
A Typed Calculus of Aspect-oriented Programs?

Radha Jagadeesan, Alan Jeffrey, and James Riely

CTI, DePaul University

Abstract. Aspects have emerged as a powerful tool in the design and develop-
ment of systems, allowing for the encapsulation of program transformations. In
earlier work, we described an untyped calculus of aspect programs with a direct
description of the dynamic semantics. This calculus provides a specification for
the correctness of weaving.
In this paper, we turn our attention to the interaction of aspects and types, whose
subtleties are amply illustrated by the difficulties encountered by current com-
pilers of aspect languages. We develop a typed calculus of aspect programs that
includes inner classes, concurrency and dynamic arrival of new advice. To our
knowledge, this is the first source-level typing system for a class-based aspect-
oriented language.
We prove that types are preserved by reduction in the aspect calculus and that
well-typed programs make progress. We also show that weaving preserves typa-
bility of programs by mapping well-typed aspect programs to well-typed class
based programs.

1 Introduction

In this paper, we give the static semantics for an aspect-based language and prove its
correctness with respect to reduction and weaving.

Aspects: A Short IntroductionWe begin with a short example to introduce the basic
vocabulary of aspect-oriented programming and illustrate the underlying issues [3, 16,
21, 20, 17, 2]. Suppose thatL is a class realizing a useful library. Suppose further say
that we are interested in timing information about a methodfoo() in L. The following
AspectJ code addresses this situation. It is noteworthy and indicative of the power of
the aspect framework that

– the profiling code is localized in the following aspect,
– the existing client and library source code is left untouched, and
– the responsibility for profiling allfoo() calls resides with the AspectJ compiler.

aspect TimingMethodInvocation {

Timer timer = new Timer();

void around(): call (void L.foo()) {

timer.start(); proceed(); timer.stop();

System.out.println(timer.getTime());

}}

? Research supported in part by National Science Foundation grants 0244901 and 0208549.

2 Radha Jagadeesan, Alan Jeffrey, and James Riely

This aspect is intended to “trap” all invocations tofoo() in L. An aspect mayadvise
methods, causing additional code to be executed whenever a method of interest is called.

The intended execution semantics is as follows: a call tofoo() invokes the code
associated with the advice; in the example, the timer is started. The underlyingfoo()
method is invoked when control reachesproceed(). Upon termination offoo(), con-
trol returns to the advice; in the example, the timer is stopped and the elapsed time
displayed on the screen. In many aspect-based languages, the intended execution se-
mantics is realized by a compile-time process calledweaving.

Typing issues in aspect languages.Quite early on, the study of expressive type systems
for aspect languages was recognized as an important research problem. For example,
see the report [18] on the first “Foundations of Aspect-Oriented Languages” (FOAL)
workshop [19] in the types forum. In relationship to object-oriented languages, it is
helpful to view advice, at a first approximation, as acting like method update [1]; hence
it needs to be treated carefully. For example, the following program compiles success-
fully with the latest version of the AspectJ compiler (ajc1.1). However, this program
yields a runtimeClassCastException as expected.

public class Foo {

public static void main(String[] args) {

System.out.println(new D().m());

}}

class D {

public String m() {

return "D";

}}

aspect B {

Object around(): call(* D.m()) {

return new Integer(1);

}}

One can speculate on the the motivation of the designers of the type system of AspectJ
— presumably, the aim was to increase the reuse of advice code by permitting around
advice to modify the return types to any ”consistent” return type. This design aim has
exposed the type system to the subtlety of the interaction of classes, polymorphism and
aspects.

This paper has two motivations.

– Methodologically speaking, we aim to import the techniques and experience de-
veloped in the well-developed study of type systems for class-based language to
source level typing of aspect languages. Such a treatment would provide the guar-
antees, such as type-safety and compilation to an interface, that one has come to
expect of modern programming languages.

– In terms of language design, the study of this paper is an essential first step towards
language design in the space of aspect languages — for example, we point out the
AspectJ and Generic Java designs are not currently compatible, and the study of a
type-safe generic extension to an aspect language requires the study carried out in
this paper as a foundation.

A Typed Calculus of Aspect-oriented Programs 3

Results in this paper. We study the static semantics of an aspect language, proving
three fundamental properties:

– well-typed programs can always make progress,
– well-typing is preserved by reduction, and
– well-typing is preserved by translation to a class-based language via weaving.

Our language of pointcuts can express the call and execution of any method; we have not
considered temporal operators, such ascflow in AspectJ. Our aspect calculus permits
dynamic arrival of new advice and includes inner-classes and concurrency, providing
evidence for the scalability of the results to a reasonably sized language.

In terms of the expressiveness of the typing system, we have chosen deliberately to
study a simple first-order typing system. We re-emphasize our belief that polymorphism
is essential for achieving satisfactory expressiveness while maintaining type safety in
an aspect-oriented setting and we discuss supporting evidence in section 6. However,
the more restrictive study of this paper is essential groundwork for the development of
these more expressive type systems.

The Rest of this PaperThe rest of this paper is organized as follows. In section 2, we
provide an overview of our approach to the dynamic and static semantics of aspects, as
well as weaving. In section 3, we present the details of a typed class based language.
In the following section 4, we turn our attention to the typed aspect calculus. Section 5
describes the typed weaving algorithm. Finally, we discuss the interactions of aspects
and polymorphism in section 6 and summarize related work in section 7. All proofs and
some definitions are relegated to the appendices for the indefatigable reader.

2 Overview of Our Approach

We describe the dynamic semantics, the typing system, and weaving.

2.1 An Untyped Calculus

In our earlier work [15], we have described an untyped calculus of aspect oriented
programs. In this calculus, classes are merely sets of methodnamesand do not contain
any code. All code is associated with named advice of the form:advice a(~x) at φ {~C}.
The name of the advice isa; the parameters and code associated with the advice are
given respectively by~x and~C; the advice is attached to the pointcut given byφ. A
pointcut is a set of basic call and execution pointcuts and is described syntactically as
an element of a boolean algebra over these atoms.

We discuss the key cases of reduction to highlight the novel features of aspect ori-
ented programs. A program consists of a collectionD̄ of class and advice declarations,
together with a collection̄H of threads and objects on the heap. A method callo:c.m
on an objecto of static typec expands out to an advised method callo:c.m[ā; b̄] to
include the list of advice associated with methodm of o. This advice list is looked up
from the declarations̄D. As discussed earlier, the call advice list ¯a is based on the static
typec of o; this type is deduced from the syntax of the program. The execution advice

4 Radha Jagadeesan, Alan Jeffrey, and James Riely

list b̄ is based on the true dynamic typed of o which is fetched from the heap,̄H, of
objects. Call advice is listed before execution advice. The order of advice within the
call advice list (and the execution advice list) is based on a given global order on advice
names.

H̄ 3 object o:d { }
D̄
 advice(c::m) = [ā;]
D̄
 advice(d::m) = [; b̄]

D̄ ` H̄, thread p { let X=o:c.m(~v);~C}
. D̄ ` H̄, thread p { let X=o:c.m[ā; b̄](~v);~C}

The notationp {...} is used to indicate that the controlling object of the context isp. The
reason for this modeling will become clearer as we turn our attention to the execution
of advised method calls.

We sketch the execution of advised method calls next, beginning with call advice.
To executeo:c.m[a, ā; b̄], we first look up the body ofa in the declarations, then
substitute the “rest of the advice”, namelyo:c.m[ā; b̄], for proceed in the body~B.
In addition, there are two other substitutions:this becomes the name of the controlling
objectp, andtarget becomes the name of the calleeo. The unrolled body continues to
execute under the control ofp.

D̄ 3 advice a(~x) at {~B}
~B′ =~B[o:c.m[ā; b̄]/proceed]

D̄ ` H̄, thread p { let x:r =o:c.m[a, ā; b̄](~v);~C}
. D̄ ` H̄, thread p { let x:r =p{~B′[p/this,o/target,~v/~x]};~C}

Execution advice is similar in spirit to call advice. The structural differences between
call and execution are modeled by the different substitutions: boththis andtarget are
substituted by the calleeo, and the unrolled body executes under the control ofo.

D̄ 3 advice b(~x) at {~B}
~B′ =~B[o:c.m[/0; b̄]/proceed]

D̄ ` H̄, thread p { let x:r =o:c.m[/0;b, b̄](~v);~C}
. D̄ ` H̄, thread p { let x:r =o{~B′[o/this,o/target,~v/~x]};~C}

There are several advantages to formalizing the aspect calculus directly. First, the source-
level semantics for aspects provides aspecificationfor the weaving algorithm, and en-
ables us to prove thecorrectnessof the weaving transformation. Second, this aspect
calculus naturally allows for the dynamic addition of advice to a running program —
in this respect, the calculus is richer than statically woven languages such as AspectJ,
and in the spirit of more recent experimental efforts. Third, the calculus permits us to
reduce the number of features that need to be studied by providing a formal basis to
establish redundancies, e.g. method bodies are unnecessary, as are various other kinds
of advice.

A Typed Calculus of Aspect-oriented Programs 5

2.2 Onto Typing

Our calculus in [15] was untyped, e.g. field assignment was not typechecked. For the
usual, and by now well-understood reasons, this permits the expression of several unde-
sirable programs. Furthermore, the absence of typing raises issues specific to the aspect
setting. Consider the reduction rule for execution advice described earlier. Suppose that
b̄ is empty and the body of the code associated withb is a call toproceed. In this case,
the proceed variable is bound to an empty advice list, leading to the aspect-oriented
analogue of the “unknown method” error. (AspectJ avoids this error, albeit at the cost
of redundancy, since the method bodies of the underlying OO paradigm do not contain
calls toproceed.)

In the light of the extensive literature on type systems for OO programming (e.g. see [1,
5, 22] for a survey of research into types for OO languages), a natural impulse could be
to try to impose such a typing paradigm on the untyped aspect calculus. What should
be the type associated with a piece of advice:

advice a(~x) at φ {~C}

Clearly, it has to contain type information associated with the argumentsuand the return
valuer — this is standard — to yield:

advice a(~x:~u):r at φ {~C}

However, the reduction rule for call advice described earlier motivates the need for more
type information. In this reduction rule, the body of advice undergoes a substitution of
this for the controlling object of the contextp andtarget for the calleep. Thus, accurate
typing of the advice demands type assumptions about the caller and the callee objects.
This greater symmetry between caller and callee, relative to usual OO programming,
reflects the incremental construction of control structures in aspect-oriented program-
ming.

The simultaneous type assertions on callers and callees permeate our system. For
example, the form of the typing judgments for pointcuts and method names are:

D̄
 φ : Ptcut(~u):r for s in c

D̄
 m : Mth(~u):r for s in c

These judgment constrain the return type to ber, the type of the caller to be (a subtype
of) s and the type of the callee to be (a subtype of)c.

A piece of advice is well-typed if its body is valid given correct bindings tothis and
target. The types of these identifiers are inherited from the type of the pointcut.

D̄
 φ : Ptcut(~u):r for s in t
D̄ ; Z̄,~x:~u, this:s, target:t
~C : Stk(~u):r for s

D̄ ; Z̄
 advice a(~x:~u):r at φ {~C} : Dec

We enforce consistent types on advice sets using pointcuts, which, in turn, must be
consistent with the methods they name.

6 Radha Jagadeesan, Alan Jeffrey, and James Riely

For a call pointcut, we require the type of the method to match up with the type of
the pointcut, i.e. the return type of the method matches the return type of the pointcut,
and the types of the caller and callee are subtypes of the corresponding types in the
method.

D̄
 m : Mth(~u):r for s′ in c
D̄ ` s′ <:s
D̄ ` c<: t

D̄
 call(c::m) : Ptcut(~u):r for s in t

In contrast, an execution pointcut is executed under the control of the callee object. So,
in this case, the caller type information in the method is ignored.

D̄
 m : Mth(~u):r for in c
D̄ ` c<:s
D̄ ` c<: t

D̄
 exec(c::m) : Ptcut(~u):r for s in t

The idea of type restrictions on the caller of methods is directly reflected in the source
language by declarations of the form:

protected smethod m(~x:~t):r;

Such a method can only be called by callers at subtypes ofs; hence, the keyword pro-
tected, to indicate protection from callers that do not satisfy this type restriction. We
permit such type annotations on fields too. This is a generalization of Java’s annota-
tions public (protected Object in our notation) andprotected (protected c if the
containing class isc).

Such declarations form the basis of deducing type restrictions on callers. For exam-
ple, if methodm is declared in classd as above, we can deduce

D̄
 m : Mth(~u):r for s in c

for any subclassc of d.

D̄ 3 class d<: { M̄ }
M̄ 3 protected smethod m(:~u):r;
D̄ ` c<:d

D̄ `m : Mth(~u):r for s in c

In the technical body of this paper, we describe precisely how such judgments are prop-
agated through the various constructs of the calculus, such as commands.

It is worth pointing out that our approach to typing the caller (bound tothis in ad-
vice) is quite different than that of AspectJ. In AspectJ, the type of thethis is significant
in the dynamic semantics of call advice: the advice applies only if the caller inhabits
the correct type. In our language, both call and execution advice are uniform across all
callers. This allows a cleaner separation of the dynamics and the statics.

A Typed Calculus of Aspect-oriented Programs 7

A type system set up using the ideas described above provides some of the guar-
antees that we are seeking: for example, to ensure that field updates are type-correct.
However, by itself, such a type system doesn’t handle the problem of ensuring that the
proceed variable is always bound. Our second and final set of type annotations address
this problem by distinguishing advice that does not contain a call toproceed from ad-
vice that does. We require that advice be annotated with aplacementρ, whereρ can be
eitheraround or replace. The final form of advice declarations is then:

ρ advice a(~x:~u):r at φ {~C}

Advice with thereplace annotation cannot contain calls toproceed whereasaround
annotation imposes no such restriction. For example, in AspectJ, method bodies of the
underlying OO paradigm do not contain calls toproceed and can be given thereplace
annotation. These annotations permit us to identify valid advice lists that are guaranteed
to terminate without dangling calls toproceed. This is achieved by requiring that each
execution advice list contain at least one piece ofreplace advice.

The type system with both of these basic ingredients satisfies standard desirable
properties. We prove that types are preserved by reduction in the aspect calculus and
that well-typed programs make progress:

– If
 P : Prog andP .∗ P′ then
 P′ : Prog.
– If
 (D̄ ` H̄, thread o {S}) : Prog then eitherthread o {S} has terminated or

(D̄ ` H̄, thread o {S}) . (D̄′ ` H̄′, thread o {S′ }).

2.3 Weaving

The aspect calculus naturally allows for the dynamic addition of advice to a running
program. Clearly, programs that dynamically load advice affecting existing classes can-
not be woven statically. In [15] we defined a notion ofweavability, which excludes such
programs, and we showed that for weavable programs, the weaving algorithm is correct
at run-time, that is (up to some renaming of methods) we can complete:

P ====
weave

⇒ Q

P′
5

as

P ====
weave

⇒ Q

P′
5

===
weave

⇒ Q′
?

and (again, up to some renaming of methods) we can complete:

P ====
weave

⇒ Q

Q′
?

as

P ====
weave

⇒ Q

P′
5

===
weave

⇒ Q′
?

In this paper, we show also that weaving is correct at compile-time, i.e. any well-typed
aspect-based program is woven to a well-typed class-based program.

If
 P : Prog then` weave(P) : Prog

8 Radha Jagadeesan, Alan Jeffrey, and James Riely

Table 1Class-Based Syntax

a, ..,z Name

X,Y,Z ::= n:t Typed Name

P,Q ::= (D̄ ` H̄) Program

D,E ::= class c<:d { F̄ M̄} Declaration

M ::= protected smethod m(~X):r {~C} Method

F ::= protected sfield f:t; Field Type

V ::= f =v; Field Value

H,G ::= Heap Element
object o:c { V̄} Object
thread o {S} Thread

S,T ::= Call Stack
~C Current Frame
let X=o{S};~C Pushed Frame

C,B ::= Command
return v; Return
let X=v; Value
let X=o.m(~v); Dynamic Message
let X=o.c::m(~v); Static Message
let X=o.f; Get Field
seto.f =v; Set Field
new D̄ H̄; New

3 A Class-based Language

Our class-based languages is similar in spirit to Classic Java [12], Featherweight Java [13]
and Javas [9], although our language includes mutability and concurrency. This basic
model has also been extended to address genericity [4, 13] and the removal of inner
classes [14]. Other work has concentrated on translations of class-based languages into
polymorphicλ-calculi or object-based languages [6, 1, 7, 8, 11].

NOTATION. For any metavariablex, we write~x for ordered sequences, and ¯x for un-
ordered sequences, ofx’s. We write “ ” to stand for an element of any syntactic category
that is not of interest.

Lower-case lettersa–z range over a set of names. “Object”, “ this”, “ target” and
“proceed” are reserved names. Although all names are drawn from a single set, our
use of names is disciplined to improve readability. We usea–b for advice names;c–d
andr–u for class names;f for field names;m for method names;o–q for object refer-
ence names;x–z for variables (parameters andlet-bound names);v for values (object
references and variables).

3.1 Syntax

The syntax is in Table 1. The main novelty is in method declarations of the form

protected smethod m(~X):r {~C}

and field declarations of the formprotected s field f:t;. The type system will ensure
that these methods and fields are only accessed by subclasses ofs.

Command sequences associate to the right, so “C1 C2 C3” should be read “C1(C2 C3)”;
the scope of variables bound inC1 includesC2 andC3. We identify programs up to re-
naming of bound names and define substitution~C[v/x] as usual. We define the notion

A Typed Calculus of Aspect-oriented Programs 9

Table 2Class-Based Reduction

D̄ `mbody(c::m) = (~x)~C
(LC-THIS)

D̄ 3 class c<: { M̄}
M̄ 3 protected method m(~x:): {~C}
D̄ `mbody(c::m) = (~x)~C

(LC-SUPER)

D̄ 3 class c<:d { M̄}
M̄ 63 protected method m(): { }
D̄ `mbody(d::m) = (~x)~C

D̄ `mbody(c::m) = (~x)~C

P -∗ P′(RC-STEP)

D̄ ` H̄ , thread p {S } = P
- D̄′ ` H̄′, thread p {S′ } = P′

P -∗ P′

(RC-ID)

P -∗ P

(RC-TRANS)

P -∗ P′

P′ -∗ P′′

P -∗ P′′

D̄ ` H̄, thread p {S} - D̄′ ` H̄′, thread p {S′ }(RC-LET)

D̄ ` H̄ , thread q {S }
- D̄′ ` H̄′, thread q {S′ }

D̄ ` H̄ , thread p { let X=q{S };~C}
- D̄′ ` H̄′, thread p { let X=q{S′ };~C}

(RC-RETURN)

D̄ ` H̄, thread p { let X=q{ return v;~B};~C}
- D̄ ` H̄, thread p { let X=v;~C}

(RC-VALUE)

D̄ ` H̄, thread p { let x:t=v;~C}
- D̄ ` H̄, thread p {~C[v/x]}

(RC-NEW)

domainsD̄, Ē, H̄, Ḡ disjoint

D̄ ` H̄, thread p {new Ē Ḡ;~C}
- D̄, Ē ` H̄, Ḡ, thread p {~C}

(RC-DYN-MSG)

H̄ 3 object o:c { }
D̄ `mbody(c::m) = (~x)~B

D̄ ` H̄, thread p { let X=o.m(~v);~C}
- D̄ ` H̄, thread p { let X=o{~B[o/this,~v/~x]};~C}

(RC-STC-MSG)

D̄ `mbody(c::m) = (~x)~B

D̄ ` H̄, thread p { let X=o.c::m(~v);~C}
- D̄ ` H̄, thread p { let X=o{~B[o/this,~v/~x]};~C}

(RC-GET)

D̄ ` H̄, object o:c { f =v;V̄}, thread p { let X=o.f;~C}
- D̄ ` H̄, object o:c { f =v;V̄}, thread p { let X=v;~C}

(RC-SET)

D̄ ` H̄, object o:c { f =u;V̄}, thread p {seto.f =v;~C}
- D̄ ` H̄, object o:c { f =v;V̄}, thread p {~C}

10 Radha Jagadeesan, Alan Jeffrey, and James Riely

Table 3Class-Based Typing (Names)

D̄ ` c<:d(S-CLASS)

D̄ 3 class c<:d { }
D̄ ` d : Class

D̄ ` c<:d

(S-REFLEX)

D̄ ` t : Class

D̄ ` t<: t

(S-TRANS)

D̄ ` t<:s
D̄ ` s<: r

D̄ ` t<: r

D̄ ; Z̄ ` v : t(TC-NAME-VALUE)

Z̄ 3 v:s
D̄ ` s<: t

D̄ ; Z̄ ` v : t

D̄ ` c : Class(TC-NAME-CLASS-OBJECT)

D̄ `Object : Class

(TC-NAME-CLASS-CLASS)

D̄ 3 class c<:d { }
D̄ ` d : Class

D̄ ` c : Class

D̄ `m : Mth(~t):r for s in c(TC-NAME-METHOD)

D̄ 3 class d<: { M̄}
M̄ 3 protected smethod m(:~t):r { }
D̄ ` c<:d

D̄ `m : Mth(~t):r for s in c

D̄ ` f : Fld r for s in c
(TC-NAME-FIELD)

D̄ 3 class d<: { F̄ }
F̄ 3 protected sfield f:r;
D̄ ` c<:d

D̄ ` f : Fld r for s in c

of bound namefor method declarations and command sequences. The class decla-
ration “new class c<:d { F̄ M̄ };~C” binds c, with scopeF̄ M̄ and~C. The declaration
protected smethod m(~X):r {~C} binds~X andthis, the scope is~C. Eachlet-command
sequence “let x= ...;~C”, bindsx, with scope~C. The object declaration “new object o:c{ V̄};~C”
bindso, with scopeV̄ and~C.

3.2 Dynamic semantics

Computation proceeds by executing the command sequences contained in threads. Com-
mands may include declaration of classes “new D̄;” or heap elements “new H̄;”. The
value stored in an object field can be retrieved “let x=o.f;” and set “set o.f =v;”.
Method calls may be dispatched using the dynamic type of the object “let x=o.m(~v);”
or a statically chosen type “let x=o.c::m(~v);”.

As a step towards the later development of the aspect based calculus, we model
stack frames in the operational semantics. In a pushed stack frame “let X=o{S};~C”,
we often say thato is the controlling object ofS. A pushed frame “let X=o{S};~C”
successfully terminates in a return command which removes the remainder ofS, leaving
~C to execute; “let x=p{ return v;~B};~C” reduces to “let x=v;~C”, which is then further
reduced via substitution to “~C[v/x]”.

The reduction rules are given in Table 2. The rules(RC-LET) and (RC-RETURN)
deal with pushed frames. The rule(RC-VALUE) allows returned values to be substituted
through for the variables to which they are bound. The rules(RC-GET) and(RC-SET)
allow for the manipulation of fields. The rule(RC-NEW) allow threads to create new

A Typed Calculus of Aspect-oriented Programs 11

Table 4Class-Based Typing (Declarations)

` P : Prog
(TC-PROG)

D̄ ; Z̄ ` H̄ : Heap
D̄ ; Z̄ ` D̄ : Dec
objects(H̄) = Z̄
domainsD̄, Z̄ disjoint

` (D̄ ` H̄) : Prog

D̄ ; Z̄ ` E : Dec(TC-DEC-CLASS)

D̄ ` F̄ : Fld
D̄ ; Z̄ ` M̄ : Mth in c

D̄ ` c is sane

D̄ ; Z̄ ` class c<:d { F̄ M̄} : Dec

D̄ ` c is sane(TC-SANE)

D̄ ` c<:Object
c 6= Object

if D̄ `m : Mth(~t1):r1 for s1 in c
andD̄ `m : Mth(~t2):r2 for s2 in c
then(~t1, r1,s1) = (~t2, r2,s2)

if D̄ ` f : Fld r1 for s1 in c
andD̄ ` f : Fld r2 for s2 in c
then(r1,s1) = (r2,s2)

D̄ ` c is sane

objects(H̄) = Z̄
(TC-OBJS)

objects(H̄) = {o:c | object o:c { } ∈ H̄}

D̄ ; Z̄ `M : Mth in c(TC-METHOD)

D̄ ` s,~t, r : Class

D̄ ; Z̄,~x:~t, this:c`~C : Stk r for c

D̄ ; Z̄ ` protected smethod m(~x:~t):r {~C} : Mth in c

D̄ ` F : Fld(TC-FIELD)

D̄ ` s, t : Class

D̄ ` protected sfield f:t; : Fld

D̄ ; Z̄ ` H : Heap
(TC-HEAP-THREAD)

D̄ ; Z̄ ` S : Stk for c
D̄ ; Z̄ ` o : c

D̄ ; Z̄ ` thread o {S} : Heap

(TC-HEAP-OBJECT)

D̄ ` c : Class
D̄ ` f̄ : Fld t̄ for in c
D̄ ; Z̄ ` v̄ : t̄
∀f . D̄ ` f : Fld t for in c impliesf ∈ f̄

D̄ ; Z̄ ` object o:c { f̄ = v̄;} : Heap

classes, objects and threads. Note that we rely on alpha-equivalence to generate the
names of references.

The rules(RC-DYN-MSG) and (RC-STC-MSG) perform beta reduction on method
calls; in the dynamic case, the method is determined by the actual class of the objecto;
in the static case, the method is determined by the annotated method callc::m.

3.3 Static semantics

The type system for the class-based language is standard for the features being han-
dled: mutable state, inner classes and concurrency. Whereas concurrency presents no
additional difficulty over the sequential case, mutability and inner classes do impose
upon the formalities somewhat. We formalize inner classes by allowing for new class
declarations to appear in threads. We do not address issues of genericity. In our type
system, field and method types are invariant under subclassing.

We refine the usual types in OO programs by including assertions on the type of the
controlling object in anticipation of their use in the typing of the aspect based calculus.
For example, the form of judgments on methods is:

D̄ `m : Mth(~t):r for s in c

12 Radha Jagadeesan, Alan Jeffrey, and James Riely

Table 5Class-Based Typing (Commands)

D̄ ; Z̄ ` S : Stk r for c(TC-STK-LET)

D̄ ; Z̄ ` p : d
D̄ ; Z̄ ` S : Stk t for d
D̄ ; Z̄, x:t `~C : Stk r for c

D̄ ; Z̄ ` let x:t=p{S};~C : Stk r for c

(TC-STK-RETURN)

D̄ ; Z̄ ` v : r

D̄ ; Z̄ ` return v;~C : Stk r for c

(TC-STK-VALUE)

D̄ ; Z̄ ` v : t
D̄ ; Z̄, x:t `~C : Stk r for c

D̄ ; Z̄ ` let x:t=v;~C : Stk r for c

(TC-STK-DYN-MSG)

D̄ ; Z̄ ` o : d
D̄ ; Z̄ ` let x:t=o.d::m(~v);~C : Stk r for c

D̄ ; Z̄ ` let x:t=o.m(~v);~C : Stk r for c

(TC-STK-STC-MSG)

D̄ ; Z̄ ` o : d
D̄ `m : Mth(~u):t′ for s in d

D̄ ; Z̄ `~v : ~u
D̄ ` t′ <: t
D̄ ` c<:s

D̄ ; Z̄, x:t `~C : Stk r for c

D̄ ; Z̄ ` let x:t=o.d::m(~v);~C : Stk r for c

(TC-STK-GET)

D̄ ; Z̄ ` o : d
D̄ ` f : Fld t′ for s in d
D̄ ` t′ <: t
D̄ ` c<:s

D̄ ; Z̄, x:t `~C : Stk r for c

D̄ ; Z̄ ` let x:t=o.f;~C : Stk r for c

(TC-STK-SET)

D̄ ; Z̄ ` o : d
D̄ ` f : Fld t for s in d

D̄ ; Z̄ ` v : t
D̄ ` c<:s

D̄ ; Z̄ `~C : Stk r for c

D̄ ; Z̄ ` seto.f =v;~C : Stk r for c

(TC-STK-DEC)

D̄, Ē; Z̄, Ȳ ` Ē : Dec
D̄, Ē; Z̄, Ȳ ` Ḡ : Heap

D̄, Ē; Z̄, Ȳ `~C : Stk r for c
objects(Ḡ) = Ȳ
domainsD̄, Ē, Z̄, Ȳ disjoint

D̄ ; Z̄ ` new Ē Ḡ;~C : Stk r for c

These types indicate that the result type is a subclass ofr, the caller is constrained to be
a subtype ofsand the method itself is in the classc. (TC-NAME-METHOD) in Table 3 ties
up this typing judgments with the method declarationprotected smethod m(~X):r {~C}.

Similarly, the form of judgment on fields is:

D̄ ` f : Fld r for s in c

(TC-NAME-FIELD) in Table 3 ties up this typing judgments with the field declaration
protected sfield f:t;.

Table 3 also describes the lookup of types of object names in the typing environ-
mentZ̄, and ensures thatObject is a valid class, and that valid classes are closed under
subclassing.

The typing rules for declarations are described in Table 4.These are mostly standard.
Note, however, that our calculus excludes class methods and constructors. We therefore
allow objects references to occur in class declarations, as formalized in(TC-PROG). The

A Typed Calculus of Aspect-oriented Programs 13

rule (TC-SANE) ensures that subclasses areinvariant with respect to the types of fields
and the argument and return types of methods.

The judgments for commands are of the form:

D̄ ; Z̄ ` S : Stk r for c

wherer is read as the type of return values andc is read as the type of the class in whose
control this command is being executed. Thus, from(TC-METHOD) we deduce that a
method declaration is valid in classc if the method body is typable as above in a type
environment withthis having typec.

Keeping this intuition in mind, the typing of commands is standard, and is de-
scribed in Table 5. The usual case of binding values to let variables as described in
(TC-STK-VALUE). The case of nested stack frames,(TC-STK-LET), is essentially similar
from a typing point of view.(TC-STK-RETURN) embodies the idea that returns termi-
nate stack frames. The imperative features are handles as usual by(TC-STK-GET) and
(TC-STK-SET).

Following the dynamic semantics,(TC-STK-DYN-MSG) reduces the typing of a dy-
namic message dispatch to a static message dispatch. The case for static message dis-
patch is the sole place in the typing rules for commands that one sees the effect of
carrying around type information of the controlling object. The first four premises of
this rule are standard, enforcing the typing of the object name and the correct match
between the type of the method, the types of the arguments and the return type. The
hypothesisD̄ ` c<:s ensures that the controlling contextc has required access to the
methodm.

We now state progress and preservation properties; proofs can be found in Ap-
pendix A. We begin by identifying threads that have terminated normally.

DEFINITION 1 (TERMINATED THREAD). A thread declarationthread p {~C} haster-
minatedif ~C is of the formreturn v;~C′.

THEOREM 1 (CBL PROGRESS).
If ` (D̄ ` H̄, thread p {S}) : Prog then eitherthread p {S} has terminated or:

(D̄ ` H̄, thread p {S}) - (D̄′ ` H̄′, thread p {S′ })

THEOREM 2 (CBL SUBJECTREDUCTION).
If ` P : Prog and P -∗ P′ then` P : Prog.

4 An Aspect-based Language

4.1 Syntax

We will assume a fixed total order on names,n≺m. We may write a collection of names
as “a, ā” to indicate thata is ordered before any of the names in ¯a.

The move from a class-based language to an aspect-based language involves three
new pieces of syntax: advice declarations, advised method calls andproceed calls. In
Table 6 we extend the grammar for declarations and commands, replace the grammar
for method declarations, and define a new grammar for pointcuts.

14 Radha Jagadeesan, Alan Jeffrey, and James Riely

Table 6Aspect-Based Syntax
Extend Table 1, modifying the syntax for method values and dynamic messages.

ρ ::= Placement
around Around
replace Replace

D,E ::= ... Declaration
ρ advice a(~X):r at φ {~C} Advice

M ::= protected smethod m(~t):r [ā; b̄] Method

L ::= c::m Label

C,B ::= ... Command
let X=o:c.m(~v); Dynamic Msg
let X=o:c.m[ā; b̄](~v); Advised Msg
let X=proceed(~v); Proceed

φ,ψ ::= Pointcut
call(L) Call
exec(L) Execution
true True
false False
¬φ Negation
φ∧ψ Conjunction
φ∨ψ Disjunction

An advice declaration,new ρ advice a(~X):r at φ {~C};~B has four essential compo-
nents. The namea allows references to the aspect from elsewhere in the program. The
command sequence~C specifieswhat to execute and the pointcutφ specifieswhen. ρ is
replace only if there are no occurrences ofproceed in ~C. The advice declaration binds
a, with scope~B and~C, and also binds~X, this andtarget, with scope~B.

A pointcut specifies the set of methods that are affected by this advice; formally
pointcuts are presented as elements of the boolean algebra whose atoms are execution
pointcuts and call pointcuts. Point cuts apply not only to the specified class, but to all
subclasses as well; negation is useful to control this.

In the aspect language, class declarations contain methods of the form:

class c<:d { ...protected smethod m(~u):r [ā; b̄] ...}

The method declaration no longer includes a command sequence, but rather two sets of
advice;ā is executed by thecaller (call advice),b̄ is executed by thecallee(execution
advice). Method bodies in class declarations are redundant [15].

Advised method calls are not required in source programs; rather, they arise natu-
rally during the dynamics. An advised method call “o:c.m[ā; b̄](~v);” indicates the
collections of call advice ¯a and execution advicēb yet to be performed. Due to the pres-
ence of call advice, we must know the static (declared) type of an object reference, in
addition to its dynamic (actual) type. Thus, each dynamically dispatched method call
must be annotated with a static typec.

The encoding of the class-based language into the aspect calculus provides some
preliminary insight into the operational semantics of the aspect calculus. The trans-
lation must account for the fact that methods in the aspect calculus do not have any
method bodies. Write “cbl c m” to identify a fresh name generated from class namec
and method namem. Given a method definition

class d<:c { ...protected smethod m(~x:~t):r {~C} ...}

A Typed Calculus of Aspect-oriented Programs 15

Table 7Aspect-Based Reduction
Include all rules from Table 2, except(RC-NEW), (RC-DYN-MSG) and(RC-STC-MSG).

D̄
 advice(c::m) = [ā; b̄]
(LA -TOP)

D̄
 advice(Object::m) = [/0; /0]

(LA -THIS)

M̄ 3 protected method m(): [ā; b̄]
D̄ 3 class c<: { M̄}
D̄
 advice(c::m) = [ā; b̄]

(LA -SUPER)

D̄
 advice(d::m) = [ā; b̄]
M̄ 63 protected method m(): [;]

D̄ 3 class c<:d { M̄}
D̄
 advice(c::m) = [ā; b̄]

D̄ ` H̄, thread p {S} . D̄′ ` H̄′, thread p {S′ }
(RA -NEW)

domainsD̄, Ē, H̄, Ḡ disjoint

D̄ ` H̄, thread p {new Ē Ḡ;~C}
. close(D̄, Ē) ` H̄, Ḡ, thread p {~C}

(RA -DYN-MSG)

H̄ 3 object o:d { }
D̄
 advice(c::m) = [ā;]

D̄
 advice(d::m) = [; b̄]

D̄ ` H̄, thread p { let X=o:c.m(~v);~C}
. D̄ ` H̄, thread p { let X=o:c.m[ā; b̄](~v);~C}

(RA -STC-MSG)

D̄
 advice(c::m) = [; b̄]

D̄ ` H̄, thread p { let X=o.c::m(~v);~C}
. D̄ ` H̄, thread p { let X=o:c.m[/0; b̄](~v);~C}

(RA -ADV -MSG1)

D̄ 3 advice b(~x): at {~B}
~B′ =~B[o:c.m[/0; b̄]/proceed]

D̄ ` H̄, thread p { let x:r =o:c.m[/0;b, b̄](~v);~C}
. D̄ ` H̄, thread p { let x:r =o{~B′[o/this,o/target,~v/~x]};~C}

(RA -ADV -MSG2)

D̄ 3 advice a(~x): at {~B}
~B′ =~B[o:c.m[ā; b̄]/proceed]

D̄ ` H̄, thread p { let x:r =o:c.m[a, ā; b̄](~v);~C}
. D̄ ` H̄, thread p { let x:r =p{~B′[p/this,o/target,~v/~x]};~C}

16 Radha Jagadeesan, Alan Jeffrey, and James Riely

Table 8Pointcut Semantics

D̄
 s::m∈ execadv(a)
(PC-ENAME)

D̄ 3 ρ advice a(): at φ { }
D̄
 s::m∈ execadv(φ)
D̄
 s::m∈ execadv(a)

D̄
 s::m∈ execadv(φ)
(PC-EXEC)

D̄ ` s<: t

D̄
 s::m∈ execadv(exec(t::m))

(PC-ENOT)

D̄
 L /∈ execadv(φ)
D̄
 L ∈ execadv(¬φ)

(PC-EAND)

D̄
 L ∈ execadv(φ)
D̄
 L ∈ execadv(ψ)
D̄
 L ∈ execadv(φ∧ψ)

(PC-EORL)

D̄
 L ∈ execadv(φ)
D̄
 L ∈ execadv(φ∨ψ)

(PC-EORR)

D̄
 L ∈ execadv(ψ)
D̄
 L ∈ execadv(φ∨ψ)

D̄
 s::m∈ calladv(a)
(PC-CNAME)

D̄ 3 ρ advice a(): at φ { }
D̄
 s::m∈ calladv(φ)
D̄
 s::m∈ calladv(a)

D̄
 s::m∈ calladv(φ)
(PC-CALL)

D̄ ` s<: t

D̄
 s::m∈ calladv(call(t::m))

(PC-CNOT)

D̄
 L /∈ calladv(φ)
D̄
 L ∈ calladv(¬φ)

(PC-CAND)

D̄
 L ∈ calladv(φ)
D̄
 L ∈ calladv(ψ)
D̄
 L ∈ calladv(φ∧ψ)

(PC-CORL)

D̄
 L ∈ calladv(φ)
D̄
 L ∈ calladv(φ∨ψ)

(PC-CORR)

D̄
 L ∈ calladv(ψ)
D̄
 L ∈ calladv(φ∨ψ)

create the advice:

class d<:c { ...protected smethod m(~x:~t):r [/0;cbl d m] ...}
replace advice cbl d m(~x:~t):r at exec(d::m) {~C}

In this encoding, we presume that calls to “super” have been encoded using statically
dispatched messages. In the example above, “super.m” is written “this.c::m”.

4.2 Dynamic Semantics

We write “D̄
 s::m∈ execadv(φ)” when pointcutφ applies to the execution of method
m in classs, and similarly we write “̄D
 s::m∈ calladv(φ) for call pointcuts. The
semantics of pointcuts is defined in Table 8. The definition relies on a notion of subtyp-
ing, given in the Table 3. These definitions ignore the advice sets declared by methods.
The cases(PC-EXEC) and(PC-CALL) handle the cases for subtyping. The other cases
describe the extension to the full boolean algebra.

The semantics of aspect programs is defined in Table 7. Rather than use the seman-
tics of pointcuts directly, the rules for method invocation(RA -DYN-MSG) and(RA -STC-
MSG), rely on the advice sets declared by methods. We do this to emulate realistic
advice lookup, which arguably should be based on the class hierarchy alone. Rules
(LA -TOP), (LA -THIS) and(LA -SUPER) do this.

A Typed Calculus of Aspect-oriented Programs 17

(RA -DYN-MSG) looks up the call and execution advice at different types, the call
advice at the static type and the execution advice at the true dynamic type. The rule
(RA -ADV -MSG2) describes the reduction of call advice.this is substituted by the con-
trolling object of the contextp, target is substituted by the calleeo, and the unrolled
body itself is executed under the control ofp. The rule(RA -ADV -MSG1) describes the
reduction of execution advice. Boththis andtarget are substituted by the calleeo, and
the unrolled body itself is executed under the control ofo.

Clearly, the advice that appears in a method declaration must be consistent with that
which is attached to a pointcut. We formalize this intuition ascoherenceand define a
functionclosewhich creates coherent declaration sets. In a coherent set of declarations
the syntactic form of each advised message contains all of the advice names that apply
to that method, given the dynamic context. To maintain coherence, the rule for inner
declarations(RA -NEW) usescloseto saturate the declaration set any dynamically loaded
advice.

DEFINITION 2 (COHERENCE). D̄ is coherentif
D̄ 3 class c<: { ...protected method m(): [ā; b̄] ...} implies:

a∈ ā iff D̄
 c::m∈ calladv(a) andb∈ b̄ iff D̄
 c::m∈ execadv(b)

We define the function close(D̄), which saturates class declarations with advice.

(C-FIX)

D̄ is coherent

close(D̄) = D̄

(C-CALL)

D̄
 c::m∈ calladv(a)
D̄ = Ē, class c<:d {M̄, protected method m(): [ā; b̄]}
D̄′ = Ē, class c<:d {M̄, protected method m(): [ā, a; b̄]}
close(D̄) = close(D̄′)

(C-EXEC)

D̄
 c::m∈ execadv(b)
D̄ = Ē, class c<:d {M̄, protected method m(): [ā; b̄]}
D̄′ = Ē, class c<:d {M̄, protected method m(): [ā; b̄, b]}
close(D̄) = close(D̄′)

LEMMA 1 (CLOSE). If
 (D̄ ` H̄) : Prog, thenclose(D̄) is coherent.

LEMMA 2 (REDUCTION PRESERVESCOHERENCE). If P is coherent and P .∗ P′

then P′ is coherent.

4.3 Static Semantics

The static semantics of the aspect based language is presented in Tables 9 and 10.

18 Radha Jagadeesan, Alan Jeffrey, and James Riely

Table 9Aspect-Based Typing (Names, Declarations, Commands)

D̄ ; Z̄
 E : Dec(TA -DEC-ADVICE)

D̄
 φ : Ptcut(~u):r for s in t
D̄ ; Z̄,~x:~u, this:s, target:t
~C : Stk ρ(~u):r for s

D̄ ; Z̄
 ρ advice a(~x:~u):r at φ {~C} : Dec

D̄ ; Z̄
 M : Mth in c(TA -METHOD)

∀a∈ ā. D̄
 c::m∈ calladv(a)
∀b∈ b̄. D̄
 c::m∈ execadv(b)
∃b∈ b̄. D̄ 3 replace advice b(): at { }
D̄ ; Z̄
 protected smethod m(~u):r [ā; b̄] : Mth in c

D̄ ; Z̄
 H : Heap
(TA -HEAP-THREAD)

D̄ ; Z̄
 o : c
D̄ ; Z̄
 S : Stk replace(): for c

D̄ ; Z̄
 thread o {S} : Heap

D̄ ; Z̄
 S : Stk ρ(~t):r for c
(TA -STK-DYN-MSG)

D̄ ; Z̄
 let x:t=o.d::m(~v);~C : Stk ρ(~t):r for c

D̄ ; Z̄
 let x:t=o:d.m(~v);~C : Stk ρ(~t):r for c

(TA -STK-ADV -MSG)

D̄ ` d′ <:d
D̄
 advice(d ::m) = [ā′ ;] ā⊆ ā′

D̄
 advice(d′::m) = [; b̄′] b̄⊆ b̄′

∃b∈ b̄. D̄ 3 replace advice b(): at { }
D̄ ; Z̄
 o : d′

D̄ ; Z̄
 let x:t=o.d::m(~v);~C : Stk ρ(~t):r for c

D̄ ; Z̄
 let x:t=o:d.m[ā; b̄](~v);C̄ : Stk ρ(~t):r for c

(TA -STK-PROCEED)

D̄ ; Z̄
~v : ~t
D̄ ` r <: t
D̄ ; Z̄, x:r
~C : Stk around(~t):r for c

D̄ ; Z̄
 let x:t=proceed(~v);C̄ : Stk around(~t):r for c

A Typed Calculus of Aspect-oriented Programs 19

Table 10Aspect-Based Typing (Pointcuts)
Use de Morgan duality to move negation to the atoms, i.e. call and exec pointcuts.

D̄
 φ : Ptcut(~u):r for s in t
(TA -PC-FALSE)

D̄
 t, s,~u, r : Class

D̄
 false : Ptcut(~u):r for s in t

(TA -PC-OR)

D̄
 φ : Ptcut(~u):r for s in t
D̄
 ψ : Ptcut(~u):r for s in t

D̄
 φ∨ψ : Ptcut(~u):r for s in t

(TA -PC-AND-1)

D̄
 φ : Ptcut(~u):r for s in t

D̄
 φ∧ψ : Ptcut(~u):r for s in t

(TA -PC-AND-2)

D̄
 ψ : Ptcut(~u):r for s in t

D̄
 φ∧ψ : Ptcut(~u):r for s in t

(TA -PC-CALL)

D̄
 m : Mth(~u):r for s′ in c
D̄ ` s′ <:s
D̄ ` c<: t

D̄
 call(c::m) : Ptcut(~u):r for s in t

(TA -PC-EXEC)

D̄
 m : Mth(~u):r for in c
D̄ ` c<:s
D̄ ` c<: t

D̄
 exec(c::m) : Ptcut(~u):r for s in t

We begin our description with the typing of pointcuts. We first use de Morgan dual-
ity to move negation to the atoms, i.e. call and exec pointcuts. These judgments are of
the form:

D̄
 φ : Ptcut(~u):r for s in t

to indicate that the return type of the methods in the pointcut are subtypes ofr, the caller
type is to be a subtype ofs and the method is in a class that is a subtype oft. These
constraints should be viewed as applying to the body of advice associated with the
pointcut. The rules are described in Table 10. The base cases are those corresponding
to the pointcut for false, given by(TA -PC-FALSE), a pointcut that is never activated,
and so imposes no restrictions whatsoever. The non-trivial base cases are those for the
call and execution pointcuts, given by(TA -PC-CALL) and(TA -PC-EXEC) respectively.
For a call pointcut, we require the types of the caller and callee are subtypes of the
corresponding types in the method. In contrast, an execution pointcut is executed under
the control of the callee object. So, in this case, the caller type information in the method
is ignored. For a disjunction of two pointcuts, the body of the advice has to be correct
for invocations from either disjunct. So, we have to enforce the restrictions from both
disjuncts. Symmetric reasoning applies for the conjunction of two pointcuts. Note that
there are no rules for negated atoms. A pointcut which involves negation is typechecked
when it occurs as a conjunct, since the rule for conjunction only requires one of the
branches to typecheck.

The typing of pointcuts is used in the typing of advice. In rule(TA -DEC-ADVICE)
of Table 9, the typing judgment for advice is described with the following key features:

– The return type of the advice body and the pointcut match.
– The type of the controlling object in the advice body, the type of thethis variable

and the type of the caller object match.

20 Radha Jagadeesan, Alan Jeffrey, and James Riely

– The type of thetarget variable and the type of the container of the method match.

We invite the reader to recall the substitutions forthis, target variables for call and
execution methods.

An advised method call is typable if its entire advice list is, and furthermore the ad-
vice list is guaranteed to terminate in a piece of advice that doesn’t invokeproceed.
This latter condition is captured by∃b ∈ b̄. D̄ 3 replace advice b(): at { } in
rule (TA -METHOD)of Table 9. The invariant maintained is that an advice can be of
form replace advice b(): at { } only if it does not have a call toproceed, e.g. see
(TA -STK-PROCEED) of Table 9. Similar intuitions underlie rule(TA -STK-ADV -MSG) of
Table 9, where the advice list is forced to terminate in a piece of execution advice that
does not have a call toproceed. The judgment̄D ; Z̄
 S : Stk ρ(~t):r for c includes the
rules from table 5, modified to includeρ(~t).

We outline proofs of progress and subject reduction in Appendix B.

THEOREM 3 (ABL PROGRESS).
If
 (D̄ ` H̄, thread p {S}) : Prog then eitherthread p {S} has terminated or:

(D̄ ` H̄, thread p {S}) . (D̄′ ` H̄′, thread p {S′ })

THEOREM 4 (ABL SUBJECTREDUCTION).
If
 P : Prog and P .∗ P′ then
 P : Prog.

5 Weaving

The weaving algorithm translates aspect-based programs into programs in the class-
based language. The algorithm is not novel, being closely modeled on that used by
AspectJ, and being essentially the one from our earlier work on the untyped calculus.

Clearly, programs where advice arrives dynamically without restrictions cannot be
translated into the class-based language. However, static weaving can be achieved under
the addition of the following premise to(TA -STK-DEC), which guarantees that new
advice does not affect existing classes (it can only affect classess andt which must be
defined inĒ).

if Ē 3 ρ advice a(~x:~u):r at φ {~C}
thenĒ
 φ : Ptcut(~u):r for s in t

Moreover, we make a requirement of advised method calls, that the advice listed must
be a suffix of the advice defined in the method (not just a subset). That is in(TA -STK-ADV -MSG)
we add the requirements:

ā′ = , ā b̄′ = , b̄

We will call programs which typecheck in this strengthened type systemstatically
weavable.

The definition of weaving is a restricted version of the algorithm discussed in our
earlier work on the untyped aspect calculus, which we showed to respect the dynamic
semantics: that is (up to some renaming of methods) we can complete the diagrams
given in the introduction.

A Typed Calculus of Aspect-oriented Programs 21

Fig. 1 Weaving Example

object p:Main { }
class Main {

protected Main method main(Unit):Unit [/0;ma]
}
replace advice ma(z:Unit):Unit at exec(Main::main) {

let x=o:c.m(unit); return unit;
}
around advice ca(z:Unit):Unit at call(c::m) {

let y=proceed(unit); return unit;
}
object o:c { }
class c {

protected Main method m(Unit):Unit [ca;cb]
}
replace advice cb(z:Unit):Unit at exec(c::m) { return unit;}

object p:Main { }
class Main {

protected Main method main(z:Unit):Unit {
skip; let x=this.call ca c m(o); return unit;

}
protected Object method exec ma(z:Unit):Unit {

skip; let x=this.call ca c m(o); return unit;
}
protected Object method call ca c m(z1:c,z2:Unit):Unit {

let y=z1.exec cb(); return unit;
}

}
object o:c { }
class c {

protected Main method m(z:Unit):Unit { return unit;}
protected Object method exec cb(z:Unit):Unit { return unit;}

}

For the indefatigable reader, we include the formal definition of weaving in ap-
pendix C. In this extended abstract, we discuss the basic ideas via an example, given
in Figure 1. Weaving causes the creation of new methods. Execution advice causes
the creation of new methods in the callee: thus, in the woven program, we have the
new methodexec ma in Main, andexec cb in classc. Call advice causes the creation
of new methods in the caller: in the example, such a method iscall ca c m in Main.
Note that this method has a parameter for the callee object. The effect of theproceed
in adviceca is reflected in the method call onexec cb in call ca c m. To ensure precise
correspondence of the reductions the code for methods is set to be that of the method
corresponding to the first piece of execution advice: thus, methodexec ma and method

22 Radha Jagadeesan, Alan Jeffrey, and James Riely

main in Main are identical, as are methodsexec cb and methodm in c. Finally, the extra
skip’s are meant for bookkeeping to match up the reductions.

In this paper, we focus instead on the fact that weaving preserves typability.

THEOREM 5 (WEAVING PRESERVESTYPABILTY).
For any statically weavable P, if
 P : Prog andweave(P) = P′ then` P′ : Prog.

6 Future work: The need for polymorphism.

The need for polymorphic types is motivated by an attempt at a translation of before
advice into around advice. The intent of before advice in AspectJ is that it executes just
before the method is called; so, one might be tempted to translate, as a first approx-
imation, “before(~x){C;}” as “around(~x){C; proceed(~x);}”. In a monomorphic
typing scheme, such as the one presented in this paper, one needs a copy of this trans-
lation for every possible result type ofC, and every possible type and length of the
argument list.

It makes intuitive sense that the translation of before into around advice above works
generically at all result types, since it is thesame translationat all possible result types.
This motivates the consideration of generic types [4, 13]. A related issue that needs to
be addressed in this context is the issue of covariant subtyping on return values of meth-
ods. Consider the declarations

class c {
protected Object method m():Object {

return ”Hello”;
}

}
class d<:c {

method m():Integer {
return new Integer(5);

}
}
replace advice a():Object at exec(c::m) {

return ”World”;
}

It is routine to turn this example into one which causes type safety to fail. In this
example, advice is acting like method update [1], and so should be typed using invariant
methods. AspectJ is based on Java 1.4 which uses invariant methods, and the AspectJ
and Generic Java compilers are not currently compatible.

The translation of before advice into around advice motivates consideration of fur-
ther kinds of polymorphism. For example, if the commandC doesn’t access the argu-
ments~x, the translation of before advice into around advice is also polymorphic in the
number and kinds of arguments. This is clearly in the spirit of row-polymorphism [23,
26].

A Typed Calculus of Aspect-oriented Programs 23

In future work, we intend to explore a type system with polymorphism. On the
one hand, such a type system will avoid the problems described above. On the other
hand, such a type system can also aid a programmer by permitting the description of
polymorphic pointcuts and advice. In terms of applications to language design, at the
time of writing, there is no published proposal on how AspectJ will handle generic types
and covariant method return types. However, the integration of aspects and generic
types remains an active area of investigation (e.g. see FAQ onhttp://www.eclipse.org/
aspectj/index.html).

7 Related work

We refer the reader to the October 2001 issue of CACM for a comprehensive survey and
references to the range of approaches and applications of AOP. Here, we restrict our-
selves to the several recent efforts to formalize and provide simple conceptual models
of some features of aspect-oriented languages.

There are several efforts focused largely on weaving and the understanding of point-
cuts. For example, The Aspect SandBox [10] provides a testbed to experiment with
weaving strategies. Wand, Kiczales, and Dutchyn [27], give a denotational semantics
for a mini-language that embodies the key features of dynamic join points, pointcut
designators, and advice. A suitable incorporation of these ideas into our work might
enable our calculus to scale up into a model of a real-life aspect-oriented programming
language.

The research closest to the spirit of our paper is the work of Krishnamurthi and
Tucker [24] and Walker, Zdancewic and Ligatti [25]. Both these papers investigate the
addition of aspects to a functional language paradigm. While Krishnamurthi and Tucker
study both call and execution pointcuts, Walker, Zdancewic and Ligatti study only exe-
cution pointcuts. Walker, Zdancewic and Ligatti also study a type system on the target
of the translation of the aspect oriented programs. In both cases, advice and join-points
are first class entities that can be created and manipulated at runtime. In contrast to the
ad-hoc handling of advice order in our paper, these papers elegantly model aspect scop-
ing and order using the powerful mechanisms of the underlying functional paradigm.
On the other hand, these papers do not study the issues of typing at the source level of
class-based aspect programs in the presence of subtyping.

Summary

In this paper, we have developed a typed calculus of aspect programs. This calculus is
expressive — it includes inner classes, concurrency and dynamic arrival of new advice.
To our knowledge, this is the first source-level typing system for class-based aspect
oriented programs.

24 Radha Jagadeesan, Alan Jeffrey, and James Riely

References

1. Martin Abadi and Luca Cardelli.A Theory of Objects. Springer Verlag, 1996.
2. M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa. Abstracting object-

interactions using composition-filters. InECOOP Workshop on Object-Based Distributed
Programming, 1993.

3. L. Bergmans.Composing Concurrent Objects: Applying Composition Filters for the De-
velopment and Reuse of Concurrent Object-Oriented Programs. Ph.D. thesis, University of
Twente, 1994.

4. Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the future
safe for the past: Adding genericity to the Java programming language. InACM Symposium
on Object Oriented Programming: Systems, Languages, and Applications (OOPSLA), pages
183–200, 1998.

5. Kim B. Bruce. Foundations of Object-Oriented Programming Languages: Types and Se-
mantics. MIT Press, 2002.

6. Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings.Infor-
mation and Computation, 155:108–133, 1999.

7. Kim B. Bruce, Adrian Fiech, and Leaf Petersen. Subtyping is not a good “match” for object-
oriented languages. InEuropean Conference on Object-Oriented Programming (ECOOP),
pages 104–127, 1997.

8. Kim B. Bruce, Adrian Fiech, Angela Schuett, and Robert van Gent. PolyTOIL: A type-safe
polymorphic object-oriented language.ACM Transactions on Programming Languages and
Systems, 25(2), 2003.

9. Sophia Drossopoulou, Susan Eisenbach, and Sarfraz Khurshid. Is the java type system
sound?Theory and Practice of Object Systems, 5(11):3–24, 1999.

10. Christopher Dutchyn, Gregor Kiczales, and Hidehiko Masuhara. The aspect sand box.http:
//www.cs.ubc.ca/labs/spl/projects/asb.html.

11. Kathleen Fisher, John Reppy, and Jon G. Riecke. A calculus for compiling and linking
classes. InEuropean Symposium on Programming (ESOP), pages 135–149, 2000.

12. Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins. InACM
Symposium on Principles of Programming Languages (POPL), pages 171–183, 1998.

13. Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. InACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 1999.

14. Atsushi Igarashi and Benjamin C. Pierce. On inner classes.Information and Computation,
177(1):56–89, 2002.

15. Radha Jagadeesan, Alan Jeffrey, and James Riely. An untyped calculus of aspect oriented
programs. InEuropean Conference on Object-Oriented Programming (ECOOP), 2003. To
appear.

16. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An overview of AspectJ. InEuropean Conference on Object-Oriented Program-
ming (ECOOP), pages 327–355, 2001.

17. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. InEuropean Confer-
ence on Object-Oriented Programming (ECOOP), pages 220–242, 1997.

18. G. Leavens. Report on the foal 2002 workshop.http://www.cis.upenn.edu/∼bcpierce/
types/archives/current/msg01029.html%.

19. Gary T. Leavens and Ron Cytron, editors.FOAL 2002 Proceedings, 2002. Iowa State
Univeristy Technical report 02-06, available fromhttp://www.cs.iastate.edu/∼leavens/
FOAL/index-2002.html.

A Typed Calculus of Aspect-oriented Programs 25

20. K. J. Lieberherr.Adaptive Object-Oriented Software: The Demeter Method with Propagation
Patterns. PWS Publishing Company, 1996.

21. H. Ossher and P. Tarr. Multi-dimensional separation of concerns and the hyperspace ap-
proach. InSymposium on Software Architectures and Component Technology, pages 293–
323, 2001.

22. Benjamin C. Pierce.Types and Programming Languages. MIT Press, 2002.
23. Didier Ŕemy. Records and variants as a natural extension of ML. InACM Symposium on

Principles Of Programming Languages (POPL), 1989.
24. David Tucker and Shriram Krishnamurthi. Pointcuts and advice in higher-order languages.

In International Conference on Aspect Oriented Software Development (AOSD), 2003.
25. David Walker, Steve Zdancewic, and Jay Ligatti. A theory of aspects. InACM International

Conference on Functional Programming (ICFP), 2003. To appear.
26. Mitchell Wand. Type inference for objects with instance variables and inheritance. In Carl

Gunter and John C. Mitchell, editors,Theoretical Aspects of Object-Oriented Programming,
pages 97–120. MIT Press, 1994.

27. Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A semantics for advice and
dynamic join points in aspect-oriented programming. InWorkshop on Foundations of Object
Oriented Languages (FOOL), pages 67–88, 2002.

26 Radha Jagadeesan, Alan Jeffrey, and James Riely

A CBL Proofs

We now prove type preservation and progress results for the type system. The proofs
follow the standard outline of such proofs in the literature: namely, weakening, strength-
ening, subsumption, substitutivity, and method lookup. A sketch of the formal presen-
tation follows. LetJ range over each of the judgments of the form̄D ; Z̄ ` J or D̄ ` J
in Tables 3,4 and 5.

New type assumptions preserve well-typedness.

LEMMA 3 (CBL WEAKENING).
If D̄⊆ D̄′ andZ̄⊆ Z̄′ andD̄′, Z̄′ have disjoint domains, then̄D ; Z̄ ` J
impliesD̄′ ; Z̄′ ` J .

The type assumption of a variablex:t can be strengthened tox:t′, whenD̄ ` t′ <: t. The
proof is by an induction on the derivation of̄D ; Z̄, x:t ` J .

LEMMA 4 (CBL STRENGTHENING).
If D̄ ` t′ <: t andD̄ ; Z̄, x:t ` J thenD̄ ; Z̄, x:t′ ` J .

In a command, the result type can be weakened and the type of controlling object can be
strengthened. The proof is by an induction on the derivation ofD̄ ; Z̄ ` S : Stk r ′ for c

LEMMA 5 (CBL STACK SUBSUMPTION).
If D̄ ` c′ <:c andD̄ ` r ′ <: r and D̄ ; Z̄ ` S : Stk r ′ for c thenD̄ ; Z̄ ` S : Stk r for c′.

Variables can be substituted by well-typed values of the same type.

LEMMA 6 (CBL SUBSTITUTIVITY).
If D̄ ; Z̄ ` v : t andD̄ ; Z̄, x:t ` J thenD̄[v/x] ; Z̄ ` J [v/x].

In a well-typed method declaration, the body of the method typechecks with expected
types under natural assumptions on the types of thethis variable and the parameters.

LEMMA 7 (CBL METHOD LOOKUP).
If D̄ `m : Mth(~u):r for s in c andD̄ ; Z̄ ` D̄ : Dec thenD̄ `mbody(c::m) = (~x)~C
where~x and~u have the same length and̄D ; Z̄, this:c,~x:~u`~C : Stk r for c.

The proof of progress is standard given the above lemmas.

THEOREM (1; CBL PROGRESS).
If ` (D̄ ` H̄, thread p {S}) : Prog then eitherthread p {S} has terminated or:

(D̄ ` H̄, thread p {S}) - (D̄′ ` H̄′, thread p {S′ })

Finally, we consider type preservation.

THEOREM (2; CBL SUBJECTREDUCTION).
If ` P : Prog and P -∗ P′ then` P : Prog.

A Typed Calculus of Aspect-oriented Programs 27

Proof. We proceed by induction on the proof ofP -∗ P′, where the interesting case is
(RC-STEP):

(D̄ ` H̄, thread p {S}) = P - (D̄′ ` H̄′, thread p {S′ }) = P′

By Lemma 3, it suffices to show:

D̄′ ; Z̄′ ` D̄′ : Dec D̄′ ; Z̄′ ` H̄′ : Heap

D̄′ ; Z̄′ ` S′ : Stk r for c D̄⊆ D̄′ Z̄⊆ Z̄′

domainsD̄′, Z̄′ disjoint objects(H̄′) = Z̄′

In this extended abstract, we only consider the case of(RC-DYN-MSG), corresponding
to the novel feature in the type system. We have:

S= let x:t=o.m(~v);~C H̄ 3 object o:d′ { }
S′ = let x:t=o{~B[o/this,~v/~x]};~C D̄ `mbody(d′::m) = (~x)~B

D̄ = D̄′ H̄ = H̄′

SinceD̄ ; Z̄ ` S : Stk r for c and objects(H̄) = Z̄ we have:

D̄ ; Z̄, x:t `~C : Stk r for c D̄ ; Z̄ ` o : d

D̄ `m : Mth(~u):t′ for s in d D̄ ; Z̄ `~v : ~u

D̄ ` c<:s D̄ ` d′ <:d D̄ ` t′ <: t

so by Lemma 7 and Lemma 5 we have:

D̄ ; Z̄,~x:~u, this:d `~B : Stk t for d

so by Lemma 6 we have:̄D ; Z̄ `~B[o/this,~v/~x] : Stk t for d and so we use(RC-LET) to get:
D̄ ; Z̄ ` S′ : Stk r for c as required.

B ABL Proofs

The proofs for the aspect based language closely follow those for the class-based lan-
guage: namely weakening, strengthening, subsumption and substitutivity. Instead of a
treatment of method lookup, we have a treatment of advice lookup. The new features
are the handling of pointcut typing, substitutivity ofproceed, and the close() operation.

We begin with a formal statement of properties whose proofs are quite similar to
the analogous properties of the CBL.

LEMMA 8 (ABL WEAKENING).
If D̄⊆ D̄′ andZ̄⊆ Z̄′ andD̄′, Z̄′ have disjoint domains, then̄D ; Z̄
 J
impliesD̄′ ; Z̄′
 J .

LEMMA 9 (ABL STRENGTHENING).
If D̄ ` t′ <: t andD̄ ; Z̄, x:t
 J thenD̄ ; Z̄, x:t′
 J .

28 Radha Jagadeesan, Alan Jeffrey, and James Riely

LEMMA 10 (ABL STACK SUBSUMPTION). If D̄ ; Z̄
 S : Stk ρ(~u):r ′ for c
andD̄ ` c′ <:c and D̄ ` r ′ <: r thenD̄ ; Z̄
 S : Stk ρ(~u):r for c′.

LEMMA 11 (ABL SUBSTITUTIVITY).
If D̄ ; Z̄
 v : t andD̄ ; Z̄, x:t
 J thenD̄[v/x] ; Z̄
 J [v/x].

An induction on the derivation of̄D
 φ : Ptcut(~u):r for s in t shows that methods and
their associated pointcuts agree on types.

LEMMA 12 (ABL POINTCUT TYPING). If D̄
 m : Mth(~u′):r ′ for s′ in t′

andD̄
 φ : Ptcut(~u):r for s in t then:

1. D̄
 t′::m∈ calladv(φ) implies~u′ =~u and r′ = r and D̄ ` s′ <:s andD̄ ` t′ <: t.
2. D̄
 t′::m∈ execadv(φ) implies~u′ =~u and r′ = r and D̄ ` t′ <:s andD̄ ` t′ <: t.

An induction on the proof of̄D
 advice(c::m) = [ā; b̄], together with uses of Lem-
mas 9, 10 and 12 enables us to prove the advice analogue of the method lookup lemma 7.

LEMMA 13 (ABL ADVICE LOOKUP).
If D̄
 m : Mth(~u):r for s in c andD̄ ; Z̄
 D̄ : Dec thenD̄
 advice(c::m) = [ā; b̄]
where:

1. For any a∈ ā, we havēD 3 ρ advice a(~x:~u):r at φ {~C}
whereD̄ ; Z̄,~x:~u, this:s, target:c
~C : Stk ρ(~u):r for s.

2. For any b∈ b̄, we havēD 3 ρ advice b(~x:~u):r at φ {~C}
whereD̄ ; Z̄,~x:~u, this:c, target:c
~C : Stk ρ(~u):r for c.

Inductions on the definition of close(Ē), and on the derivation of̄D ; Z̄
 J show that
the close() operation preserves well-typedness.

LEMMA 14 (ABL CLOSURETYPING).

1. If D̄ ; Z̄
 Ē : Dec thenD̄ ; Z̄
 close(Ē) : Dec.
2. If D̄ ; Z̄
 J thenclose(D̄) ; Z̄
 J .

In the setting of the aspect calculus, we also have to show that the substitutions of the
proceed variable in the dynamic semantics preserve typing. The proof is by an induction
on the derivation of̄D ; Z̄
~B : Stk ρ(~u):r for c, making use of Lemma 8.

LEMMA 15 (ABL PROCEEDSUBSTITUTIVITY). If D̄ ; Z̄
 o : d′ andD̄ ` c<:s
andD̄ ` d′ <:d andD̄
 m : Mth(~u):r for s in d andD̄ ; Z̄
~B : Stk ρ(~u):r for c
then:

1. D̄ ; Z̄
~B[o.m/proceed] : Stk replace():r for c.
2. If D̄
 advice(d ::m) = [ā′ ;] andā⊆ ā′ andD̄
 advice(d′::m) = [; b̄′]

andb̄⊆ b̄′ and∃b∈ b̄. D̄ 3 replace advice b(): at { }
thenD̄ ; Z̄
~B[o:d.m[ā; b̄]/proceed] : Stk replace():r for c.

As in the CBL, the proof of progress is by an induction on the derivation of:

D̄ ; Z̄
 S : Stk replace():r for c

A Typed Calculus of Aspect-oriented Programs 29

THEOREM (3; ABL PROGRESS).
If
 (D̄ ` H̄, thread p {S}) : Prog then eitherthread p {S} has terminated or:

(D̄ ` H̄, thread p {S}) . (D̄′ ` H̄′, thread p {S′ })

As in the CBL, the proof of type preservation is by induction on the proof ofP .∗ P′.

THEOREM (4; ABL SUBJECTREDUCTION).
If
 P : Prog and P .∗ P′ then
 P : Prog.

C Weaving

We give the definition of weaving for the typed language, starting with the rule for
programs, then declarations, heap elements and commands. The last four rules are used
for generating new method bodies.

(W-PROG)

close(D̄)
 wdec(close(D̄)) = D̄′

close(D̄)
 wheap(H̄) = H̄′

weave(D̄ ` H̄) = (D̄′ ` H̄′)

(W-ADVICE)

D̄
 wdec(...advice ...) = /0

(W-CLASS)

D̄
 wmth(c; M̄) = M̄′

D̄
 wdec(class c<:d { F̄ M̄ })
= class c<:d { F̄ M̄′ }

(W-METHOD)

D̄
 genExecMth(c::m; b̄) = M̄
M̄ 3 protected Object method exec b̄(~x:~u):r {~C}
D̄
 wmth(c; protected smethod m(~u):r [ā; b̄])

= M̄, protected smethod m(~x:~u):r {~C}

(W-OBJECT)

D̄
 wheap(object o:c { V̄})
= object o:c { V̄}

(W-THREAD)

D̄
 wstack(p{S}) = (/0 ; S′)
D̄
 wheap(thread p {S})

= thread p {S′ }

(W-DEC)

close(D̄, Ē)
 wdec(close(Ē)) = Ē′

close(D̄, Ē)
 wheap(H̄) = H̄′

close(D̄, Ē)
 wstack(p{~C}) = (M̄ ; ~C′)

D̄
 wstack(p{new Ē H̄;~C})
= (M̄ ; new Ē′ H̄′;~C′)

(W-LET)

D̄
 wstack(q{S}) = (/0 ; S′)
D̄
 wstack(p{~C}) = (M̄ ; ~C′)

D̄
 wstack(p{ let X=q{S};~C})
= (M̄ ; let X=q{S′ };~C′)

30 Radha Jagadeesan, Alan Jeffrey, and James Riely

(W-DYN-MSG1)

D̄
 advice(c::m) = [/0;]

D̄
 wstack(p{~C}) = (M̄ ; ~C′)

D̄
 wstack(p{ let X=o:c.m(~v);~C})
= (M̄ ; skip;let X=o.m(~v);~C′)

(W-ADV -MSG1)

D̄
 wstack(p{~C}) = (M̄ ; ~C′)

D̄
 wstack(p{ let X=o:c.m[/0; b̄](~v);~C})
= (M̄ ; let X=o.exec b̄(~v);~C′)

(W-ADV -MSG2)

D̄
 genCallMth(c::m; ā) = M̄
D̄
 wstack(p{~C}) = (M̄′ ; ~C′)

D̄
 wstack(p{ let X=o:c.m[ā;](~v);~C})
= (M̄, M̄′ ; let X=p.call ā c m(o,~v);~C′)

ā 6= /0

(W-DYN-MSG2)

D̄
 advice(c::m) = [ā;]
D̄
 genCallMth(c::m; ā) = M̄
D̄
 wstack(p{~C}) = (M̄′ ; ~C′)

D̄
 wstack(p{ let X=o:c.m(~v);~C})
= (M̄, M̄′ ; skip;let X=p.call ā c m(o,~v);~C′)

ā 6= /0

(W-STC-MSG)

D̄
 wstack(p{~C}) = (M̄ ; ~C′)

D̄
 wstack(p{ let X=o.c::m(~v);~C})
= (M̄ ; skip;let X=o.c::m(~v);~C′)

(W-OTHER)

no other command rule applies
D̄
 wstack(p{~C}) = (M̄ ; ~C′)

D̄
 wstack(p{B~C}) = (M̄ ; B~C′)

(W-NONE)

D̄
 wstack(p{}) = (/0 ; /0)

(GEN-EXEC1)

D̄ 3 advice b(~X):r at {~C}
@b′ ∈ b̄′. D̄ 3 replace advice b′(): at { }
D̄
 wstack(this{~C[this/target]}) = (M̄ ; ~C′)

D̄
 genExecMth(c::m; b̄) = M̄, protected Object method exec b̄(~X):r {~C′ }
b̄ = b, b̄′

b≺ b̄′

(GEN-EXEC2)

D̄ 3 advice b(~X):r at {~C}
∃b′ ∈ b̄′. D̄ 3 replace advice b′(): at { }
D̄
 wstack(this{~C[this/target, this:c.m[/0; b̄′]/proceed]}) = (M̄ ; ~C′)
D̄
 genExecMth(c::m; b̄′) = M̄′

D̄
 genExecMth(c::m; b̄) = M̄, M̄′, protected Object method exec b̄(~X):r {~C′ }
b̄ = b, b̄′

b≺ b̄′

A Typed Calculus of Aspect-oriented Programs 31

(GEN-CALL 1)

D̄ 3 advice a(~X):r at {~C}
D̄
 wstack(this{~C[y/target,y.m/proceed]}) = (M̄′ ; ~C′)

D̄
 genCallMth(c::m; a) = M̄′, protected Object method call a c m(y:c,~X):r {~C′ }
(GEN-CALL 2)

D̄ 3 advice a(~X):r at {~C}
D̄
 advice(c::m) = [; b̄]

D̄
 wstack(this{~C[y/target, this:c.m[ā′ ; b̄]/proceed]}) = (M̄′ ; ~C′)

D̄
 genCallMth(c::m; ā) = M̄′, protected Object method call ā c m(y:c,~X):r {~C′ }

ā = a, ā′

a≺ ā′

ā′ 6= /0

THEOREM (5; WEAVING PRESERVESTYPABILTY).
For any statically weavable P, if
 P : Prog andweave(P) = P′ then` P′ : Prog.

Proof. We divide method names intogenerated namesof the formcall ā c mandexec b̄,
anduser names. We assume without loss of generality, thatP only contains user names.

LetP=(D̄` H̄) andP′ =(D̄′ ` H̄′), and (without loss of generality, from Lemma 14)
assumeD is coherent. Then we have that:

D̄ ; Z̄
 D̄ : Dec D̄ ; Z̄
 H̄ : Heap objects(H̄) = Z̄

D̄
 wdec(D̄) = D̄′ D̄
 wheap(H̄) = H̄′ objects(H̄′) = Z̄

and we show the following properties:

1. D̄
 c : Class if and only if D̄′ ` c : Class.
Direct.

2. D̄ ` t<:s if and only if D̄′ ` t<:s.
Follows from property 1.

3. D̄
 f : Fld t for s in c if and only if D̄′ ` f : Fld t for s in c.
Follows from property 2.

4. For any user methodm, D̄
 m : Mth(~u):r for s in c
if and only if D̄′ `m : Mth(~u):r for s in c.
Follows from property 2.

5. For any generated methodm, if either:
(a) D̄
 wstack(p{~B}) = (M̄ ; ~C), or
(b) D̄
 genCallMth(c::m; ā) = M̄, or
(c) D̄
 genExecMth(c::m; b̄) = M̄
and either:
(a) D̄
 wstack(p′{~B′ }) = (M̄′ ; ~C′), or
(b) D̄
 genCallMth(c′::m′ ; ā′) = M̄′, or
(c) D̄
 genExecMth(c′::m′ ; b̄′) = M̄′

andM0 ∈ M̄ andM0 = protected method m(): [;] andM′
0 ∈ M̄′

andM′
0 = protected method m(): [;] thenM0 = M′

0.
An induction on the weaving algorithm, in the case of(W-GEN-EXEC2) using the
fact that(W-ADV -MSG1) removesc andm from o:c.m[/0; b̄].

32 Radha Jagadeesan, Alan Jeffrey, and James Riely

6. For any generated methodm, if D̄
 wmth(c; M) = M̄ andM0 ∈ M̄
andM0 = protected method m(): [;] andD̄
 wmth(c′ ; M′) = M̄′

andM′
0 ∈ M̄′ andM′

0 = protected method m(): [;] thenM0 = M′
0.

Follows from property 5.
7. If D̄ ; Z̄
 v : t thenD̄′ ; Z̄ ` v : t.

Follows from property 2.
8. If D̄
 genCallMth(c::m; ā) = M̄ andD̄
 advice(c::m) = [ā′ ;] andā′ = , ā

andD̄
 m : Mth(~u):r for s in c
then~M 3 protected Object method call ā c m(y:c,~x:~u):r {~C}.
Direct, making use of Lemma 13.

9. If D̄
 genExecMth(c::m; b̄′) = M̄ andD̄
 advice(c::m) = [; b̄′] andb̄′ = , b̄
andD̄
 m : Mth(~u):r for s in c and∃b∈ b̄. D̄ 3 replace advice b(): at { }
then~M 3 protected Object method exec b̄(~x:~u):r {~C}.
Direct, making use of Lemma 13.

10. If D̄
 advice(c::m) = [; b̄′] andb̄′ = , b̄ andD̄
 m : Mth(~u):r for s in c
and∃b∈ b̄. D̄ 3 replace advice b(): at { }
thenD̄′ ` exec b̄ : Mth(~u):r for s in c.
Follows from property 9.

11. If D̄ ; Z̄
 S : Stk replace():r for d andD̄ ; Z̄
 p : d andD̄′3 class d<: { M̄ }
andD̄
 wstack(p{S}) = (M̄ ; S′) thenD̄ ; Z̄ ` S : Stk r for d.
An induction onS, making use of properties 8, 10, 18 and 19.

12. If D̄
 genCallMth(c::m; ā) = M̄ andD̄′3 class c<: { M̄ }
andD̄
 m : Mth(~u):r for s in c and∀a∈ ā. D̄
 c::m∈ calladv(a)
thenD̄′ ; Z̄ ` M̄ : Mth in c.
Uses Lemma 15, together with properties 11 and 14.

13. If D̄
 genExecMth(c::m; b̄) = M̄ andD̄′3 class c<: { M̄ }
andD̄
 m : Mth(~u):r for s in c and∀b∈ b̄. D̄
 c::m∈ execadv(b)
and∃b∈ b̄. D̄ 3 replace advice b(): at { } thenD̄′ ; Z̄ ` M̄ : Mth in c.
Uses Lemma 15, together with properties 11 and 14.

14. If D̄ ; Z̄
 S : Stk replace():r for d andD̄ ; Z̄
 p : d andD̄′3 class d<: { M̄ }
andD̄
 wstack(p{S}) = (M̄ ; S′) thenD̄ ; Z̄ ` M̄ : Mth in .
An induction onS, making use of property 12.

15. If D̄
 F : Fld thenD̄′ ` F : Fld.
Follows from property 1.

16. If D̄
 wmth(c; M) = M̄ andD̄′3 class c<: { M̄ } andD̄ ; Z̄
 M : Mth in c
thenD̄′ ; Z̄ ` M̄ : Mth in c.
Follows from property 13 and Lemma 5.

17. If D̄ ` c is sane then̄D′ ` c is sane.
Follows from properties 2, 3, 4 and 6.

18. D̄′ ; Z̄ ` D̄′ : Dec.
Follows from properties 15, 16 and 17.

19. D̄′ ; Z̄ ` H̄′ : Heap.
Follows for object declarations from properties 1, 7 and 3; follows for thread
declarations from property 11.

The result follows from properties 18 and 19.

