantics is given in terms of
weaving. Walker and Viggers [23] use a context-free gram-
mar of tracecuts. Allan et. al. [2] extend this approach to
tracematches, providing a novel technique to accommo-
date variable bindings, while restricting attention to regular
properties. Stolz and Bodden [17] describe a technique for
instrumenting Java bytecodes with LTL formula, using as-
pects to implement transitions in the underlying alternating
automata. Bockish, et. al. [5] present a method for record-
ing program history using a prolog database and using this
to fire advice. De Fraine, et. al. [8] study dynamic weav-
ing as a method for implementing stateful advice.

We contribute to this body of work by providing a foun-
dational language for expressing dynamically loaded advice
in a temporal framework, allowing us to define a full source-
language semantics and to prove the correctness of its im-
plementation. The situation is complicated by two facts:
First, a pointcut may cause an event to be intercepted be-
fore it occurs; this is typical of security policies that specify
sequences which must be aborted, rather than those which
are allowed. Second, new advice may arrive at runtime, dy-
namically modifying existing policies. In both cases a key
difficulty is getting the semantics of the source language
“right”. Refining our previous work [6], we adopt a mini-
malist approach which lays bare the essence of the problem
without having to deal with the overhead of object-oriented
details. Other work on the semantic foundations of AOP in-
cludes [22, 3, 14, 24, 19, 15, 7, 13].

We proceed as follows: in Section 2, we provide a mo-
tivating example. In Section 3, we define Polyadic µABC,
a minimal aspect-based calculus defining roles, advice, and
non-temporal advised messages. In Section 4, we augment
Polyadic µABC to include temporal pointcuts, specified us-
ing a subset of the regular expressions, namely those of the
form φα, where φ is a regular expression abstracting the pro-
gram’s history, and α is the atomic event (i.e., call) which
triggers the advice. In Section 5, we define an equivalent,
automaton-based implementation semantics. In Section 6,
we prove equivalence of the two semantics by providing a
translation of a configuration in the history-based semantics
to an equivalent configuration in the automaton-based se-
mantics, and showing that the translation is preserved across

evaluation. Future work is discussed in Section 7.

2. Motivation

The following automaton implements a security policy
which prohibits Send operations after a FileRead has been
executed [16].

qnfr qfr,〈Eq〉
call〈FileRead〉

¬call〈FileRead〉

1

Our presentation differs slightly from that of [16] in that
we attach an error handling aspect Eq to state qfr. Its task
is to watch for and intercept an attempted call〈Send〉. We
attach an aspect to the state instead of transitioning into a
new state because transitions represent committed function
calls— our intent is to block the call〈Send〉, whereas tran-
sitioning into a new state would indicate that we have in-
deed committed it.

Now, say that at some point during the program’s exe-
cution, the user executes a call〈FileRead〉, and as a result,
the automaton is in state qfr. Furthermore, suppose that at
this point, a new quarantine policy is added to the system,
which prohibits a user from logging into some system A af-
ter a FileRead is called. One possible automaton for this
policy is shown below:

rnfr rfr,〈Er〉
call〈FileRead〉

¬call〈FileRead〉

1

Here, Er is the error handling advice which monitors for
a call〈Login,A〉 after seeing a call〈FileRead〉. It may
seem that the automaton resulting from adding the quaran-
tine policy to the “read-send” policy is simply the product of
the above two automata. However, in general this is unim-
plementable without storing the entire history. New poli-
cies may reference arbitrary events in the system history,
whereas a given security automaton is committed to a par-
ticular abstract view of that history. Our solution is simple:
we interpret policies as holding only from the point at which
they are implemented.

Consider, in our example, what happens if the next op-
eration is a call〈Login, A〉. If we “play back” the program
history (call〈FileRead〉,call〈Login, A〉) on the product
automaton, advice 〈Er〉 will fire, which is incorrect accord-
ing to our interpretation — the quarantine policy was imple-
mented after the call〈FileRead〉. Thus, when constructing
the combined automaton, we must be careful to take into ac-
count the history of the execution.



As this example shows, while the implementation of
such security policies using finite automata is straightfor-
ward, a subtlety arises when new policies may be added
at runtime; one must be careful in defining which program
traces are in fact captured by a new policy added to a run-
ning system. To clarify the issues, we define the semantics
of dynamic temporal aspects over complete execution his-
tories. We subsequently provide an equivalent, automaton-
based implementation semantics which records only an ab-
straction of the execution history. Finally, we define a trans-
lation between states in the two semantics and prove that
this translation commutes with evaluation.

3. Polyadic µABC

NOTATION. For any metavariable X, we write X̄ for an or-
dered sequence of X’s.

We define a polyadic variant of µABC, introduced in [6].
The earlier paper followed the style of object-oriented lan-
guages; each message “p � q : `” had a source p, a destina-
tion q, and a name `. Such a message is triadic in that its
meaning depends on a triple of names, or roles. Here we
generalize triadic messages to polyadic events, 〈p1, . . . ,pn〉
(equivalently 〈p̄〉), with triadic messages as a special case
“〈p,q, `〉”.

For simplicity, in this paper, we look at a single-threaded
variant. At each moment in runtime, there is a single event
〈p̄〉 under consideration. Execution is determined by advice
that triggers on the event. At any given moment, the current
event is decorated with a vector of advice ā, which is wait-
ing to process the event. Thus a1, . . . ,an〈p̄〉 indicates that
advices named ai are waiting to process event p̄. We say that
ai advises p̄, and that ā〈p̄〉 is an advised event. For consis-
tency with the precedence of declarations, we read the ad-
vice list from right to left; thus an is the first advice to pro-
cess the event.

The special advice call initiates advice lookup. When
call〈p̄〉 executes, all the advice triggering on 〈p̄〉 is listed, re-
sulting in a new execution state: ā〈p̄〉. To determine whether
an advice is triggered, we use the pointcut α. Pointcuts may
be defined to trigger on an exact role, or a set of roles. We fa-
cilitate the specification of such sets using a role preorder,
with maximal element top.

An advice body adv a[α]=u(x̄)N is parameterized both
on the event x̄ and the remaining advice u. Following the ter-
minology of around advice in AspectJ, we refer to u as the
proceed variable.

3.1. Syntax and Evaluation

We give the syntax and evaluation semantics of the lan-
guage parametrically with respect to pointcuts α and point-
cut satisfaction D̄ ` 〈p̄〉 sat α, described in the next subsec-

tion. Note that terms have the form D̄; ā〈p̄〉; ie, a term is a
list of declarations followed by a single advised event. We
refer to p̄ as the current event, ā as the current advice list,
and an as the current advice (ā = a1, . . . ,an).

TERM SYNTAX

a–e,u–w Advice Names; call, commit reserved
f–t,x–z Role Names; top reserved

D,E ::= Declarations
role p<q Role; dn(role p) = p
adv a[α]=u(x̄)N Advice; dn(adv a) = a;

u and x̄ bound in N

L,M,N ::= Terms
D;M Declaration; dn(D) bound in M
ā〈p̄〉 Message

NOTATION. We write dn(D) for the declared name of D.
Reserved names may not be declared. We identify syntax
up to renaming of bound names. For any syntactic cate-
gory with typical element E , we write fn(E) for the set of
free names occurring in E . We write E{a/x} for the cap-
ture avoiding substitution of a for x in E . We write E{ ā/ x̄}
for E{a1/x1, . . . ,an/xn}; note that E{ ā/ x̄} is defined only if x̄
and ā have the same length.

CONVENTION. To improve readability, we use the follow-
ing discipline for names:
• a–e are advice names (including the reserved names

call and commit);
• u–w are advice names that are bound in the body of an

advice declaration;
• f–t are role names (including the reserved name top);
• x–z are role names that are bound in the body of an ad-

vice declaration;
• is a reserved name used to bind a name that is not of

interest — that is, does not occur free in any subterm.

We drop syntactic elements that are not of interest. Con-
sider the declaration “adv a[α]=u(x̄)N”; we may elide the
name “adv[α]=u(x̄)N”, or the pointcut “adv a=u(x̄)N”,
or the body “adv a[α]”, or both the pointcut and the body
“adv a”.

Evaluation is defined using configurations which consist
of a vector of declarations and a term. By EVAL-DEC, decla-
rations are recorded in the configuration whenever they are
encountered in a term. By EVAL-CALL, if an event 〈p̄〉 is be-
ing processed with first advice call, then the advice list ā is
calculated, consisting of the advice names ai such that the
pointcut declared with ai is satisfied by 〈p̄〉. By EVAL-ADV,
if an event 〈p̄〉 is being processed with first advice a, then
the body of a is executed; the advice body is parameterized
by both the event 〈p̄〉 and remaining advice b̄. (Note that the



syntax requires that “b̄,a〈p̄〉” be parsed as “(b̄,a)〈p̄〉”. Fur-
ther note that the substitution b̄/u results in a well-formed
term because free advice names can only appear in the con-
text of a sequence.)

EVALUATION (D̄ B M → Ē B N)

(EVAL-DEC)

D̄ B E;M → D̄,E B M(EVAL-CALL)

[ā] =

[

a

∣

∣

∣

∣

D̄ 3 adv a[α]
D̄ ` 〈p̄〉 sat α

]

D̄ B b̄,call〈p̄〉 → D̄ B b̄, ā〈p̄〉

(EVAL-ADV)

D̄ 3 adv a=u(x̄)N

D̄ B b̄,a〈p̄〉 → D̄ B N{b̄/u, p̄/ x̄}

3.2. Atomic Event Pointcuts

We now consider a simple boolean logic over events. We
allow event sets to be specified using role patterns which in-
clude subroles and “varargs”, ie, optional roles.1

POINTCUT SYNTAX

P,Q ::= Role Pattern
p Exact Role
+p Sub Role

α,β ::= Atomic Event Pointcut
〈P̄〉 Call Event
〈P̄,*〉 Call Event, varargs
α∨β Disjunction
¬α Negation

σ,ρ ::= 〈p̄〉 Atomic Event

Define 1 as 〈*〉; define 0 as ¬1; and define α ∧ β as
¬(¬α∨¬β). We write D̄ ` r 6 p for the obvious pre-
order generated from the role declaration order. From this,
we derive the following definition of pointcut satisfac-
tion; the obvious rules for conjunction and disjunction are
elided.

ATOMIC POINTCUT SATISFACTION (D̄ ` σ sat α)

(SAT-CALL-ANY)

D̄ ` 〈p̄〉 sat 〈*〉

(SAT-CALL-EMPTY)

D̄ ` 〈〉 sat 〈〉
(SAT-CALL-EXACT)

D̄ ` 〈q̄〉 sat 〈Q̄〉

D̄ ` 〈r, q̄〉 sat 〈r, Q̄〉

(SAT-CALL-SUB)

D̄ ` 〈q̄〉 sat 〈Q̄〉 D̄ ` r 6 p
D̄ ` 〈r, q̄〉 sat 〈+p, Q̄〉

4. Temporal Pointcuts

We extend µABC with temporal pointcuts. To do this,
we modify the language of advice to include a temporal for-
mula φ in addition to the atomic formula α. Intuitively, the

1 In the full version we also allow vararg parameters in advice declara-
tions, ie adv a[α]=u( x̄,*)N.

pointcut fires when φ matches the past and α matches the
current event.

In an aspect language, the ontology of events is com-
plicated by the fact that events can be diverted; that is, an
event can trigger advice that intercepts the event before it
occurs, potentially causing the event to abort. This is partic-
ularly common in applications to security, where pointcuts
often specify dangerous event sequences that interrupt nor-
mal processing. To indicate that an event is to be recorded
in the history, we include the special advice commit.

Thus when the past is considered in firing a pointcut, we
require that advice specify both the past φ and the potential
future α. The past is specified as a regular expression over
atomic event pointcuts; the potential future is specified as
an atomic event pointcut.

SYNTAX

D,E ::= · · · Declarations
adv a[φα]=u(x̄)N Declare Advice

φ,ψ,χ ::= Temporal Pointcuts
α Atomic Event Pointcut
ε Empty Sequence
φψ Sequence
φ* Kleene Star
φ+ψ Disjunction

σ,ρ ::= 〈p̄〉 Atomic Events

The semantics of temporal formulas D̄ 
 σ̄ sat φ is defined
in the standard way (recalled in Appendix A) over strings
of events, building on the semantics of atomic events (D̄ `
σ sat α). Note that the regular expression /0 is represented
here as the atomic event pointcut 0. We define the language
of the formula as follows: LH(D̄,φ) = {σ̄ | D̄ 
 σ̄ sat φ}.

We now give the evaluation semantics for the lan-
guage with temporal advice. We augment the semantics to
record an execution history. We write |σ̄| for the length of
string σ̄. We define αn M

= ααn−1, where α0 M

= ε. We write
“adv a[α]=u(x̄)N” as shorthand for “adv a[1* α]=u(x̄)N”.

EVALUATION (σ̄; D̄ B M → ρ̄; Ē B N)

(EVAL-DEC-ROLE)

σ̄; D̄ B role p<q;M
→ σ̄; D̄, role p<q B M

(EVAL-DEC-ADV)

σ̄; D̄ B adv a[φα]=u(x̄)N;M
→ σ̄; D̄,adv a[1|σ̄| φα]=u(x̄)N B M

(EVAL-COMMIT)

σ̄; D̄ B b̄,commit〈p̄〉 → σ̄,〈p̄〉; D̄ B b̄
(EVAL-CALL)

[ā] =
[

a
∣

∣ D̄ 3 adv a[φα] and D̄ ` σ̄,〈p̄〉 sat φα
]

σ̄; D̄ B b̄,call〈p̄〉 → σ̄; D̄ B b̄, ā〈p̄〉
(EVAL-ADV)

D̄ 3 adv a=u(x̄)N

σ̄; D̄ B b̄,a〈p̄〉 → σ̄; D̄ B N{b̄/u, p̄/ x̄}



EVAL-COMMIT causes an event to be recorded in the his-
tory. The original EVAL-DEC is split into different cases
for roles and advice. EVAL-DEC-ROLE, EVAL-CALL, and
EVAL-ADV are largely unchanged from the non-temporal
semantics. Note only that in EVAL-CALL the history is used,
along with the current event, to determine whether an ad-
vice fires.

Of particular note is the rule EVAL-DEC-ADV, which
takes a newly declared advice, and prepends a string of 1s
to the temporal pointcut prior to adding it to the list of dec-
larations. The purpose of doing so is to ensure that the ad-
vice only triggers on the event α from the point of declara-
tion onwards, as opposed to some event that has already oc-
curred in the past.

5. Automaton

In this section, we define an equivalent automaton-based
semantics.

Our automata are constructed from regular expressions
of the form φα, corresponding to an advice declaration
adv a[φα], where φ is a regular expression abstracting the
relevant events in the program history, and α is the trigger-
ing atomic event. For each advice adv a[φα], we construct
the automaton for φ. From the point of declaration onwards,
the automaton monitors program execution. If the automa-
ton ever enters its final state, this indicates that an attempt to
execute α should be intercepted, and the advice body exe-
cuted instead. To implement this, we attach the advice name
to each final state for the automaton. For this reason, we re-
fer to final states as advice states:

ADVICE STATES (φX)

εX

φX ψX

φψX

φX

φ+ψX

ψX

φ+ψX φ*X

The states are sets of temporal pointcut formulas φ, the
transition alphabet ranges over the atomic event pointcuts
α, and the transitions of the automaton are defined by the
standard transition relation:

TRANSITION RELATION (φ α−→ ψ)

α α−→ ε
φ α−→ φ′

φψ α−→ φ′ ψ
φX ψ α−→ ψ′

φψ α−→ ψ′

φ α−→ φ′

φ* α−→ φ′ φ*

φ α−→ φ′

φ+ψ α−→ φ′
ψ α−→ ψ′

φ+ψ α−→ ψ′

Transitions between states are taken on commits.
We write φ=⇒ for the reflexive transitive closure of α−→.

Next, we formally state how to derive an automaton from
an advice adv a[φα]:

NOTATION. For any advice adv a[φα], let the automaton
ι(φ,a) induced by a be the security automaton with states
and transitions as defined by the transition relation given
above, with start state φ, and advice a associated with each
advice state.

We represent our automata as (state, advice set) pairs:

AUTOMATON SYNTAX

Φ,Ψ ::= φ | φ,Φ State

A ::= 〈Φ, ā〉 | 〈Φ, ā〉,A Automaton

For instance, AR and AQ from Section 2 are represented
as 〈φ0, /0〉,〈φ1,{E1}〉 and 〈ψ0, /0〉,〈ψ1,{E2}〉, respectively,
with φ0 = ψ0

M

= [¬call〈FileRead〉]∗call〈FileRead〉1∗,
and φ1 = ψ1

M

= 1∗. The product automaton AR ×AQ would
be represented as

(〈(φ0,ψ0), /0〉,(〈φ0,ψ1〉,{E2}),

(〈φ1,ψ0〉,{E1}),(〈φ1,ψ1〉,{E1,E2})

There is no need to explicitly encode the transition rela-
tion. For instance, in the product automaton just presented,
we know from the definition of the transition relation that
〈φ1,ψ0〉

call〈FileRead〉−−−−−−−−−→ 〈φ1,ψ1〉. To make the presentation
more readable, we elide advice when a state has none as-
sociated with it. That is, we write the state “〈φ〉, /0” simply
as φ.

We can modulate the transition relation from atomic
event pointcuts to atomic events: define D̄ ` φ σ−→ φ′ if
φ α−→ φ’ and D̄ ` σ sat α. Further we can lift the defini-
tion to automaton states: D̄ ` φ1, . . . ,φn

σ=⇒ ψ1, . . . ,ψn if
D̄ ` φi

σ−→ ψi for all i between 1 and n. Finally we lift
the resulting relation (D̄ ` Φ σ=⇒ Ψ) to event sequences:
D ` Φ0

σ1,...,σn====⇒ Φn if D̄ ` Φi−1
σi=⇒ Φi for all i between

1 and n.
We define the product of two automata using the stan-

dard product construction, taking the set union of each com-
ponent state’s associated advice names:

DEFINITION 1. For any two automata A,B,

A×B = {〈ΦA,ΦB; ā, b̄〉|〈ΦA, ā〉 ∈ A,〈ΦB, b̄〉 ∈ B}

Next, we show how to merge an advice adv a[φα] with
an existing automaton A . Namely, we construct the automa-
ton for the advice, and create the product automaton:

ν(A ,φ,a)
M

= A × ι(φ,a)

We now give the equivalent, automaton-based evaluation
semantics to our language. Whereas previously we recorded
the entire program history, we now instead maintain an au-
tomaton and state, which records only events of interest.



EVALUATION (A ; Φ; D̄ B M → A ′; Ψ; D̄′ B M′)

(EVAL-DEC-ROLE and EVAL-ADV as before)
(EVAL-COMMIT)

D̄ ` Φ p̄=⇒ Ψ
A ; Φ; D̄ B b̄,commit〈p̄〉 → A ; Ψ; D̄ B b̄

(EVAL-DEC-ADV)

A ; Φ; D̄ B (adv a[φα]=u(x̄)N;M)
→ ν(A ,φ,a); 〈Φ,φ〉; D̄,(adv a[α ]=u(x̄)N) B M

(EVAL-CALL)

[ā] =

[

a

∣

∣

∣

∣

∣

〈Φ,(b̄,a, b̄′)〉 ∈ A
D̄ 3 adv a[α]
D̄ ` 〈p̄〉 sat α

]

A ; Φ; D̄ B b̄,call〈p̄〉 → A ; Φ; D̄ B b̄, ā〈p̄〉

Operationally, EVAL-DEC-ROLE and EVAL-ADV act
the same as in the history-based semantics. EVAL-DEC-
ADV takes a new advice, merges it into the automaton, up-
dates the current state, and adds the advice to the list of dec-
larations. EVAL-CALL looks through the list of advices at-
tached to the current state for one whose atomic pointcut
matches the role vector p̄ being called. If a matching ad-
vice is found, then the call〈p̄〉 is replaced with the advice
body. EVAL-COMMIT simply updates the state of the au-
tomaton.

6. Equivalence

In this section, we demonstrate equivalence of the
history-based semantics provided in Section 4 with the
automaton-based semantics provided in Section 5 by pro-
viding a translation from a configuration in the former
to an equivalent one in the latter. We conclude by show-
ing that evaluation preserves the translation.

Intuitively, we translate a history-based configuration
〈σ̄, D̄〉 to an automaton-based configuration 〈A ,Φ, Ē〉 as
follows: given a history σ̄ and a set of declarations D̄, we
first construct an intermediate automaton A ′ using the as-
pect declarations in D̄. We compute the state Φ by simulat-
ing the history σ̄ on A ′. Finally, we convert the intermediate
automaton A ′ to the final automaton A by removing inter-
mediate states.

Recall the manner in which EVAL-DEC-ADV is defined
in the history-based semantics: whenever an advice is de-
clared, the current “timestamp” is explicitly noted in the
form of a string of ‘1’s prepended to the temporal point-
cut. Thus if an advice adv a[φα] is declared at time n,
then in the history-based semantics, the pointcut is noted
as adv a[1nφα], and the corresponding automaton in the
automaton-based semantics will have a string of n “place-
holder” states π1, ...,πn, where πi

1−→ πi+1 for i between 1

and n−1, and πn
1−→ φ, as shown below:

π0 π1 ... πn φ
1 1 1 1

CONVENTION. In constructing an automaton for an advice
adv a[φα] declared at time n, we label the states used as
placeholders for time 1 through n as π0, ...,πn, and we re-
fer to these as π-states.

Strictly speaking, we must account for the fact that for an
advice adv a[φα], φ may in fact begin with a string of lead-
ing 1s. We can easily get around this by syntactically dif-
ferentiating between those 1s implicitly inserted by EVAL-
DEC-ADV as a timestamp, and those explicitly specified by
the user. In the interest of simplifying the presentation, we
choose not to do so here.

If a state Φ = 〈φi,ψi, ...χi〉 is such that none of φi,ψi, ...χi

are π-states, we say that Φ is π-free. We will need to project
the π-free states of an automaton, so we formally define this
operation:

P 6π(A) = {〈Φ, ā〉 ∈ A |Φ contains no π states}

LEMMA 2. For two automata A and B , P 6π(A × B) =
P 6π(A)×P 6π(B)

Proof. Immediate. �

To construct A ′, we take the product of the automata in-
duced by each advice in D̄. To construct Φ, we simulate the
program history σ̄ on A ′. For instance, in the example in
Section 2, A ′ is the product of the following automata, with
φ0,φ1,ψ0, and ψ1 defined as in Section 5:

φ0 φ1,〈E1〉
call〈FileRead〉

¬call〈FileRead〉

1

π0 ψ0 ψ1,〈E2〉
1 call〈FileRead〉

¬call〈FileRead〉

1

Simulating the program history (call〈FileRead〉,call〈Login,A〉)
on the product automaton places us in state 〈φ1,ψ0〉, as ex-
pected.

We compute A by removing from A ′ any states contain-
ing a π state. In our example, this amounts to removing from
the product automaton states 〈(φ0,π0)〉 and 〈(φ1,π0),{E1}〉.
The result is equivalent to the product automaton AQ ×AR,
where AQ and AR are as in Section 2.



We now formalize the translation just discussed. That is,
given a history, declaration pair 〈σ̄, D̄〉, we formally show
how to construct the corresponding automaton, state, decla-
ration triple 〈A ,Φ, Ē〉.

Our translation makes use of the following functions:

Tdec(D̄) = {adv a[α ]|adv a[φα] ∈ D̄}

Tstate(σ̄, D̄) = Ψ, where

D̄ = 〈adv [1i1φ1 α1], . . . ,adv [1inφn αn]〉 and

〈1i1φ1, ...,1
inφn〉

σ̄=⇒ Ψ

We are now in a position to define the function T
which translates a history-based configuration 〈σ̄; D̄〉 to an
automaton-based configuration 〈A ;Φ; Ē〉:

DEFINITION 3. T (σ̄; D̄) = A ;Φ; Ē, where

A = P 6π

[

∏
adv a[φα]∈D̄

ι(φ,a)

]

Φ = Tstate(σ̄, D̄)

Ē = Tdec(D̄)

We define the language of the formula as follows:

LA(D̄,φ) = {σ̄|D̄ ` φ σ̄=⇒ φ′, φ′X, and φ′ ∈ Tstate(σ̄, D̄)}

LEMMA 4. For all D̄ and φ, LH(D̄,φ) = LA(D̄,φ).

Proof. By induction on the structure of σ̄. �

We conclude by showing that the translation is preserved by
evaluation. That is, if

• σ̄; D̄ B M → σ̄′; D̄′ B M′

• T (σ̄, D̄) = A ;Φ; Ē,

• A ; Φ; Ē B M → A ′; Φ′; Ē′ B M′, and

• T (σ̄′, D̄′) = A ′′;Φ′′; Ē′′

then A ′ = A ′′,Φ′ = Φ′′, and Ē′ = Ē′′, as shown below:

σ̄; D̄ σ̄′; D̄′

A ;Φ; Ē A ′;Φ′; Ē′
T T

PROPOSITION 5. If σ̄; D̄ B M → σ̄′; D̄′ B M′ and
T (σ̄, D̄) = A ,Φ, Ē, then A ; Φ; Ē B M → A ′; Φ′; Ē′ B M′,
where T (σ̄′, D̄′) = A ′,Φ′, Ē′.

Proof. In each case, we first translate the left hand side into
the automaton-based semantics. We then apply the evalua-
tion rule (e.g., EVAL-DEC-ADV) to the automaton to ob-
tain the next configuration 〈A ′,Φ′, Ē′〉. We then translate

the right hand side into the automaton based semantics and
show that the result equals 〈A ′,Φ′, Ē′〉.

In the cases of EVAL-DEC-ROLE and EVAL-ADV, this
is trivial. In the case of EVAL-DEC-ADV, recall its evalua-
tion rule in the history-based semantics:

σ̄; D̄ B adv b[ψβ],M → σ̄; D̄,adv b[1|σ̄|ψβ] B M

The declarations D̄ (equivalently Ē) are trivially preserved
by EVAL-DEC-ADV, which leaves us to show that the au-
tomaton A and the state Φ are preserved. Translating the
left hand side yields T (σ̄; D̄) = A ;Φ; Ē, where

A M

= P 6π

[

∏
adv a[φα]∈D̄

ι(φ,a)

]

Φ M

= Tstate(D̄) Ē
M

= Tdec(D̄)

By EVAL-DEC-ADV in the automaton semantics,
A ; Φ; Ē B adv b[ψβ],M → A ′; Φ′; Ē′ B M, where

A ′ M

= P 6π

[

∏
adv a[φα]∈D̄

ι(φ,a)

]

× ι(ψ,b) Φ′ M

= 〈Φ,ψ〉

Ē′ M

= Tdec(D̄),b

Finally, we must show that T (σ̄′; D̄,adv b[1|σ̄|ψβ]) =
A ′;Φ′; Ē′. By definition, T (σ̄′; D̄,adv b[1|σ̄|ψβ]) =
A ′′;Φ′′; Ē′′, where

A ′′ = P 6π

[

( ∏
adv a[φα]∈D̄

ι(φ,a))× ι(1|σ̄|ψ,b)

]

= P 6π

[

( ∏
adv a[φα]∈D̄

ι(φ,a))× ι(ψ,b)

]

Finally, Lemma 2 gives us that A ′ = A ′′:

P 6π

[

( ∏
adv a[φα]∈D̄

ι(φ,a))× ι(ψ,b)

]

= P 6π

[

∏
adv a[φα]∈D̄

ι(φ,a)

]

× ι(ψ,b)

and hence that the automaton is preserved by EVAL-DEC-
ADV.

To show that the state Φ is preserved by EVAL-DEC-
ADV, we simulate σ̄ on the intermediate automaton
[

∏adv a[φα]∈D̄ ι(φ,a)
]

× ι(1|σ̄|ψ,b). It immediately fol-
lows that the resulting state Φ′′ = 〈Φ,ψ〉 = Φ′. The decla-
rations Ē are trivially preserved by EVAL-DEC-ADV.

We now consider the case of EVAL-CALL. We must
show that in a history-based configuration 〈σ̄; D̄〉, for any
declared advice adv a[φα], if D̄ 
 σ̄ sat φ and D̄ ` p̄ sat α
where p̄ is the role vector being called, then adv a[α ] is as-
sociated with the state Φ in T (σ̄, D̄). This follows directly
from Lemma 4: if D̄ 
 σ̄ sat φ in the history-based seman-
tics, then in the automaton based semantics, φ σ̄=⇒ φ′, where
φ′X, so 〈φ′,a〉 ∈ Φ.



Finally, the case of EVAL-COMMIT is trivial. Recall
the evaluation rule in the history based semantics: σ̄; D̄ B

M,commit〈p̄〉 → σ̄, p̄; D̄ B M, and in the automaton-based
semantics:

(EVAL-COMMIT)

D̄ ` Φ p̄=⇒ Ψ
A ; Φ; Ē B b̄,commit〈p̄〉

→ A ; Ψ; Ē B b̄

In this case, T (σ̄; D̄) = A ;Φ; Ē, and T (σ̄, p̄; D̄) = A ;Φ′; Ē
where

A = P 6π

[

∏
adv a[φα]∈D̄

ι(φ,a)

]

Ē = Tdec(D̄)

What remains is to show that Ψ = Φ′. In doing so, we will
have succeeded in showing that A ,Φ, and Ē are all pre-
served by EVAL-COMMIT. By definition of T , simulating
σ̄ on the intermediate automaton ∏adv a[φα]∈D̄ ι(φ,a) places
A in state Φ. To derive Φ′ from σ̄, p̄; D̄, we simply carry the
simulation one step further, taking transition p̄. By EVAL-
COMMIT in the automaton-based semantics, we know that
Φ p̄=⇒ Φ′, and hence that Ψ = Φ′, which is what we needed
to show. �

PROPOSITION 6. If A ; Φ; Ē B M → A ′; Φ′; Ē′ B M′, and
T (σ̄, D̄) = A ,Φ, Ē, then σ̄; D̄ B M → σ̄′; D̄′ B M′, where
T (σ̄′, D̄′) = A ′,Φ′, Ē′.

Proof. The proof closely parallels that of Proposition 5, and
as such, we omit the details here. Details can be found in
Appendix B.

This brings us to the main result: that the two semantics
are equivalent:

THEOREM 7. σ̄; D̄ B M →∗ ρ̄; Ē B N if and only if
T (σ̄; D̄ B M) →∗ T (ρ̄; Ē B N).

Proof. By Propositions 5 and 6, and induction on the length
of →∗. �

7. Conclusions

We have described a novel minimal language for aspect-
oriented programming with temporal pointcuts. We de-
scribed an implementation of the language using security
automata and proved the correctness of the implementation.
We have presented examples of applications to software se-
curity.

Future work will address type-preserving translations of
class-based languages into µABC. We have already devel-
oped untyped translations; finding type-preserving transla-
tions presupposes a suitable typing systems for µABC.
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Lhoták. Adding trace matching with free variables to as-
pectj. In OOPSLA 2005, 2005.

[3] J. Andrews. Process-algebraic foundations of aspectoriented
programming. In In Reflection, LNCS 2192, 2001.

[4] Steve Barker and Peter Stuckey. Flexible access control pol-
icy specification with constraint logic programming. ACM
Transations on Information and System Security, 6(4):501–
546, 2003.

[5] Christoph Bockisch, Mira Mezini, and Klaus Ostermann.
Quantifying over dynamic properties of program execution.
In Dynamic Aspects Workshop (DAW05), 2005. Available at
http://www.aosd.net/2005/workshops/daw/ .

[6] Glen Bruns, Radha Jagadeesan, Alan Jeffrey, and James
Riely. µABC: A minimal aspect calculus. In Philippa Gard-
ner and Nobuko Yoshida, editors, CONCUR 2004: Concur-
rency Theory, volume 3170 of Lecture Notes in Computer
Science, pages 209–224, London, August 2004. Springer.

[7] Curtis Clifton, Gary T. Leavens, and Mitchell Wand. Param-
eterized aspect calculus: A core calculus for the direct study
of aspect-oriented languages. Submitted for publication, at
ftp://ftp.ccs.neu.edu/pub/people/wand/papers/clw-03.pdf ,
oct 2003.

[8] Bruno De Fraine, Wim Vanderperren, Davy Suvée, and
Johan Brichau. Jumping aspects revisited. In Dy-
namic Aspects Workshop (DAW05), 2005. Available at
http://www.aosd.net/2005/workshops/daw/ .

[9] R. Douence, P. Fradet, and M. Südholt. Composition, reuse
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A. Semantics of Temporal Pointcuts

TEMPORAL POINTCUT SATISFACTION (D̄ 
 σ̄ sat φ)

(SAT-ATOM)

D̄ ` σ sat α
D̄ 
 σ sat α
(SAT-OR-LEFT)

D̄ 
 σ̄ sat φ
D̄ 
 σ̄ sat φ+ψ

(SAT-SEQ)

D̄ 
 σ̄ sat φ
D̄ 
 ρ̄ sat ψ
D̄ 
 σ̄, ρ̄ sat φψ

(SAT-STAR)

D̄ 
 σ̄ sat φ
D̄ 
 ρ̄ sat φ*

D̄ 
 σ̄, ρ̄ sat φ*

(SAT-OR-RIGHT)

D̄ 
 σ̄ sat ψ
D̄ 
 σ̄ sat φ+ψ

(SAT-SEQ-EMPTY)

D̄ 
 ε sat ε
(SAT-STAR-EMPTY)

D̄ 
 ε sat φ*

B. Proof of Proposition 6

Again, in the cases of EVAL-DEC-ROLE and EVAL-
ADV, this is trivial. In the case of EVAL-DEC-ADV, recall
its evaluation rule:

A ; Φ; Ē B adv b[ψβ],M → A ′; Φ′; Ē′
B M

where

A ′ = A × ι(ψ,b) Φ′ = Φ,ψ Ē′ = Ē,b

In the history-based semantics, we have

σ̄; D̄ B adv b[ψβ],M → σ̄; D̄,adv b[1|σ̄|ψβ] B M

where T (σ̄; D̄) = A ;Φ; Ē. What remains is to show
that T (σ̄; D̄,adv b[1|σ̄|ψβ]) = A ′;Φ′; Ē′, which we al-
ready proved in Proposition 5.

In the case of EVAL-CALL, if a call〈p̄〉 is replaced by
the body of some advice adv a[φα], this must mean that ad-
vice a is associated with the current state of the automaton,
and that D̄` p̄ sat α. We must show that in the history-based
semantics, (i) the advice adv a[φα] is declared (trivial), (ii)
that D̄ ` p̄ sat α (given), and that (iii) D̄ 
 σ̄ sat φ. Point
(iii) follows directly from Lemma 4: since adv a[α ] is asso-
ciated with the current state, it must mean that φ σ̄=⇒ φ′, and
φ′X. By Lemma 4, it immediately follows that D̄ 
 σ̄ sat φ.

Finally, in the case of EVAL-COMMIT, recall its evalua-
tion rule in the automaton-based semantics:

(EVAL-COMMIT)

D̄ ` Φ p̄=⇒ Ψ
A ; Φ; Ē B b̄,commit〈p̄〉

→ A ; Ψ; Ē B b̄

If A ; Φ; Ē B b̄,commit〈p̄〉 → A ; Ψ; Ē B b̄, then it must be
the case that Φ p̄=⇒ Ψ. Now, let σ̄; D̄ be the history-based
configuration such that T (σ̄; D̄) = A ;Φ; Ē. Then by defini-
tion of T ,

A = P 6π

[

∏
adv a[φα]∈D̄

ι(φ,a)

]

Ē = Tdec(D̄)



Recall the rule in the history-based semantics:

σ̄; D̄ B M,commit〈p̄〉 → σ̄, p̄; D̄ B M

We must show that T (σ̄, p̄; D̄) = A ;Φ′; Ē where Φ′ = Ψ. A
and Ē follow immediately from the definition of T .

Furthermore, by definition of T , simulating σ̄ on the in-
termediate automaton ∏adv a[φα]∈D̄ ι(φ,a) puts the automa-
ton in state Φ. To derive Φ′ from σ̄, p̄; D̄, we simply carry the
simulation one step further, taking transition p̄. By EVAL-
COMMIT in the automaton-based semantics, we know that
Φ p̄=⇒ Φ′, and hence that Φ′ = Ψ, which is what we needed
to show. �

C. Derived Forms

To give a feel for the language, we define a few derived
forms. First, we provide an encoding of let, using roles for
continuations. In this encoding we require an additional re-
served role continue. The end value of a let expression must
be explicitly marked with a return.

DERIVED FORMS (LET) (c fresh)

role p
M

= role p< top Trivial Role

let x=N;M
M

= role c;
adv[〈c,+top〉]=( ,x)M;

N{c/continue}

Let

return p
M

= call〈continue,p〉 Return

For example, we have the following.

let x=N; let y=L;M
= role c;

adv[〈c,+top〉]=( ,x) let y=L;M;

N{c/continue}

= role c;
adv[〈c,+top〉]=( ,x) role d;

adv[〈d,+top〉]=( ,y)M;

L{d/continue};
N{c/continue}

The following encoding of functions uses triples to com-
municate the function name, argument and continuation.

DERIVED FORMS (FUNCTIONS) (f and x fresh)

λx.N
M

= role f;
adv[〈f,+top,+top〉]=( ,x,c)N{c/continue};
return f

Abstraction

L M
M

= let f=L;
let x=M;

call〈f,x,continue〉

Application

For example, we have the following.

(N L) M = let f=N L;
let x=M;

call〈f,x,continue〉

= let g=N;

let y=L;
let f=callcc〈g,y〉;
let x=M;

call〈f,x,continue〉
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