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ABSTRACT. In open distributed systems of mobile agents, where code from remote sites may run locally, protection
of sensitive data and system resources is of paramount importance. We present a security-based typing system that
provides such protection, using a mix of static and runtime typing; mobile agents are allowed access to local resources
in accordance with security clearance. We formalize security violations as runtime errors and prove that, using our
semantics, security violations cannot occur at “good” sites,i.e.sites under control of a particular administrative domain.

1 Introduction

In distributed systems, security is of the utmost importance, for example ensuring the integrity of a
local address space or limiting access to certain data to appropriate principals. This is particularly
so inopennetworks, where program code may move between administrative domains and remote
locations may, intentionally or otherwise, harbor malicious code.

Type safety is a necessary pre-condition to secure computation. In [9, 16] typing schemes have
been proposed for mobile agents which guarantee no misuse of local resources during execution;
in the latter paper the guarantee holds true even in the presence of hostile agents. Several other
schemes to ensure that foreign agents are type-safe have been suggested. They are all variations on
the following principle:

Before an incoming agentP is run at a site it is checked by the site to ensure that it will
not violate implicit or explicit access privileges.

For example in Java [37] applets from non-localURLs are checked by a bytecode verifier before
loading; the bytecode verification can be formalized using type rules, [34, 19]. Another instance of
the principle may be found in the proof-carrying-code of[22, 23]; an incoming agent must provide
a proof that the code it is proposing to run locally satisfies appropriate constraints set down by the
host.

Type safety alone, however, is not sufficient. There are often certain resources that an incoming
agent should not use at all, even in a type-safe way. For example a machine may hold confidential
information, such as financial data, which incoming agents should not be able to access. More
generally incoming agents should have access to local resources in accordance with their allocated
privileges. For example read access to certain areas of memory may be relatively unconstrained
while write access is allowed only to certain designated agents; more sensitive operations, such as
killing active threads, may be reserved for system agents which originate locally. To describe such
constraints, access privileges are granted in accordance with somesecurity policy— with security
levels chosen to represent the access rights of the various principals in the system. It is then up to
particular administrative domains to ensure that this security policy is never breached.

In this paper, we develop a strategy for ensuring secure resource access in open systems. In Java,
access control is enforced at runtime, as each access is requested. Capability-passing approaches,
as we studied in [15], do not require such dynamic checks, but neither do they extend smoothly
to open networks. Here we show that load-time checking is sufficient to establish secure access
control in open networks. As in [28], code initialized on a site is checked statically; code that
migrates across the network is checked at load-time. However, here, in addition to type safety as
in [28], our results also ensure secure access control. They use a novel type language and typing
system based on security levels; in particular locations are assigned security levels which indicate
the degree to which they can be trusted.
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In the rest of this introduction we describe (1) the formal framework used for our results, (2) se-
curity policies and their application to closed networks, (3) the extensions required to handle open
networks. We discuss related work inSection5. In the interest of clarity, we use a somewhat
simplified notation throughout the rest of this section.

1.1 The Formal Framework: Dπ
In Dπ a distributed network is described by terms such as

`JPK |kJQK | `JRK

representing three agents,P andR running at a site named̀andQ at sitek. The agents, or threads,
P, Q, andR, are terms from an augmented polyadicπ-calculus. In addition to the usual channel
based communication of theπ-calculus,

kJa!〈v〉PK | kJa?(X)QK−→ kJPK | kJQ{|v/X|}K

Dπ includes the movement operator “go”, with the reduction rule

kJgo`.PK−→ `JPK (∗)

representing the migration of the agentP from the sitek to the site`. Dπ locations correspond
roughly to address spaces; thus the move operator takes an agent from one address space to an-
other. Each location provides certain resources for roving agents and access to these resources is
maintained using a type discipline which associates types to every resource at a location. The type
of a location defines the discipline it expects agents to follow when accessing the address space.
The type will also constrain access to particular local resources via a level of security clearance
associated with agents. Specifically we introduce a new language of security types, allowing us to
develop a new type discipline which can express and enforce discretional access policies in open
networks containing hostile agents. These security types are obtained by adding security levels to
the type language of [15]

1.2 Security Topologies and Security Policies

A security topologyis a complete latticeS of security levels. As an example consider the following
topology, whereσ→ ρ indicates thatσ is a lower security-level thanρ, which might be associated
with the management of a bank account:

sys

man

tell

ruth kate

any
ddJJJ ::ttt

::ttt
ddJJJ

OO

OO

Here,sysis the highest security level, given only to the system software;manrepresents the security
level of bank managers;tell the level of bank tellers;ruth andkatethe level of two particular clients;
andany the lowest level, available to anyone. For expository purposes we have deliberately chosen
a very simple topology, with a modest goal: the protection of resources at a single location, a bank
account.

Given such a security topologyS , a security policyassigns a security level to each location`
and capabilityγ. For example suppose thataccntis the location which represents the bank account
in question, with methods for depositing and withdrawing money and for closing the account; the
first two take an integer parameter, while the third, , takes none. Thenaccntmight be declared with
the type

accnt: locsys
{

deposit:wany〈int〉, rsys〈int〉 withdraw:wruth〈int〉, rssys〈int〉 close:wman〈〉, rsys〈〉
}
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The location itself,accnt, has associated with it the security levelsys, indicating that any agent with
security level up to and includingsys, i.e. any agent, can have access to the site. However there are
further constraints on access to particular resources ataccnt. For example only agents at security
level syscan read from the three resourcesdeposit, withdraw andclose; intuitively only system
software can service requests to deposit to, withdraw from, or close the account. On the other hand
any agent can deposit into the account,i.e.has access to the write capability on the resourcedeposit,
while only agents with security clearance at leastruth can withdraw. Finally only agents at security
levelman, that of the bank manager, can close the account.

The security levelσ associated with the locations plays an important role. Only agents at level at
mostσ are given access to the location, but more importantly we know that agents originating from
that location are also at level at mostσ. Thus, for example, if we suppose that the two clientsruth
andkatehave associated with them the locationsruth-pc, kate-pc respectively, then these should
have associated with them types of the form

ruth-pc:locruth{...} kate-pc:lockate{...}

In a well behaved network this guarantees that all agents migrating fromruth-pchave either security
level ruth or any, while those emanating fromkate-pchave security levelkateor any.

Note that the security policy we have just outlined presents selective views of the locationaccnt
to different principals, depending on their security clearance. For example from the point of view
of an agent with security clearanceany, or indeedkate, it has the type

accnt: loc
{

deposit:w〈int〉
}

For an agent at levelruth it looks like

accnt: loc
{

deposit:w〈int〉, withdraw:w〈int〉
}

while from the point of view of the account management software, at levelsys, it has the type

accnt: loc
{

deposit:r〈int〉, withdraw:r〈int〉, close:r〈〉
}

allowing it to read and process requests.
Of course many networks will not respect a given security policy. In our example, the agent

kate-pcJgo accnt. withdraw!〈500〉K (‡)

violates the security policy since an agent fromkate-pc attempts to withdraw $500 fromruth’s
account. Note that the violation is not that a low-level agent, emanating fromkate-pc gains access
to the high-level siteaccnt; this is allowed, for example to give access to a low-level resource such
asdeposit. The violation lies in the attempt to access to the higher-level resourcewithdraw, through
which, presumably, some money is transferred tokate-pc.

Formally we define violation of a security policyΓ as the occurrence of a run-time error in a
networkN, giving rise to a family of predicates

N Γ−→ errk

This states that in networkN, some agent is in violation of the security policyΓ; further, the violation
occurs at locationk. The question then arises if we can design a typing system which guarantees
the absence of such run-time errors, the absence of security violations.

This question is answered positively inSection3. We design a language ofsecure types, i.e.
coherent collections of location and resource capabilities annotated with security levels, a subtyping
relation between these types, and a typing system for Dπ. From these we obtain the following
results:
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SUBJECTREDUCTION: Well-typing is preserved by reduction.
TYPE SAFETY: Well-typed networks are incapable of security violations.

Suppose that security policyΓ represents a valid typing environment, andN is well-typed with
respect toΓ. Then these results together prove that no agent inN can ever violate the security
constraints imposed byΓ. For example, our typing system rejects (‡) with respect to the security
policy just outlined above:

∆ =


accnt : locsys


deposit: wany〈int〉, rsys〈int〉

withdraw : wruth〈int〉, rsys〈int〉
close: wman〈〉, rsys〈〉


ruth-pc : locruth{...}
kate-pc : lockate{...}

 (†)

An important and novel aspect of the typing system is that it ensures that incoming agents are
executed at an appropriate security level, as determined by the security level of the agent’s source
location. For example if a location has been assigned the least security level, which in general we
denote by⊥, then agents emanating from this site will be executed at level⊥, meaning intuitively
that they are completely untrusted.

1.3 Open Networks

The Subject Reduction and Type Safety theorems cited above ensure that our secure types are suffi-
cient to guarantee secure resource access inclosednetworks. In closed networks, all principals are
administered in concert and thus it is possible to type-check all the agents in the network before they
are executed. However in open networks, one cannot assume that all agents from remote sites are
well-typed. Nevertheless in these networks the security of well-behaved principals, such asaccnt,
must be maintained even in the presence of malicious agents, such as (‡). The major contribution
of this paper is the observation that, by introducing security levels into the type language this can
be achieved; capability-based typing systems can also be applied to open networks.

In order to prevent the agent (‡) from violating the security guarantees ataccnt, we modify the
rule for agent movement (∗) so that incoming agents are type-checked before they are allowed to
run locally:

`〈〈∆〉〉 | kJgo`.PK 7−→ `〈〈∆〉〉 | `JPK if ∆ 
k`P

Here `〈〈∆〉〉 is a filter for site `, and∆ 
k` P is an instance of theruntime typingrelation. Filters
provide each “good” site with a safe approximation of the global security policyΓ. This runtime
typing relation guarantees that:

If P comes from locationk and∆ 
k` P, then it is safe to runP at `, assigning it the
security level that̀ assigns tok.

In addition to the move rule, other reduction rules are also modified to reflect the fact that filters
may change over time as information about new resources in the network is obtained.

We establish Subject Reduction and Type Safety results for open networks, showing that this
form of runtime typechecking offers adequate protection from malicious agents. These results use
an extended set of types, calledpartial security typesas their use only guarantees type-safe behavior
at a subset of sites, the “good” sites. Partial security types are obtained by introducing a new type
constructorlbad, along with a typing rule that says:

If Γ(`) = lbad then, for anyP, `JPK is well-typed with respect toΓ.

For example let∆ be as defined in (†). If we take

∆′(`) =
{

lbad if `= kate-pc
∆(`) otherwise

(§)
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Table 1Syntax

X,Y ::= Patterns
x Variable
(X1, .., Xn) Tuple

P,Q ::= Threads
u!〈v〉P Output
u?(X:T)P Input
∗P Replication
stop Termination
P|Q Composition
(νe:T)P Restriction
goσ u.P Movement

u,v,w ::= Values
bvσ Base Value
e Name
x Variable
(u1, .., un) Tuple

M,N ::= Networks
0 Empty
M |N Composition
(νσ

k e:T)N Restriction
kJPKσ Agent

then (‡) is well-typed with respect to∆′ in the partial typing system.
This means that the partial typing system can be used, even in open networks, to ensure that

security violations can occur only atbadsites (sites which are assigned the typelbad); the security
policy Γ is respected at allgoodsites (sites which are not assigned the typelbad).

2 The Language Dπ with Security Policies

The main syntactic categories of the language, defined inTable1, are threadsP, agentskJPKσ, and
networksN. Agents are threads running at a particular location and with a particular security level.
Networks are collections of agents. The syntax is parameterized with respect to the setsBase, of
base values, ranged over bybv; Name, of names, ranged over bya–m; Var, of variables, ranged over
by x–z; andS , of security levels, ranged over byσ, ρ. We require thatS forms a complete lattice,
ordered byv, with maximal element>, minimal element⊥, greatest-lower-bound operationu, and
least-upper-bound operationt. We defer the discussion of types, T, untilSection2.2.

Note that security levels are used to annotate agents, network-level restrictions, thego opera-
tor, and base values. Although these annotations can be generated automatically (using standard
techniques), they simplify the presentation of the calculus and allow finer control of resource access
than is available automatically.

EXAMPLE 2.1. As an example of a network, consider the term:

`JPK> | (νk:loc>)
(
`JQK> |mJRK⊥

)
This network contains three agents,`JPK>, `JQK> and kJRK⊥. The first two agents are running
at location` with high security, the third at locationm, at low security. MoreoverQ andR share
knowledge of a private, high security location,k. SinceP is outside the scope ofk it cannot send
subagents to run there. This is possible for bothQ andR but the type rules will guarantee that the
low-security agentRcan only access low-security resources atk. �

NOTATION. We routinely drop type annotations from terms when they are not of interest. We
also use standard abbreviations from theπ-calculus,e.g.dropping final occurrences ofstop and
writing (v1, .., vn) asṽ. The variables in the patternX are bound by the input constructu?(X:T)P,
the scope isP. The namee is bound by the restrictions(νe:T)P and(νσ

k e:S)N, the scopes areP,
andN, respectively. The functions fn(P) and fv(P) return respectively the sets of free names and
free variables occurring inP. In the sequel we identify terms up to renaming of bound names and
variables. A term with no free variables isclosed. We writeP{|u/X|} to denote the capture-avoiding
substitution ofu for X in P. �
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Table 2Standard Reduction

(STR-EXTR) M | (νσ
k e:T)N ≡ (νσ

k e:T)(M |N) if e /∈ fn(M)
(STR-GARBAGE1) (νσ

k e:T)0 ≡ 0

(STR-GARBAGE2) kJstopKσ ≡ 0
(STR-COPY) kJ∗PKσ ≡ kJPKσ | kJ∗PKσ
(STR-SPLIT) kJP|QKσ ≡ kJPKσ | kJQKσ
(STR-NEW) kJ(νe:T)PKσ ≡ (νσ

k e:T) kJPKσ

(RED-MOVE) kJgoρ `.PKσ 7−→ `JPKρ
(RED-COMM) kJa!〈v〉PKσ | kJa?(X)QKρ 7−→ kJPKσ | kJQ{|v/X|}Kρ

2.1 Standard Reduction

The standard semantics is defined using two relations over closed network terms: a structural rela-
tion (M ≡ N) and a reduction relation (M 7−→M′). The main reduction relation we are interested in
is composed from these two:

(−→) def= (≡ · 7−→ · ≡)

This relation allows for any amount of structural reordering before and after each primary reduction
step. The axioms defining these relations, which may be applied in any network context, are given
in Table2.

The structural congruence is defined to be the least equivalence relation that is substitutive over
networks,1 satisfies the standard commutative monoid laws for composition and the axioms given
in Table2. These axioms provide means for the extension of the scope of a name, for garbage
collection of unused names and terminated threads, and for the division and replication of agents.
The reduction relation7−→ is defined to be the least relation that is substitutive over networks and
satisfies the reduction axioms ofTable 2. The communication axiom(RED-COMM) is adapted
from that for the standardπ-calculus; note that in the distributed setting, communication can only
occur between colocated agents. The rule(RED-MOVE), kJgoρ `.PKσ 7−→ `JPKρ, states that an agent
running atk with security levelσ can move tò , adopting the new security levelρ. This rule is
clearly very powerful, as it allows for arbitrary changes of security levels. This power will be tamed
by the typing relation, which will guarantee, among other things, thatρv σ.

EXAMPLE 2.2. Consider a network with two agents, one ath, a high security site, and one at`, a
low level security site. The agent ath wishes to send a fresh integer channela, located ath, to the
other agent using the channelb, located at̀ . This networkN could be written:

`Jb?(z,x)QK⊥ | hJ(νa:A)(P | go⊥ `.b!〈h,a〉)K>
−→ `Jb?(z,x)QK⊥ | (ν>h a:A)

(
hJP | go⊥ `.b!〈h,a〉K>

)
(RED-NEW)

≡ `Jb?(z,x)QK⊥ | (ν>h a:A)
(
hJPK> | hJgo⊥ `.b!〈h,a〉K>

)
(STR-SPLIT)

−→ `Jb?(z,x)QK⊥ | (ν>h a:A)
(
hJPK> | `Jb!〈h,a〉K⊥

)
(RED-MOVE)

−→ (ν>h a:A)`JQ{|h,a/z,x|}K⊥ | hJPK> (STR-EXTR), (RED-COMM), (STR-GARBAGE2)

Beside each reduction, we have written the axioms used to infer it, omitting mention of the monoid
laws. An example of a processQ that uses the received value(z,x) is ‘go⊥ z.x!〈1〉’, which after the
communication becomes ‘go⊥h.a!〈1〉’.

Apriori it may seem that this computation involves a security leak from the high level siteh to the
low level site`. However even in well-typed networks we will allow low level sites to acquire certain
information about high-level sites; information appropriate to their security status. For example, in
order to typeN, our typing system will required thata be a low-security resource. �

1A relation� is substitutive over networksif N � N′ implies N |M � N′ |M, M |N � M |N′, and (νσ
k e:T)N �

(νσ
k e:T)N′. The monoid laws are:M | 0 ≡M, M |N≡ N |M, andM | (N |O)≡ (M |N) |O.
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Table 3Pre-Types and Pre-Capabilities: Syntax and Subtyping

K,L ::= locσ{γ1, .., γn}
A,B ::= res{γ1, .., γn}
S,T ::= Pre-Types

Bσ Base types
K Location types
A Resource types
(T1, .., Tn) Tuple types
K[A1, .., An] Dependent types

δ,γ ::= Pre-Capabilities
a:A Use resource
x:T Use value
newσ Create resource
wσ〈T〉 Write resource
rσ〈T〉 Read resource

Sub-Types
Bσ <: Bρ if σv ρ

locσ{δ̃} <: locρ{γ̃} if ρv σ and ∀γj : ∃δi : δi <: γj

res{δ̃} <: res{γ̃} if ∀γj : ∃δi : δi <: γj

S̃ <: T̃ if ∀i : Si <: Ti

K[Ã] <: L[B̃] if K <: L andÃ <: B̃

Sub-Capabilities
a:A <: a:B if A <: B
x:S <: x:T if S <: T

newσ <: newρ if σv ρ
wσ〈S〉 <: wρ〈T〉 if σv ρ and T<: S
rσ〈S〉 <: rρ〈T〉 if σv ρ and S<: T

2.2 Security Policies

The formal definition of security policies is given in terms ofpre-types, T, whose syntax is given
in Table3. For convenience, we introduce separate metavariables for resource and location pre-
types, respectively A and K. Their basic structure is taken from [15] to which the reader is referred
for a detailed description and rationale. Here the capabilities are annotated with security levels;
intuitively an agent running at security levelσ can only access capabilities whose security level is
at mostσ. Briefly:

• Resources may have areadcapability at a given type T and security levelσ, rσ〈T〉.
• Resources may also have awrite capability at a given type and security level,wσ〈T〉.
• Locations may have the capability to use a typed resource,a:A, or variable,x:T.
• Locations may also have the capability to create a new resource (or location) at security level

σ, newσ.

A location pre-type is then a finite collection of location capabilities; a resource pre-type is a fi-
nite collection of resource capabilities. Finally, value pre-types may also include (1) base types
at security levelσ, Bσ; (2) tuples,(T1, .., Tn); and (3) dependent orlocatedtuples, K[A1, .., An].
Dependent tuples are used to transmit information about non-local resources; their role is explained
in detail in [15].

NOTATION. In examples, we sometimes drop the security-level subscript⊥; for example, rendering
int⊥ as int. We also sometimes, as in the Introduction, use the following shorthand for resource
types:

rσ〈T〉
def= res{rσ〈T〉} wσ〈T〉

def= res{wσ〈T〉} rwσ〈T〉
def= res{wσ〈T〉, rσ〈T〉} �

Pre-types are used in the typing system, which relies crucially on asubtyping relation(<:), also
given inTable3. For capabilities,δ <: γ means, approximately, thatγ is a more restrictive thanδ,
and for types S<: T means T contains fewer capabilities than S. This captures the intuition that it is
always safe to restrict the set of capabilities, but not to expand it. In this definition we call attention
to the contravariance of both the write capability on resources and the security levels on locations.

DEFINITION 2.3. A security policyΓ is a partial map from names to closed location pre-types.�

There are numerous ways in which a given security policy can be violated in a given network.
In Table4 we collect these security violations as runtime errors. Formally we define a family of
predicatesM Γ−→ errk, which may be read: “M violates security policyΓ at locationk”. Two of the
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Table 4Runtime Error with respect to a security policy

(ERR-W) kJa!〈v〉PKσ
Γ−→ errk if Γ(k) 6<: locσ{a:res{wσ〈T〉}} (allT)

or Γ(k) <: locσ{a:res{wσ〈T〉}} andΓu{kv:T} undef
(ERR-R) kJa?(X:T)PKσ

Γ−→ errk if Γ(k) 6<: locσ{a:res{rσ〈T〉}} or T /∈ Typeσ
(ERR-GO) kJgoρ `.PKσ

Γ−→ errk if ρ 6v σ
(ERR-NEW) (νσ

k e:T)N Γ−→ errk if Γ(k) 6<: locσ{newσ}

(ERR-STR1) (νσ
k e:T)N Γ−→ err`{|k/e|} if N Γu{ke:T}−−−−−→ err` (e /∈ fn(Γ))

(ERR-STR2) M |N Γ−→ errk if M Γ−→ errk or N Γ−→ errk

most important clauses in the definition are the following. (1) Ifρ is not dominated by the current
security levelσ (i.e.ρ 6v σ), then the agentkJgoρ `.PKσ violates every security policy. (2) The agent
kJa!〈v〉PKσ violates any security policyΓ that

• does not allowσ-threads (i.e. threads with security levelσ) to run atk, i.e. Γ(k) 6<: locσ,
• does not allowσ-threads write access toa, i.e. for all T, Γ(k) 6<: loc{a:wσ〈T〉}, or
• does not allow transmission ofv ona, i.e. Γ(k) <: loc{a:w〈T〉}, butv cannot be assigned T.

Note that the last case is the crucial one; it prohibits high-security data from being transmitted on
low-security resources.

3 Typing

In this section we design a typing system which guarantees no violations of “coherent” security
policies, essentially those which definetype environments.

3.1 Types

We first define the collection of well-formed types and to do so it is convenient to divide them into
kinds, K , depending upon their security level:

K ::= Typeσ Values accessible at security levelσ (and above)
SerTypeσ Values accessible at security levelσ, transferable between sites
RCapσ Resource capabilities accessible at security levelσ
LCapσ Location capabilities accessible at security levelσ

Intuitively if T ∈ Typeσ, then values of type T are accessible at security levelσ or higher; they may
not be available at lower security levels.

Serializabletypes(SerType) are introduced for values whose interpretation is location indepen-
dent and thus may be transmitted from site to site. For example the dependent value(k,a):K[A] is
serializable, as it can be interpreted anywhere in a system, whereas(k,a):(K,A) is not; herek and
a are independent and therefore the actual location of the resourcea is unknown to the receiver.

The formation rules for types, taking the form T∈K where T is a pre-type, are given inTable5.
The formation rules rely on three other relations:

• A well-formedness relation for capabilities, also given inTable5.
• A subkindingrelation between kinds,K <: K ′. Intuitively subkinding is generated by the

following diagram, whereσv ρ andK <: K ′ is represented asK →K ′:

RCapσ

RCapρ
OO

SerTypeσ

Typeσ SerTypeρ

Typeρ

__????
??����

??����
__????

LCapσ

LCapρ
OO

• A compatibilityrelation between capabilities,γ� δ, given inTable6.
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Table 5Types and Capabilities

(TYPE-BASE) Bσ ∈ SerTypeσ
(TYPE-LOC) locσ{γ̃} ∈ SerTypeσ if ∀i : γi ∈ LCapσ and ∀i, j : γi � γj

(TYPE-RES) res{γ̃} ∈ Typeσ if ∀i : γi ∈ RCapσ and ∀i, j : γi � γj

(TYPE-TUP) (T1, .., Tn) ∈K if ∀i : Ti ∈K
(TYPE-DEP) K[A1, .., An] ∈ SerTypeσ if K ∈ SerTypeσ and Ã ∈ Typeσ

(TYPE-SUB) T ∈K ′ if T ∈K and K <: K ′

(CAP-SUB) γ ∈K ′ if γ ∈K and K <: K ′

(CAP-NEW) newσ ∈ LCapσ
(CAP-RES) u:T ∈ LCapσ if T ∈ Typeσ
(CAP-W) wσ〈T〉 ∈ RCapσ if T ∈ Typeσ
(CAP-R) rσ〈T〉 ∈ RCapσ if T ∈ Typeσ

Table 6Compatibility and Environment Generation

(COMPAT-RES)

u 6= v

u:S� v:T

(COMPAT-NEW)

γ 6= newϑ

newσ � γ

(COMPAT-RW)

S<: T

wσ〈S〉 � rρ〈T〉

(COMPAT-RR)

rσ〈S〉 � rρ〈T〉

(COMPAT-WW)

wσ〈S〉 � wρ〈T〉

(COMPAT-SYM)

δ� γ
γ� δ

(GENENV-LOC)

K ∈ SerType

{wk:K}= {k:K}

(GENENV-UNIV)

T ∈ SerType

{wx:T}= {x:T}

(GENENV-RES)

A ∈ Type

{wa:A}=
{

w:loc⊥{a:A}
}

(GENENV-LOCAL)

T ∈ Type
T /∈ SerType

{wx:T}=
{

w:loc⊥{x:T}
}

(GENENV-BASE)

σv ρ
{wbvσ:Bρ}=∅

(GENENV-TUP)

∀i : {wvi :Ti}= ∆i

{w(v1, .., vn):(T1, .., Tn)}= ∆1u·· ·u∆n

(GENENV-DEP)

{wu:K}= ∆u

{uṽ:Ã}= ∆v

{w(u, ṽ):K[Ã]}= ∆uu∆v

The formation rules for types are quite subtle. Consider, for example, the two point lattice of
security levels⊥@>. This defines two kinds of types: “insecure” typesType⊥ and “secure” types
Type> ⊇ Type⊥. Insecure agents are required to use types inType⊥, whereas secure agents are also
allowed to use the additional types inType>. We have:

(a) int⊥ ∈ Type> int> /∈ Type⊥
(b) w⊥〈〉 ∈ RCap> w>〈〉 /∈ RCap⊥
(c) loc⊥ ∈ Type> loc> /∈ Type⊥
(d) new⊥ ∈ LCap> new> /∈ LCap⊥

Insecure integers are accessible to secure agents, but secure integers are not accessible to insecure
agents (a). Similar constraints apply to resources (b) and locations (c). Finally, secure agents can be
trusted to create new insecure locations and to relate information about them, butinsecureagents
shouldnot be trusted to createsecuresites or relate information about them (d).

Finally note that there is no relation between subtyping and accessibility at a given security
level. For example we have:

Type⊥ 63 res{w>〈〉, r⊥〈〉} <: r⊥〈〉 ∈ Type⊥
Type⊥ 3 r⊥〈〉 <: r>〈〉 /∈ Type⊥

Type⊥ 63 loc> <: loc⊥ ∈ Type⊥
Type⊥ 3 int⊥ <: int> /∈ Type⊥

PROPOSITION3.1. Type is a preorder with respect to<:, with a partial meet operationu.

Proof. The proof requires that security levels have both a meet and a join. For example:

locσ{newσ′} u locρ{newρ′} = locσtρ{newσ′uρ′} �
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Table 7Standard Typing

(VAL -UNIV)

T ∈ Typeσ
Γ(u) <: T

Γ σ̀
w u:T

(VAL -LOCAL)

T ∈ Typeσ
Γ(w) <: loc{u:T}
Γ σ̀

w u:T

(VAL -BASE)

ρv ρ′ v σ
bv ∈ vals(B)
Γ σ̀

w bvρ:Bρ′

(VAL -TUP)

Γ σ̀
w ui :Ti (∀i)

Γ σ̀
w ũ:T̃

(VAL -DEP)

Γ σ̀
w u:K

Γ σ̀
u ṽ:Ã

Γ σ̀
w (u, ṽ) :K[Ã]

(TRD-GO)

Γ σ̀
w u:locρ

Γ ρ̀
u P

Γ σ̀
w goρ u.P

(TRD-STR)

Γ σ̀
w P

Γ σ̀
w Q

Γ σ̀
w stop, P|Q, ∗P

(TRD-NEW)

Γ σ̀
w w:loc{newσ}

e /∈ fn(Γ), T 6= lbad
T ∈ Typeσ
Γu{we:T} σ̀

w P

Γ σ̀
w (νe:T)P

(TRD-W)

Γ σ̀
w u:res{wσ〈T〉}

Γ σ̀
w v:T

Γ σ̀
w P

Γ σ̀
w u!〈v〉P

(TRD-R)

Γ σ̀
w u:res{rσ〈T〉}

fv(X) disjoint fv(Γ)
Γu{wX:T} σ̀

w Q

Γ σ̀
w u?(X:T)Q

(NET-RUN)

Γ(k) <: locσ
Γ σ̀

k P

Γ ` kJPKσ

(NET-STR)

Γ `M
Γ ` N

Γ ` 0,M |N

(NET-NEW)

Γ(k) <: loc{newσ}
e /∈ fn(Γ), T 6= lbad
T ∈ Typeσ
Γu{ke:T} ` N

Γ ` (νσ
k e:T)N

3.2 Typing

We say that a security policyΓ is a type environment, if every pre-type in the range is a serializable
type, i.e. ∀u ∈ dom(Γ) : Γ(u) ∈ SerType. These are used in the standard typing system, given in
Table7. The main judgments take the form

Γ ` N

whereΓ is a type environment andN is a network.2 In this extended abstract we only briefly explain
some of the typing rules. At the network level we can concludeΓ ` kJPKσ, if the agentP can be
typed to run at locationk at security levelσ. Thus for agents, typing is with respect to both a location
and a security level, giving rise to type judgments of the form

Γ σ̀
k P

Inferring judgments of this form is slightly more complicated. For exampleΓ σ̀
w goρ u.P depends

on being able to establish thatP can run at locationu at the appropriate security level,Γ ρ̀
u P, and

that u does indeed represent a location where activity at this security level is allowed. The latter
requires a third form of judgments, for values:

Γ σ̀
w v:T

Intuitively, if Γ σ̀
w v:T then valuev is accessible toσ-threads at locationw (at type T). The particular

value judgment required when typinggoρ u.P is Γ σ̀
w u:locρ.

The rules for input and name restriction require notation for extensions to type environments.
For example to concludeΓ σ̀

w u?(X:T)Q we need to establish thatQ is well-typed in an environment
constructed by extendingΓ with appropriate associations between the variables inX and the type
T. To accomplish this, inTable6 we define a notation for constructing simple environments, which
uses the meet operator on types. The reader is referred to page 10 of [28] where the notation is
discussed in detail.3 The main results of this section can now be stated:

THEOREM 3.2 (SUBJECTREDUCTION). If Γ ` N and N−→ N′ thenΓ ` N′. �
2Indeed throughoutTable7 only type environments (and not the more general security policies) may be used.
3In general this constructs security policies rather than type environments but one can show that all applications of

this construction inTables 7 and8 actually generate type environments.
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THEOREM 3.3 (TYPE SAFETY). If Γ ` N then for every location k, NΓ−X−→ errk. �

Crucial to the proof ofTheorem3.2, are the following standard properties, adapted to our setting:

If S ∈ Typeσ, T∈ Typeρ, Γ σ̀
w v:S and S<: T, thenΓ ρ̀

w v:T (SPECIALIZATION)

If Γ σ̀
w P and∆ <: Γ then∆ σ̀

w P (WEAKENING)

If Γ σ̀
u v:T andΓu{uX:T} σ̀

w P thenΓ `σw{|v/X|} P{|v/X|} (SUBSTITUTION)

EXAMPLE 3.4. Let us now reexamine networkN, given in Example2.2. SupposeΓ is a type
environment which associates withh and` the typesloc>{new>} andloc⊥{b:rw⊥〈loc⊥{A}〉} re-
spectively, where A is the proposed type of the resource to be generated at the high-security siteh.
Then the ability to type the networkN underΓ depends essentially on the security level used in the
type A. The reader may check that, for example, with A equal torw⊥〈int〉 thenN can be typed; an
essential feature in the typing system is the contravariance of location types with respect to security
levels. On the other hand if A isrw>〈int〉 thenΓ ` N cannot be derived. �

4 Security in Open Systems

In this section we briefly outline how security types can be applied in the runtime typechecking of
mobile agents and thereby offer protection from malicious behavior.

In order to formalize the notion that some sites are untyped, we introduce a new location type,
lbad, into the type language. We call the resulting typespartial security types. Intuitively, a site with
type lbad is untyped, and may therefore harbor agents which do not respect the security policies in
place. Location pre-types are now defined:

K,L ::= locσ{ã:Ã, x̃:B̃} lbad

Given a security topology, we must chose which security classifications are outside our control. We
do this using the predicate ours. This is subject to the constraint:

σv ρ and ours(σ) implies ours(ρ)

We also extend the definition of types (Table5) to include:

lbad ∈ SerType⊥

The subtype relation is extended to partial pre-types by adding the following subtyping rule:

lbad <: locσ{ũ:Ã} if not ours(σ)

This allows untyped locations to access the least secure resources on at a site, but no others. If we
consider the two-point lattice of security levels, the subtyping relation is generated by:

loc> lbad

loc⊥??����

__???? or more generally:

lbadloc>{ũ:Ã,v:B}

loc⊥{ũ:Ã,v:B}loc>{ũ:Ã}

loc⊥{ũ:Ã}

ddJJJJJ
::ttttt

ddJJJJJ

ddJJJJJ
::ttttt

The reader familiar with [28] will note that the subtyping relation presented here is very similar to
that of “networks with trust” in our prior work. Here we have elaborated on the notion of “trusted
type”, allowing varying degrees of trust, represented by the non-minimal security levels. If the filter
for k records̀ as a location with security level properly greater than⊥, then` must be well-typed,
and thereforek can “trust”`.
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4.1 Runtime Typechecking

To accomplish runtime typechecking, it is necessary to add type information to running networks.
Following [28] we do this by adding afilter k〈〈∆〉〉 for each locationk in a network. The filter includes
a type environment∆ which givesk’s current view of the resources in the network. Suppose that in
a networkN, locationk knows that there is resource nameda of type A at locatioǹ . This intuition
is captured by requiring thatN have a subtermk〈〈∆〉〉 such that∆(`) <: loc{a:A}.

Formally, we extend the syntax of networks (Table1) to include filters, as follows:

N ::= ... k〈〈∆〉〉

We say that a termk〈〈∆〉〉 is afilter for k and we assume that in well-formed networks every location
has associated with it exactly one filter.

In Table8 we modify the reduction semantics to take advantage of the presence of filters. The
purpose of filters is to check that incoming agents are well-typed and thus the main change to the
semantics is replace the migration rule(RED-MOVE) with:

`〈〈∆〉〉 | kJgo`.PK 7−→ `〈〈∆〉〉 | `JPK if ∆(k) <: locρ and(ours(ρ) or ∆ 
ρ`k P)

Here∆ 
ρ`k P is a runtime typing relation, which intuitively says thatP is well-formed to move to
location` at security levelρ, if originating fromk.

The rules for runtime typing with respect to the resulting partial types are also given in
Table 8. These extend the static typing rules ofSection3, but there are innovations. The first
rule, (VAL R-SLF1) is quite subtle; its soundness depends on the definition of the subtyping relation
over partial types. Essentially it allows an incoming agent to refer to its source locationk and to
associate the minimum security level to it, regardless of whether the filter environment∆ contains
any information aboutk. The rule(VAL R-SLF2) allows an incoming agent to refer to resources
at its source, as long as these are presented with minimal security. The rules(TRDR-BAD) and
(TRDR-RET) allow agents to have arbitrary behavior, in some cases, when moving to other sites.

4.2 The protection of good sites

Here we give a very brief account of the argument which states that this scheme of runtime type-
checking offers security protection to good sites. First the notion of “good site” is formalized in
terms of a static typing relation which uses partial security types:Γ ` N. This relation is defined
by extending the standard typing systemTable7 with the rules inTable8 to handle filters andlbad.
Note that while the static typing system interprets these rules with respect to an omniscient author-
ity (Γ), the runtime typing system interprets these rules with respect to the knowledge contained
in a filter (∆, whereΓ <: ∆). Whereas untypability with respect toΓ indicates that a network is
malformed, untypability with respect to a filter∆ may simply indicate that the filter has insufficient
information to determine whether an agent is malicious or not.

Intuitively if Γ ` N andΓ(`) 6= lbad then` is a good site. It is this intuitive interpretation of
static typing which makes the following theorems interesting. They may be read as saying good
sites are protected against malicious behavior.

THEOREM 4.1. In the partial typing system, ifΓ ` N and N−→ N′ thenΓ ` N′. �

THEOREM 4.2. In the partial typing system, ifΓ ` N andΓ(k) 6= lbad then N Γ−X−→ errk. �

5 Related Work

The language Dπ, a distributed version of theπ-calculus [20], was introduced in [29] and simplified
and improved in [15]. The secure type system presented here may be viewed as an extension to
two previous type systems we have explored. The first, in [15], allows the selective distribution of
access rights to resources in a closed network,i.e. networks in which all agents are assumed to be
well-behaved. (This type system uses an extension of the types from [27]; related type systems, for
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Table 8Semantics of Open Networks
Reduction axioms:

(REDF-MOVE) kJgo`.PKσ | `〈〈∆〉〉
7−→ `JPKσ | `〈〈∆〉〉 if ∆(k) <: locρ and(ours(ρ) or ∆ 
ρ`k P)

(REDF-COMM) kJa!〈v〉PKσ | kJa?(X:T)QKσ | k〈〈∆〉〉
7−→ kJPKσ | kJQ{|v/X|}Kσ | k〈〈∆u{kv:T}〉〉

Structural axioms: all rules but(STR-NEW) from Table2

(STRF-NEWR) kJ(νa:A)PKσ | k〈〈∆〉〉
≡ (νσ

k a:A)
(
kJPKσ | k〈〈∆u{ka:A}〉〉

)
if a /∈ fn(∆)

(STRF-NEWL) kJ(ν`:L)PKσ | k〈〈∆〉〉
≡ (νσ

k `:L)
(
kJPKσ | k〈〈∆u{`:L}〉〉 | `〈〈{`:L}〉〉

)
if ` /∈ fn(∆)∪{k}

Static typing: all rules fromTable7

(NETF-FILTB)

Γ(k) = lbad

Γ ` k〈〈∆〉〉

(NETF-FILTG)

Γ <: ∆
Γ(k) = ∆(k)
Γ ` k〈〈∆〉〉

(TRDF-BAD)

Γ(w) = lbad

Γ σ̀
w P

(NETF-BAD)

Γ(k) = lbad
` /∈ fn(Γ)
Γu{`:lbad} ` N

Γ ` (νσ
k `:L)N

Runtime typing: all rules fromTable7, ‘
σwk’ replacing ‘ σ̀
w’

(VAL R-SLF1)

K ∈ SerTypeσ
lbad <: K

∆ 
σwk k:K

(VAL R-SLF2)

A ∈ Typeσ

∆ 
σkk a:A

(TRDR-BAD)

∆(u) = lbad

∆ 
σwk goρ u.P

(TRDR-RET)

∆ 
σwk goρ k.P

somewhat different languages, may be found in [8, 9, 31].) The second is the partial typing system
from [28], for use in open systems containing possibly malicious agents; it ensures well-typed
behavior atgoodsites. Here we have addressed the issue of selective distribution of access rights
in similar systems; distributed networks which harbor malicious agents. Our solution involves the
use of security levels, associated with both locations and resources. We design a capability based
typing system in which specific capabilities have associated with them a minimum security level.
Our formal results imply that

• well-behaved sites can indeed selectively distribute local access rights to principals through-
out the network, and

• this distribution will be respected without compromising local resources, even in the presence
of malicious agents.

Several studies have addressed the issue of static typing for languages with remote resources
[25, 5, 30, 17], but none of these address secure resources or open networks. Proof carrying code and
related techniques [37, 22, 18, 21] address the problem of runtime typechecking in open networks,
but do not consider either secure resources or references to remote resources.

Type systems have been used to study secure transmission of data, using cryptographic tech-
niques [2, 1, 7]; while the goals of this work are related to ours, there appears to be little technical
overlap. Recently, it has also been shown that secure dataflow analysis [10, 11] can be expressed
using typing rules [26, 36, 33, 19, 14].

Finally, we note that several calculi, in addition to Dπ, have been proposed for the study of
distributed computing [12, 3, 4, 30, 32, 35, 24]. While there is an active interest in typing systems
for such languages [13, 6, 9], we are aware of no other work on capability-based or secure typing
systems applicable to open systems.
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