001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
package algs9; // section 9.8
import algs12.Point2D;
import stdlib.*;
/* ***********************************************************************
 *  Compilation:  javac FarthestPair.java
 *  Execution:    java FarthestPair < input.txt
 *  Dependencies: GrahamScan.java Point2D.java
 *
 *  Given a set of N points in the plane, find the farthest pair
 *  (equivalently, compute the diameter of the set of points).
 *
 *  Computes the convex hull of the set of points and using the
 *  rotating callipers method to find all antipodal point pairs
 *  and the farthest pair.
 *
 *  % java FarthestPair < rs1423.txt
 *  7748.838622658237 from (24690.0, 216.0) to (32420.0, 756.0)
 *************************************************************************/

public class FarthestPair {

  // farthest pair of points and distance
  private Point2D best1, best2;
  private double bestDistance = Double.NEGATIVE_INFINITY;

  public FarthestPair(Point2D[] points) {
    GrahamScan graham = new GrahamScan(points);

    // single point
    if (points.length <= 1) return;

    // number of points on the hull
    int M = 0;
    for (Point2D p : graham.hull())
      M++;

    // the hull, in counterclockwise order
    Point2D[] hull = new Point2D[M+1];
    int m = 1;
    for (Point2D p : graham.hull()) {
      hull[m++] = p;
    }

    // all points are equal
    if (M == 1) return;

    // points are collinear
    if (M == 2) {
      best1 = hull[1];
      best2 = hull[2];
      bestDistance = best1.distanceTo(best2);
      return;
    }

    // k = farthest vertex from edge from hull[1] to hull[M]
    int k = 2;
    while (Point2D.area2(hull[M], hull[k+1], hull[1]) > Point2D.area2(hull[M], hull[k], hull[1])) {
      k++;
    }

    int j = k;
    for (int i = 1; i <= k; i++) {
      // StdOut.println("hull[i] + " and " + hull[j] + " are antipodal");
      if (hull[i].distanceTo(hull[j]) > bestDistance) {
        best1 = hull[i];
        best2 = hull[j];
        bestDistance = hull[i].distanceTo(hull[j]);
      }
      while ((j < M) && Point2D.area2(hull[i], hull[j+1], hull[i+1]) > Point2D.area2(hull[i], hull[j], hull[i+1])) {
        j++;
        // StdOut.println(hull[i] + " and " + hull[j] + " are antipodal");
        double distance = hull[i].distanceTo(hull[j]);
        if (distance > bestDistance) {
          best1 = hull[i];
          best2 = hull[j];
          bestDistance = hull[i].distanceTo(hull[j]);
        }
      }
    }
  }

  public Point2D either()    { return best1;        }
  public Point2D other()     { return best2;        }
  public double distance()   { return bestDistance; }


  public static void main(String[] args) {
    StdIn.fromFile ("data/rs1423.txt");

    int N = StdIn.readInt();
    Point2D[] points = new Point2D[N];
    for (int i = 0; i < N; i++) {
      int x = StdIn.readInt();
      int y = StdIn.readInt();
      points[i] = new Point2D(x, y);
    }
    FarthestPair farthest = new FarthestPair(points);
    StdOut.println(farthest.distance() + " from " + farthest.either() + " to " + farthest.other());
  }

}