Secure Resource Access for Open Systems

JAMES RIELY AND MATTHEW HENNESSY

ABSTRACT. In open distributed systems of mobile agents, where code from remote sites may run locally, protection

of sensitive data and system resources is of paramount importance. We present a security-based typing system that
provides such protection, using a mix of static and runtime typing; mobile agents are allowed access to local resources
in accordance with security clearance. We formalize security violations as runtime errors and prove that, using our
semantics, security violations cannot occur at “good” sitessites under control of a particular administrative domain.

1 Introduction

In distributed systems, security is of the utmost importance, for example ensuring the integrity of a
local address space or limiting access to certain data to appropriate principals. This is particularly
so inopennetworks, where program code may move between administrative domains and remote
locations may, intentionally or otherwise, harbor malicious code.

Type safety is a necessary pre-condition to secure computatiofi, 16][typing schemes have
been proposed for mobile agents which guarantee no misuse of local resources during execution;
in the latter paper the guarantee holds true even in the presence of hostile agents. Several other
schemes to ensure that foreign agents are type-safe have been suggested. They are all variations on
the following principle:

Before an incoming agemtis run at a site it is checked by the site to ensure that it will
not violate implicit or explicit access privileges.

For example in Java3[/] applets from non-localRLs are checked by a bytecode verifier before
loading; the bytecode verification can be formalized using type ruiésP]. Another instance of

the principle may be found in the proof-carrying-code?Gf[23]; an incoming agent must provide

a proof that the code it is proposing to run locally satisfies appropriate constraints set down by the
host.

Type safety alone, however, is not sufficient. There are often certain resources that an incoming
agent should not use at all, even in a type-safe way. For example a machine may hold confidential
information, such as financial data, which incoming agents should not be able to access. More
generally incoming agents should have access to local resources in accordance with their allocated
privileges. For example read access to certain areas of memory may be relatively unconstrained
while write access is allowed only to certain designated agents; more sensitive operations, such as
killing active threads, may be reserved for system agents which originate locally. To describe such
constraints, access privileges are granted in accordance withssmsty policy— with security
levels chosen to represent the access rights of the various principals in the system. It is then up to
particular administrative domains to ensure that this security policy is never breached.

In this paper, we develop a strategy for ensuring secure resource access in open systems. In Java,
access control is enforced at runtime, as each access is requested. Capability-passing approaches,
as we studied in15], do not require such dynamic checks, but neither do they extend smoothly
to open networks. Here we show that load-time checking is sufficient to establish secure access
control in open networks. As in2f], code initialized on a site is checked statically; code that
migrates across the network is checked at load-time. However, here, in addition to type safety as
in [28], our results also ensure secure access control. They use a novel type language and typing
system based on security levels; in particular locations are assigned security levels which indicate
the degree to which they can be trusted.

jriely@csc.ncsu.edu. DePaulcTl, 243 S. Wabash, Chicaga, 60604,usA. Research funded bysFgrant EIA-9805604.
matthewh@cogs.susx.ac.uk. COGS Univ. of Sussex, Brighton BN1 9QH/)K. Research funded bgPsSRcproject
GR/K60701 anccONFER I1.

Secure Resource Access for Open Systems 2

In the rest of this introduction we describe (1) the formal framework used for our results, (2) se-
curity policies and their application to closed networks, (3) the extensions required to handle open
networks. We discuss related work 8ection5. In the interest of clarity, we use a somewhat
simplified notation throughout the rest of this section.

1.1 The Formal Framework: Dt
In D1ta distributed network is described by terms such as

CIPIIKIQT | £[R]

representing three agenBandR running at a site namedandQ at sitek. The agents, or threads,
P, Q, andR, are terms from an augmented polyadicalculus. In addition to the usual channel
based communication of thecalculus,

k[al (v) P | k[a2(X) Q] — K[P] | K[Q{"x}]
Drtincludes the movement operatgo”, with the reduction rule
K[go!(.P] — ([P] (%)

representing the migration of the agdhfrom the sitek to the site/. Drtlocations correspond

roughly to address spaces; thus the move operator takes an agent from one address space to an-
other. Each location provides certain resources for roving agents and access to these resources is
maintained using a type discipline which associates types to every resource at a location. The type
of a location defines the discipline it expects agents to follow when accessing the address space.
The type will also constrain access to particular local resources via a level of security clearance
associated with agents. Specifically we introduce a new language of security types, allowing us to
develop a new type discipline which can express and enforce discretional access policies in open
networks containing hostile agents. These security types are obtained by adding security levels to
the type language of.f]

1.2 Security Topologies and Security Policies

A security topologys a complete lattices of security levels. As an example consider the following
topology, wheras — p indicates that is a lower security-level thap, which might be associated
with the management of a bank account:

sys

/l\
man
/l\
tell

ruth kate
N A
any

Here,sysis the highest security level, given only to the system softwaenrepresents the security
level of bank managerell the level of bank tellersuth andkatethe level of two particular clients;
andanythe lowest level, available to anyone. For expository purposes we have deliberately chosen
a very simple topology, with a modest goal: the protection of resources at a single location, a bank
account.

Given such a security topology, a security policyassigns a security level to each location
and capabilityy. For example suppose thatcntis the location which represents the bank account
in question, with methods for depositing and withdrawing money and for closing the account; the
first two take an integer parameter, while the third, , takes none. atammight be declared with
the type

accnt: locsys{ depositwany(int), rsys(int) withdrawwyyn(int), rssydint) closewman(), rsys() }

Secure Resource Access for Open Systems 3

The location itselfaccnt has associated with it the security lesg§ indicating that any agent with
security level up to and includingys i.e. any agent, can have access to the site. However there are
further constraints on access to particular resourcesait For example only agents at security

level syscan read from the three resouraeposit withdraw and close intuitively only system
software can service requests to deposit to, withdraw from, or close the account. On the other hand
any agent can deposit into the accouuet,has access to the write capability on the resodegosit

while only agents with security clearance at leash can withdraw. Finally only agents at security

level man that of the bank manager, can close the account.

The security levet associated with the locations plays an important role. Only agents at level at
mosto are given access to the location, but more importantly we know that agents originating from
that location are also at level at mast Thus, for example, if we suppose that the two clignth
andkate have associated with them the locationth-pc, katepc respectively, then these should
have associated with them types of the form

ruth-pclocryin{...} katepclockatef...}

In a well behaved network this guarantees that all agents migrating trimpc have either security
level ruth or any, while those emanating frokate pc have security levetateor any.
Note that the security policy we have just outlined presents selective views of the |caation
to different principals, depending on their security clearance. For example from the point of view
of an agent with security clearanaay, or indeedkate it has the type

accnt: loc{depositw(int) }
For an agent at leveuth it looks like
accnt: loc{depositw(int), withdraww(int)}
while from the point of view of the account management software, at #x&it has the type
accnt: loc{depositr(int), withdrawr(int), closer()}

allowing it to read and process requests.
Of course many networks will not respect a given security policy. In our example, the agent

katepc[go accnt withdraw! (500)] 1)

violates the security policy since an agent frémitepc attempts to withdraw $500 frorruth’'s
account. Note that the violation is not that a low-level agent, emanatingKedepc gains access
to the high-level sitaccnt this is allowed, for example to give access to a low-level resource such
asdeposit The violation lies in the attempt to access to the higher-level resautiedraw, through
which, presumably, some money is transferreketepc.

Formally we define violation of a security polidyas the occurrence of a run-time error in a
networkN, giving rise to a family of predicates

N - errk

This states that in netwoi¥, some agent is in violation of the security policyfurther, the violation
occurs at locatiokk. The question then arises if we can design a typing system which guarantees
the absence of such run-time errors, the absence of security violations.

This question is answered positively $ection3. We design a language sécure types.e.
coherent collections of location and resource capabilities annotated with security levels, a subtyping
relation between these types, and a typing system foar Brom these we obtain the following
results:

Secure Resource Access for Open Systems 4

SUBJECTREDUCTION: Well-typing is preserved by reduction.
TYPE SAFETY: Well-typed networks are incapable of security violations.

Suppose that security polidy represents a valid typing environment, aNds well-typed with
respect to”. Then these results together prove that no agem tan ever violate the security
constraints imposed by. For example, our typing system reject3 fith respect to the security
policy just outlined above:

deposit: wany(int), rsys(int)
acent: locsysq withdraw : wyyn(int), rsys(int)
A= close: wman(), rsys() ()
ruth-pc : locyyth{...}
katepc : lockate{---}

An important and novel aspect of the typing system is that it ensures that incoming agents are
executed at an appropriate security level, as determined by the security level of the agent’s source
location. For example if a location has been assigned the least security level, which in general we
denote byl, then agents emanating from this site will be executed at leyeheaning intuitively
that they are completely untrusted.

1.3 Open Networks

The Subject Reduction and Type Safety theorems cited above ensure that our secure types are suffi-
cient to guarantee secure resource acceskgednetworks. In closed networks, all principals are
administered in concert and thus it is possible to type-check all the agents in the network before they
are executed. However in open networks, one cannot assume that all agents from remote sites are
well-typed. Nevertheless in these networks the security of well-behaved principals, samtnas
must be maintained even in the presence of malicious agents, suth dfié major contribution
of this paper is the observation that, by introducing security levels into the type language this can
be achieved; capability-based typing systems can also be applied to open networks.

In order to prevent the agent)(from violating the security guaranteesaaicnt we modify the
rule for agent movement) so that incoming agents are type-checked before they are allowed to
run locally:

((A) | K[gol.P] — £(A) | [P] ifalkp

Here ((A) is afilter for site ¢, andA I P is an instance of theuntime typingrelation. Filters
provide each “good” site with a safe approximation of the global security pblicyhis runtime
typing relation guarantees that:

If P comes from locatiork and A I%P, then it is safe to rurP at ¢, assigning it the
security level that assigns t.

In addition to the move rule, other reduction rules are also modified to reflect the fact that filters
may change over time as information about new resources in the network is obtained.

We establish Subject Reduction and Type Safety results for open networks, showing that this
form of runtime typechecking offers adequate protection from malicious agents. These results use
an extended set of types, callgartial security typegs their use only guarantees type-safe behavior
at a subset of sites, the “good” sites. Partial security types are obtained by introducing a new type
constructottbad, along with a typing rule that says:

If ' (¢) = Ibad then, for anyP, ¢[P] is well-typed with respect tb.
For example letA be as defined infj. If we take

1~ JIbad if £ =katepc
a) = {A(E) otherwise ®)

Secure Resource Access for Open Systems

Table 1 Syntax

XY = Patterns uv,w = Values
X Variable bvg Base Value
(X1, oy Xn) Tuple e Name

P.Q = Threads X Variable
ul(v) P Output (U, -, Un) Tuple
u?(X:T)P Input
*P Replication M,N ::= Networks
stop Termination 0 Empty
P|Q Composition M|N Composition
(veT)P Restriction (veeT)N Restriction
gogu.P Movement K[P]o Agent

then () is well-typed with respect td’ in the partial typing system.

This means that the partial typing system can be used, even in open networks, to ensure that
security violations can occur only bad sites (sites which are assigned the tiipel); the security
policy I' is respected at afjoodsites (sites which are not assigned the tifae).

2 The Language Dtwith Security Policies

The main syntactic categories of the language, defindadlie 1, are thread®, agentk[P]s, and
networksN. Agents are threads running at a particular location and with a particular security level.
Networks are collections of agents. The syntax is parameterized with respect to iBasetsf
base values, ranged over by, Name of names, ranged over laym; Var, of variables, ranged over
by x—z, and.S, of security levels, ranged over loy p. We require thats forms a complete lattice,
ordered by_, with maximal element’, minimal elementL, greatest-lower-bound operationand
least-upper-bound operation We defer the discussion of types, T, u@iction2.2.

Note that security levels are used to annotate agents, network-level restrictiogs,dpera-
tor, and base values. Although these annotations can be generated automatically (using standard
techniques), they simplify the presentation of the calculus and allow finer control of resource access
than is available automatically.

EXAMPLE 2.1. As an example of a network, consider the term:

([P | (vk:locr) (£[Q]+ | m[R] L)

This network contains three agent§P]+, ¢[Q]+ andk[R].. The first two agents are running
at location/ with high security, the third at locatiom, at low security. Moreove® andR share
knowledge of a private, high security locatida, SinceP is outside the scope & it cannot send
subagents to run there. This is possible for b@tandR but the type rules will guarantee that the
low-security agenR can only access low-security resourcek.at O

NOTATION. We routinely drop type annotations from terms when they are not of interest. We
also use standard abbreviations from thealculus,e.g. dropping final occurrences atop and
writing (v, .., Vn) asv. The variables in the pattedd are bound by the input construg®(X:T) P,

the scope i®. The namee is bound by the restriction® e:T)P and (v e:S)N, the scopes arg,
andN, respectively. The functions {R) and fv(P) return respectively the sets of free names and
free variables occurring iR. In the sequel we identify terms up to renaming of bound names and
variables. A term with no free variablesd®sed We write P{Yx]} to denote the capture-avoiding
substitution ofu for X in P. O

Secure Resource Access for Open Systems 6

Table 2 Standard Reduction

(STR-EXTR) M|(vpeT)N = (vieT)(M|N) if e¢ fn(M)
(STR-GARBAGE]) (vipeT)0 =0

(STR-GARBAGE) K[stop]s =0

(STR-COPY) k[*Plo =k[Plo | k[*Plo

(STR-SPLIT) K[P|Qls =Kk[P]s | KIQ]s

(STR-NEW) k[(veT)Ple = (vgeT) K[Plo

(RED-MOVE) k[gop ¢-Plo = ¢[P]p

(Reo-comm) K[al(v) Plo | K[a2(X)Qlp — k[Pl | KIQIYx}Tp

2.1 Standard Reduction

The standard semantics is defined using two relations over closed network terms: a structural rela-
tion (M = N) and a reduction relatio{ — M’). The main reduction relation we are interested in
is composed from these two:

(—) £ (=-— =)
This relation allows for any amount of structural reordering before and after each primary reduction
step. The axioms defining these relations, which may be applied in any network context, are given
in Table2.

The structural congruence is defined to be the least equivalence relation that is substitutive over
networks! satisfies the standard commutative monoid laws for composition and the axioms given
in Table2. These axioms provide means for the extension of the scope of a name, for garbage
collection of unused names and terminated threads, and for the division and replication of agents.
The reduction relatior— is defined to be the least relation that is substitutive over networks and
satisfies the reduction axioms @fble 2. The communication axionfRED-cOMM) is adapted
from that for the standard-calculus; note that in the distributed setting, communication can only
occur between colocated agents. The (®ED-MOVE), K[go, £. P]s — £[P],, states that an agent
running atk with security levelo can move to/, adopting the new security levpl This rule is
clearly very powerful, as it allows for arbitrary changes of security levels. This power will be tamed
by the typing relation, which will guarantee, among other things,ghato.

EXAMPLE 2.2. Consider a network with two agents, onehat high security site, and one 4ta
low level security site. The agent awishes to send a fresh integer chanadbcated ah, to the
other agent using the chanrellocated a¥. This networkN could be written:

[bAz,x) Q)L | h[(va:A) (P | go, ¢.b!(h,a))]+
— ([bAzx) Q] . | (vi aA)(h[P|go, ¢.bl(h,a)]r) (RED-NEW)
= ([b2Azx)Q]. | (v aA)(h[P]r | h[go, ¢.bi(h,a)]) (STR-SPLIT)
— ([b2z,x)Q] 1 | (v @A) (h[P]r | ¢[b!(h,a)]) (RED-MOVE)
— (v aA[QYMzx}] L | h[P]+ (STR-EEXTR), (RED-COMM), (STR-GARBAGE)

Beside each reduction, we have written the axioms used to infer it, omitting mention of the monoid
laws. An example of a proce€¥that uses the received val(eXx) is ‘go, z.x!(1)’, which after the
communication becomegd | h.a! (1)’

Apriori it may seem that this computation involves a security leak from the high levéi &itidne
low level sitef. However even in well-typed networks we will allow low level sites to acquire certain
information about high-level sites; information appropriate to their security status. For example, in
order to typeN, our typing system will required thatbe a low-security resource. d

1A relation > is substitutive over networki§ N = N’ implies N|M = N'|M, M|N = M |N’, and (vJeT)N -
(vgeT)N’. The monoid laws areM | 0 =M, M|N =N|M, andM | (N |O) = (M|N) | O.

Secure Resource Access for Open Systems 7

Table 3 Pre-Types and Pre-Capabilities: Syntax and Subtyping

K,L::=locg{Vi, --, Yn}
A,B:=res{yi, ., ¥n}

ST = Pre-Types Sub-Types
Bs Base types Bs < By if cCp
K Location types locg{d} <: locp{y} if pC o andVyj: 38: & <y,
A Resource types res{d} <: res{y} if vy 38 &<y
(Ty,.,Tn) Tuple types S<«T if Vi:S< T
K[A4, .., Ay] Dependent types K[A] <: L[B] if K<: LandA<: B
d,y ii= Pre-Capabilities Sub-Capabilities
aA Use resource aA < aB if A< B
xT Use value xS < xT if S<T
newg Create resource newg < newp if cCp
wg(T) Write resource wg(S) <t wp(T) if cCpandT<: S
ro(T) Read resource ro(S) < rp(T) if cCpandS<: T

2.2 Security Policies

The formal definition of security policies is given in termspyé-types T, whose syntax is given

in Table3. For convenience, we introduce separate metavariables for resource and location pre-
types, respectively A and K. Their basic structure is taken frofhtp which the reader is referred

for a detailed description and rationale. Here the capabilities are annotated with security levels;
intuitively an agent running at security lewvelcan only access capabilities whose security level is

at mosto. Briefly:

Resources may haver@ad capability at a given type T and security lewelrs(T).

Resources may also havevate capability at a given type and security levek(T).

Locations may have the capability to use a typed resoarfe or variable x:T.

Locations may also have the capability to create a new resource (or location) at security level
g, newg.

A location pre-type is then a finite collection of location capabilities; a resource pre-type is a fi-
nite collection of resource capabilities. Finally, value pre-types may also include (1) base types
at security leveb, Bs; (2) tuples,(T,, .., Tp); and (3) dependent docatedtuples, KA, .., Ap).
Dependent tuples are used to transmit information about non-local resources; their role is explained
in detail in [L5].

NOTATION. Inexamples, we sometimes drop the security-level subscrifir example, rendering
int; asint. We also sometimes, as in the Introduction, use the following shorthand for resource

types:
ro(T) £ res{rg(T)} wo (T) = res{wg(T)} o (T) £ res{wg(T),re(T)} O

Pre-types are used in the typing system, which relies cruciallysubtyping relatior(<:), also
given inTable3. For capabilitiesp <: y means, approximately, thgtis a more restrictive thad,
and for types S: T means T contains fewer capabilities than S. This captures the intuition that it is
always safe to restrict the set of capabilities, but not to expand it. In this definition we call attention
to the contravariance of both the write capability on resources and the security levels on locations.

DEFINITION 2.3. A security policyl™ is a partial map from names to closed location pre-tydes.

There are numerous ways in which a given security policy can be violated in a given network.
In Table4 we collect these security violations as runtime errors. Formally we define a family of
predicateV - errk, which may be read:M violates security policy at locationk”. Two of the

Secure Resource Access for Open Systems 8

Table 4 Runtime Error with respect to a security policy

(ERR-W) k[a! (v) P]¢ —— errk if T(K) ¢ locg{a:res{wg(T)}} (allT)

or I'(K) <: locg{arres{wg(T)}} andl M {xv:T} undef
(ERR-R) k[a2(X:T)P)¢ —— errk if T(K) ¢ locg{ares{rg(T)}} or T ¢ Type
(ERR-GO) klgop £-Pls —— errk ifpZo
(ERR-NEW) (veeT)N L errk if (k) ¢ locg{newg}
(ERR-STRy) (Ve eTIN D erref¥e} if N LHETE errp (e ¢t ()
(ERR-STRp) M|N I errk if M5 errk or N -5 errk

most important clauses in the definition are the following. (19 i$ not dominated by the current
security levelb (i.e. p IZ o), then the agerk[go, /. P violates every security policy. (2) The agent
k[a!(v) P]s violates any security policy that

¢ does not allowo-threadsite. threads with security levet) to run atk, i.e. T (k) ¢ locg,
¢ does not allowo-threads write access &pi.e.for all T, I' (k) ¢ loc{a:wg(T)}, or
¢ does not allow transmission efona, i.e. T (k) <: loc{a:w(T)}, butv cannot be assigned T.

Note that the last case is the crucial one; it prohibits high-security data from being transmitted on
low-security resources.

3 Typing
In this section we design a typing system which guarantees no violations of “coherent” security
policies, essentially those which defitype environments

3.1 Types

We first define the collection of well-formed types and to do so it is convenient to divide them into
kinds X, depending upon their security level:

K = Type Values accessible at security lewe(and above)
| SerType Values accessible at security leeeltransferable between sites
| RCapy Resource capabilities accessible at security level
| LCaps Location capabilities accessible at security lavel

Intuitively if T € Type;, then values of type T are accessible at security lexal higher; they may
not be available at lower security levels.

Serializabletypes(SerTypé are introduced for values whose interpretation is location indepen-
dent and thus may be transmitted from site to site. For example the dependentkvaju€[A] is
serializable, as it can be interpreted anywhere in a system, whgg@asgK,A) is not; herek and
a are independent and therefore the actual location of the resaigsasknown to the receiver.

The formation rules for types, taking the forneTX where T is a pre-type, are givenTable5.

The formation rules rely on three other relations:

e A well-formedness relation for capabilities, also givermable5.
e A subkindingrelation between kindsk <: K. Intuitively subkinding is generated by the
following diagram, where C p and X <: K is represented a& — K-

Typg
RCap, N LCap,
T Types SerTypg T
RCap NS LCapy
SerType

e A compatibilityrelation between capabilitieg;< 8, given inTable®6.

Secure Resource Access for Open Systems 9

Table 5 Types and Capabilities

(TYPE-BASE) By € SerTypg

(TYPE-LOC) locg{y} € SerTypg if Vi:y € LCapy andVi,j: y <V,
(TYPE-RES) res{y} € Type if Vi:yieRCap andVi,j:yi =y
(TYPE-TUP) (Ty,..,Tn) € K if Vi:TieX B
(TYPE-DEP) KIAq,..,An] € SerTypg if K € SerTypg and A € Typey
(TYPE-SUB) Tex if TeX and X < K’
(CAP-SUB) yex’ if ye X and X < K’
(CAP-NEW) newg € LCaps

(CAP-RES) uT € LCapy if T eType

(caP-w) wg(T) € RCapy if T eType

(CAP-R) ro(T) € RCap if T eType

Table 6 Compatibility and Environment Generation

(COMPAT-RES) (COMPAT-NEW) (COMPAT-RW) (COMPAT-RR) (cCoOMPAT-ww) (COMPAT-SYM)

u#£v Y # newy S« T o=y

uUS=VvT newgxy wg(S) =<rp(T) ra(S) < rp(T) W (S) =< wp(T) y=2d
(GENENV-LOCAL)

(GENENV-LOC) (GENENV-UNIV) (GENENV-RES) T € Type

K € SerType T € SerType A € Type T ¢ SerType

{wkK} ={kK} {wxT}={xT} {waA}={wloc {aA}} {wxT}={wiloc {xT}}

(GENENV-DEP)

(GENENV-BASE) (GENENV-TUP) {Wu:Kv} = Au
oCp Vi {wviiTi} =4 {WV:A} =4y
{WbVO'lgp} =g {W(V17 ..7Vn):(T1, ..,Tn)} :All_l"'l_lAn {W(U,V)'K[,&]} :AUHAV

The formation rules for types are quite subtle. Consider, for example, the two point lattice of
security levelslL = T. This defines two kinds of types: “insecure” typBge, and “secure” types
Typer O Type, . Insecure agents are required to use typel/pe , whereas secure agents are also
allowed to use the additional typesTgper. We have:

(@) int; € Typer intT ¢ Type.
(b) w. () € RCapr wr () ¢ RCap.
(c) loc, € Typer loct ¢ Type.

(d) new, € LCapr newt ¢ LCap,

Insecure integers are accessible to secure agents, but secure integers are not accessible to insecure
agents). Similar constraints apply to resourcé} &nd locationsd). Finally, secure agents can be
trusted to create new insecure locations and to relate information about themsdrureagents
shouldnot be trusted to creatgecuresites or relate information about thenl.(

Finally note that there is no relation between subtyping and accessibility at a given security
level. For example we have:

Type. Z res{wr(),r ()} < r () € Type,

Type. > ri() < rr() ¢ Type.
Type, # locT <t loc, € Type
Type > int, < intt ¢ Type.

ProPOSITION3.1. Type is a preorder with respect to, with a partial meet operatiof.
Proof. The proof requires that security levels have both a meet and a join. For example:

locg{newy } M locp{newy } = locg p{newyry } O

Secure Resource Access for Open Systems

10

Table 7 Standard Typing
(VAL-UNIV) (VAL-LOCAL) (VAL -BASE) (VAL-DEP)
T e Type T e Typg pCpCo (VAL-TUP) re uK
TMu<T r(w) < loc{u:T} bv € valg(B) M uiT (Vi) r VA
reuT ruT I h bvpiBy reuT 1S (u,V):K[A]
(TRD-NEW)
I lvc\,Wiloc{newg} (TRD-W) (TRD-R)
(TRD-GO) (TRD-STR) e¢fn(l), T#lbad T Kyures{wg(T)} T kyures{rg(T)}
I Ry ulocy rwP T e Typg r VT fv (X) disjoint fv(I")
rep reQ r{weT} WP reP F{wXT} Q
M hvgopu.P T Rystop, P|Q,«P T K (veT)P I kyul(v)P Iy u?2(X:T)Q
(NET-NEW)
(k) <: loc{newg}
(NET-RUN) (NET-STR) e¢fn(l), T+#Ibad
Mk)<:locg T+FM T € Typg
regp NN rm{xeT} =N
I =K[P]o r-0,M|N It (vpeT)N
3.2 Typing

We say that a security polidy is atype environmenif every pre-type in the range is a serializable
type,i.e. Vu € dom(l"): I'(u) € SerType These are used in the standard typing system, given in
Table7. The main judgments take the form

N=N

whererl is a type environment ard is a network’. In this extended abstract we only briefly explain
some of the typing rules. At the network level we can concllidek[P], if the agentP can be
typed to run at locatiok at security leveb. Thus for agents, typing is with respect to both a location
and a security level, giving rise to type judgments of the form

reP

Inferring judgments of this form is slightly more complicated. For exanipkg go,u. P depends

on being able to establish thRtcan run at locatiom at the appropriate security levél, £ P, and

thatu does indeed represent a location where activity at this security level is allowed. The latter
requires a third form of judgments, for values:

rvT

Intuitively, if I Ky v: T then valuev is accessible to-threads at locatiow (at type T). The particular
value judgment required when typigg, u.Pis T hw U:locp.

The rules for input and name restriction require notation for extensions to type environments.
For example to conclude f, u?(X:T) Q we need to establish th@is well-typed in an environment
constructed by extendinig with appropriate associations between the variables amd the type
T. To accomplish this, ifable6 we define a notation for constructing simple environments, which
uses the meet operator on types. The reader is referred to page 4£] wijere the notation is
discussed in detafl The main results of this section can now be stated:

THEOREM 3.2 (SUBJECTREDUCTION). If ' =N and N— N’ thenl" - N'. O

2Indeed throughoutable7 only type environments (and not the more general security policies) may be used.
3In general this constructs security policies rather than type environments but one can show that all applications of
this construction iMables 7 and8 actually generate type environments.

Secure Resource Access for Open Systems 11

THEOREM 3.3 (TYPE SAFETY). If I - N then for every location k, Nis errk. O

Crucial to the proof offheorem3.2, are the following standard properties, adapted to our setting:

If S € Typey, T € Typg, I iy v:S and &: T, thenl™ 1§ v:T (SPECIALIZATION)
If I 2 PandA<: I thenA K P (WEAKENING)
If T v:T andl M {uX:T} K, P thenl™ vy P{Yx} (SUBSTITUTION)

EXAMPLE 3.4. Let us now reexamine netwoilK, given in Example2.2. Supposd is a type
environment which associates withand/ the typedocy{new } andloc, {birw (loc; {A})} re-
spectively, where A is the proposed type of the resource to be generated at the high-sectuity site
Then the ability to type the netwoi¥ underl” depends essentially on the security level used in the
type A. The reader may check that, for example, with A equahto(int) thenN can be typed; an
essential feature in the typing system is the contravariance of location types with respect to security
levels. On the other hand if A isv+(int) thenl” = N cannot be derived. O

4 Security in Open Systems

In this section we briefly outline how security types can be applied in the runtime typechecking of
mobile agents and thereby offer protection from malicious behavior.

In order to formalize the notion that some sites are untyped, we introduce a new location type,
Ibad, into the type language. We call the resulting typaesial security types. Intuitively, a site with
typelbad is untyped, and may therefore harbor agents which do not respect the security policies in
place. Location pre-types are now defined:

K,L ::=locg{a:A,X:B} | Ibad

Given a security topology, we must chose which security classifications are outside our control. We
do this using the predicate ours. This is subject to the constraint:

o C pand our$o) implies oursp)
We also extend the definition of typeBaple5) to include:
Ibad € SerType
The subtype relation is extended to partial pre-types by adding the following subtyping rule:
Ibad <: locg{T:A} if not ourgo)

This allows untyped locations to access the least secure resources on at a site, but no others. If we
consider the two-point lattice of security levels, the subtyping relation is generated by:

loc, {ttA}
loc. e N
N or more generally: locr{t:A} loc, {t:A,v:B}
locr Ibad AN
locT{t:A,v:B} Ibad

The reader familiar with48] will note that the subtyping relation presented here is very similar to
that of “networks with trust” in our prior work. Here we have elaborated on the notion of “trusted
type”, allowing varying degrees of trust, represented by the non-minimal security levels. If the filter
for k records? as a location with security level properly greater tharthen/ must be well-typed,

and thereforé can “trust”/.

Secure Resource Access for Open Systems 12

4.1 Runtime Typechecking

To accomplish runtime typechecking, it is necessary to add type information to running networks.
Following [2€] we do this by adding <er k{A)) for each locatiorkin a network. The filter includes
a type environmen\ which givesk’s current view of the resources in the network. Suppose that in
a networkN, locationk knows that there is resource nareedf type A at locatior¢. This intuition
is captured by requiring th& have a subterrk(A)) such that(¢) <: loc{a:A}.
Formally, we extend the syntax of network&blel) to include filters, as follows:

N = .. | k(A)

We say that a terrk{(A)) is afilter for k and we assume that in well-formed networks every location
has associated with it exactly one filter.

In Table8 we modify the reduction semantics to take advantage of the presence of filters. The
purpose of filters is to check that incoming agents are well-typed and thus the main change to the
semantics is replace the migration rgieeD-MOVE) with:

(D) | K[gol.P] — £(A) | [P] if A(K) <: loc, and(ourgp) or A I P)

HereA I P is aruntime typing relationwhich intuitively says thaP is well-formed to move to
location/ at security levep, if originating fromk.

The rules for runtime typing with respect to the resulting partial types are also given in
Table 8. These extend the static typing rules ®fction3, but there are innovations. The first
rule, (VAL gr-SLF1) is quite subtle; its soundness depends on the definition of the subtyping relation
over partial types. Essentially it allows an incoming agent to refer to its source lo¢adind to
associate the minimum security level to it, regardless of whether the filter envirodnoemtains
any information abouk. The rule(VAL gr-SLF2) allows an incoming agent to refer to resources
at its source, as long as these are presented with minimal security. ThegTRIBs-BAD) and
(TRDRr-RET) allow agents to have arbitrary behavior, in some cases, when moving to other sites.

4.2 The protection of good sites

Here we give a very brief account of the argument which states that this scheme of runtime type-
checking offers security protection to good sites. First the notion of “good site” is formalized in
terms of a static typing relation which uses partial security types:N. This relation is defined
by extending the standard typing systéable7 with the rules inTable8 to handle filters antbad.
Note that while the static typing system interprets these rules with respect to an omniscient author-
ity (), the runtime typing system interprets these rules with respect to the knowledge contained
in a filter (A, wherel” <: A). Whereas untypability with respect foindicates that a network is
malformed, untypability with respect to a filtArmay simply indicate that the filter has insufficient
information to determine whether an agent is malicious or not.

Intuitively if ' = N andTl"(¢) # Ibad then/ is a good site. It is this intuitive interpretation of
static typing which makes the following theorems interesting. They may be read as saying good
sites are protected against malicious behavior.

THEOREMA4.1. In the partial typing system, If = N and N— N’ thenl - N'. O
THEOREM4.2. In the partial typing system, If - N andr (k) # Ibad then N—% errk. O

5 Related Work

The language D, a distributed version of the-calculus P], was introduced in19] and simplified

and improved in [5]. The secure type system presented here may be viewed as an extension to
two previous type systems we have explored. The first] i fallows the selective distribution of
access rights to resources in a closed netwiogknetworks in which all agents are assumed to be
well-behaved. (This type system uses an extension of the types frgnrdlated type systems, for

Secure Resource Access for Open Systems 13

Table 8 Semantics of Open Networks
Reduction axioms:

(REDE-MOVE) K[gol.P]s | £{A)
— L[P]o | £(A) if A(K) <: loc, and(ours(p) or A I P)

(REDE-cOMM) K[al (V) P]g | k[a?(X:T) Qs | k{A)
— K[Plo [KIQ{7x}o | k(AM {kv:T})

Structural axioms: all rules bysTR-NEW) from Table2
(STRE-NEWR) k[(va:A)P]s | k{A)

= (vfaA) (k[Pls | k(an{kaAl})) ifa¢fn(a)
(STRe-NEWL) K[(ve:L)P]g | k{A)
= (ROL)(KIPlo | kAn{eL}) [eq{eLy)) if ¢ ¢ fn(a)u{k}
Static typing: all rules fronTable7 (NETE-BAD)
(NETE-FILTG) (k) = Ibad
(NETE-FILTg) M<:A (TRDE-BAD) e¢fn(l)
(k) = Ibad (k) = A(K) I (w) = Ibad rr{¢ibad} N
I+ k{A) I Fk{A) regpP I+ (vQ Z:L)N
Runtime typing: all rules fronTable7, ‘ IgK replacing ‘ry
(VALR-SLF1)
K € SerType (VAL R-SLF2) (TRDR-BAD) (TRDR-RET)
lbad <: K A € Type A(u) = Ibad
N A 1% aA A gk go, u. P A ik gop k. P

somewhat different languages, may be foundiire] 31].) The second is the partial typing system

from [2€], for use in open systems containing possibly malicious agents; it ensures well-typed
behavior agoodsites. Here we have addressed the issue of selective distribution of access rights
in similar systems; distributed networks which harbor malicious agents. Our solution involves the
use of security levels, associated with both locations and resources. We design a capability based
typing system in which specific capabilities have associated with them a minimum security level.
Our formal results imply that

¢ well-behaved sites can indeed selectively distribute local access rights to principals through-
out the network, and

o this distribution will be respected without compromising local resources, even in the presence
of malicious agents.

Several studies have addressed the issue of static typing for languages with remote resources
[25, 5, 30, 17], but none of these address secure resources or open networks. Proof carrying code and
related techniquess|, 22, 18, 21] address the problem of runtime typechecking in open networks,
but do not consider either secure resources or references to remote resources.

Type systems have been used to study secure transmission of data, using cryptographic tech-
niques P, 1, 7]; while the goals of this work are related to ours, there appears to be little technical
overlap. Recently, it has also been shown that secure dataflow anélysis] can be expressed
using typing rules6, 36, 33, 19, 14].

Finally, we note that several calculi, in addition tatDhave been proposed for the study of
distributed computingl2, 3, 4, 30, 32, 35, 24]. While there is an active interest in typing systems
for such languageslB, 6, 9], we are aware of no other work on capability-based or secure typing
systems applicable to open systems.

Secure Resource Access for Open Systems 14

References

(1]
(2]
(3]
(4]

(5]

(6]
[7]
(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

M. Abadi. Secrecy by typing in security protocols.Rroceedings of TACS9Volume 1218 of ecture

Notes in Computer Sciengeages 611-637. Springer-Verlag, 1997.

M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calcuhfermation

and ComputationTo appear. Available as Compaq SRC Research Report 149 (1998).

Roberto Amadio. An asynchronous model of locality, failure, and process mobiliO@RDINA-

TION '97, volume 1282 ot ecture Notes in Computer Scien&pringer-Verlag, 1997.

L. Cardelli and A. D. Gordon. Mobile ambients. In Maurice Nivat, editerpc. FOSSACS'98,
International Conference on Foundations of Software Science and Computation Structlvese

1378 ofLecture Notes in Computer Scienpages 140-155. Springer-Verlag, 1998.

Luca Cardelli. A language with distributed scofgomputing System8(1):27-59, January 1995. A
preliminary version appeared in Proceedings of the 22nd ACM Symposium on Principles of Program-
ming.

Luca Cardelli and Andrew Gordon. Types for mobile ambientsCémference Record of the ACM
Symposium on Principles of Programming Languagas Antonio, January 1999. ACM Press.

Mads Dam. Proving trust in systems of second-order processétavaii International Conference

on Systems Sciend&EE Computer Society Press, 1998.

R. De Nicola, G.-L. Ferrari, and R. Pugliese. Coordinating mobile agents via blackboards and access
rights. INCOORDINATION '97volume 1282 of ecture Notes in Computer Scienpages 220-237.
Springer-Verlag, 1997.

R. DeNicola, G. Ferrari, and R. Pugliese. Types as specifications of access policies. In J. Vitek and
C. Jensen, editor§ecure Internet Programming: Security Issues for Distributed and Mobile Objects
Lecture Notes in Computer Science. Springer-Verlag, 1999.

D. Denning. A lattice model of secure information floddommunications of the ACM9(5):236—242,

1976.

D. Denning. Certification of programs for secure information flo@ommunications of the ACM
20:504-513, 1977.

C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Remy. A calculus of mobile agents. In
U. Montanari and V. Sassone, editoONCUR: Proceedings of the International Conference on
Concurrency Theoryolume 1119 ol ecture Notes in Computer Scienpages 406—421, Pisa, Au-
gust 1996. Springer-Verlag.

Cédric Fournet, Cosimo Laneve, Luc Maranget, and DidiemR Implicit typinga la ML for the
join-calculus. INCONCUR: Proceedings of the International Conference on Concurrency Theory
Lecture Notes in Computer Science, Warsaw, August 1997. Springer-Verlag.

Nevin Heintz and Jon G. Riecke. The SLam calculus: Programming with secrecy and integrity. In
Conference Record of the ACM Symposium on Principles of Programming Lang&sge®iego,
January 1998. ACM Press.

Matthew Hennessy and James Riely. Resource access control in systems of mobile agents. Com-
puter Science Technical Report 2/98, University of Sussex, 1998. Available Hram: //www .
cogs.susx.ac.uk/. Extended abstract iBrd International Workshop on High-Level Concurrent
Languages (HLCL'98)volume 16(3) ofElectronic Notes in Theoretical Computer Scielfcetp:
//www.elsevier.nl/locate/entcs), Nice, September 1998. Elsevier.

Matthew Hennessy and James Riely. Type-safe execution of mobile agents in anonymous net-
works. In J. Vitek and C. Jensen, editoBecure Internet Programming: Security Issues for Dis-
tributed and Mobile ObjectsLecture Notes in Computer Science. Springer-Verlag, 1999. Also
available as Computer Science Technical Report 3/98, University of Sussex, 1998. Available from
http://www.cogs.susx.ac.uk/.

Frederick Coleville KnabelLanguage Support for Mobile AgentBhD thesis, Carnegie-Mellon Uni-
versity, 1995.

Dexter Kozen. Efficient code certification. Technical Report 98-1661, Cornell University, Department
of Computer Science, 1998. Available framtp: //wuw.cs.cornell.edu/kozen/secure.

Xavier leroy and Francois Rouaix. Security properties of typed appletSoiference Record of the
ACM Symposium on Principles of Programming Langua§es Diego, January 1998. ACM Press.
Robin Milner. The polyadiagtcalculus: a tutorial. Technical Report ECS-LFCS-91-180, Laboratory
for Foundations of Computer Science, Department of Computer Science, University of Edinburgh,
UK, October 1991. Also inLogic and Algebra of Specificatiped. F. L. Bauer, W. Brauer and H.
Schwichtenberg, Springer-Verlag, 1993.

http://www.cogs.susx.ac.uk/
http://www.cogs.susx.ac.uk/
http://www.elsevier.nl/locate/entcs
http://www.elsevier.nl/locate/entcs
http://www.cogs.susx.ac.uk/
http://www.cs.cornell.edu/kozen/secure

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Secure Resource Access for Open Systems 15

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed assembly language.
In Conference Record of the ACM Symposium on Principles of Programming Langpages 85-97,

San Diego, January 1998. ACM Press.

George Necula. Proof-carrying code. @onference Record of the ACM Symposium on Principles of
Programming Language#\CM Press, January 1996.

George C. Necula and Peter Lee. Safe, untrusted agents using proof-carrying chlidilénAgent
Security, number 1419 in Lecture Notes in Computer Science. Springer-Verlag, 1998.

R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a kernel language for agents interaction and mobility.
IEEE Transactions on Software Engineeri24(5):315-330, 1998.

Atsuhi Ohori and Kazuhiko Kato. Semantics for communication primitives in a polymorphic language.
In Conference Record of the ACM Symposium on Principles of Programming LangGhgekeston,
January 1993. ACM Press.

J. Palsberg and P. @rbaek. Trust in thealculus. InStatic Analysis Symposiymolume 983 of
Lecture Notes in Computer Scienpages 314—-329. Springer-Verlag, 1995.

Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile proceskghematical
Structures in Computer Scien@45):409-454, 1996. Extended abstract in LICS '93.

James Riely and Matthew Hennessy. Trust and partial typing in open systems of mobile agents.
Computer Science Technical Report 4/98, University of Sussex, 1998. Availablexfrom //www .
cogs.susx.ac.uk/. Extended Abstract i€onference Record of the ACM Symposium on Principles
of Programming LanguageSan Antonio, January 1999. ACM Press.

James Riely and Matthew Hennessy. A typed language for distributed mobile proce3mstdirence
Record of the ACM Symposium on Principles of Programming Langu&gesDiego, January 1998.
ACM Press.

Tatsurou Sekiguchi and Akinori Yonezawa. A calculus with code mobilitFMOODS '97 Canter-

bury, July 1997. Chapman and Hall.

Peter Sewell. Global/local subtyping and capability inference for a distribweaiculus. InPro-
ceedings of the International Colloquium on Automata, Languages and Progranwoiogne 1433

of Lecture Notes in Computer Scien&pringer-Verlag, July 1998.

Peter Sewell, Pawel Wojciechowski, and Benjamin Pierce. Location-independent communication for
mobile agents: a two-level architecture. Workshop on Internet Programming Languages (W|PL)
Chicago, 1998. Available fromttp://www.cl.cam.ac.uk/users/pes20/.

Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-threaded imperative language.
In Conference Record of the ACM Symposium on Principles of Programming Lang&ageBiego,
January 1998. ACM Press.

R. Stata and M. Abadi. A type system for java bytecode subroutine€oirierence Record of the
ACM Symposium on Principles of Programming Langua§es Diego, January 1998. ACM Press.

J. Vitek and G. Castagna. A calculus of secure mobile computationsWoitkshop on Inter-

net Programming Languages (WIRIGhicago, 1998. Available fromttp://cuiwww.unige.ch/
~jvitek/.

D. Wolpano, G. Smith, and C. Irvine. A sound type system for secure flow analyisisrnal of
Computer Security4(3):1-21, 1996.

Frank Yellin. Low-level security in java. IlVWW4 Conferen¢cd995. Available fromhttp://www.
javasoft.com/sfaq/verifier.html.

http://www.cogs.susx.ac.uk/
http://www.cogs.susx.ac.uk/
http://www.cl.cam.ac.uk/users/pes20/
http://cuiwww.unige.ch/~jvitek/
http://cuiwww.unige.ch/~jvitek/
http://www.javasoft.com/sfaq/verifier.html
http://www.javasoft.com/sfaq/verifier.html

	Introduction
	The Formal Framework: D
	Security Topologies and Security Policies
	Open Networks

	The Language D with Security Policies
	Standard Reduction
	Security Policies

	Typing
	Types
	Typing

	Security in Open Systems
	Runtime Typechecking
	The protection of good sites

	Related Work

