001 
002 
003 
004 
005 
006 
007 
008 
009 
010 
011 
012 
013 
014 
015 
016 
017 
018 
019 
020 
021 
022 
023 
024 
025 
026 
027 
028 
029 
030 
031 
032 
033 
034 
035 
036 
037 
038 
039 
040 
041 
042 
043 
044 
045 
046 
047 
048 
049 
050 
051 
052 
053 
054 
055 
056 
057 
058 
059 
060 
061 
062 
063 
064 
065 
066 
067 
068 
069 
070 
071 
072 
073 
074 
075 
076 
077 
078 
079 
080 
081 
082 
083 
084 
085 
086 
087 
088 
089 
090 
091 
092 
093 
094 
095 
096 
097 
098 
099 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
367 
368 
369 
370 
371 
372 
373 
374 
375 
376 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 
396 
397 
398 
399 
400 
401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 
441 
442 
443 
444 
 | 
package algs41;
import java.util.Arrays;
import algs13.Stack;
import algs24.MinPQ;
import stdlib.*;
public class GraphGenerator {
  /**
   * Create a graph from input stream.
   */
  public static Graph fromIn (In in) {
    Graph G = new Graph (in.readInt());
    int E = in.readInt();
    for (int i = 0; i < E; i++) {
      int v = in.readInt();
      int w = in.readInt();
      G.addEdge(v, w);
    }
    return G;
  }
  public static Graph copy (Graph G) {
    Graph R = new Graph (G.V());
        for (int v = 0; v < G.V(); v++) {
            // reverse so that adjacency list is in same order as original
            Stack<Integer> reverse = new Stack<Integer>();
            for (int w : G.adj(v)) {
                reverse.push(w);
            }
            for (int w : reverse) {
                R.addEdge (v, w);
            }
        }
    return R;
  }
  public static Graph complete (int V) {
    return simple (V, V * (V - 1) / 2);
  }
  public static Graph simple (int V, int E) {
    if (V < 0 || E < 0) throw new IllegalArgumentException ();
    if (E > V * (V - 1) / 2) throw new IllegalArgumentException ("Number of edges must be less than V*(V-1)/2");
    Graph G = new Graph (V);
    newEdge: while (E > 0) {
      int v = StdRandom.uniform (V);
      int w = StdRandom.uniform (V);
      if (v == w) continue;
      for (int w2 : G.adj (v))
        if (w == w2) continue newEdge;
      G.addEdge (v, w);
      E--;
    }
    return G;
  }
  public static Graph simpleConnected (int V, int E) {
    if (V < 0 || E < 0) throw new IllegalArgumentException ();
    if (E > V * (V - 1) / 2) throw new IllegalArgumentException ("Number of edges must be less than V*(V-1)/2");
    Graph G = spanningTree (V);
    newEdge: while (G.E () < E) {
      int v = StdRandom.uniform (V);
      int w = StdRandom.uniform (V);
      if (v == w) continue;
      for (int w2 : G.adj (v))
        if (w == w2) continue newEdge;
      G.addEdge (v, w);
      E--;
    }
    return G;
  }
  public static Graph connected (int V, int E) {
    if (V < 0 || E < 0) throw new IllegalArgumentException ();
    Graph G = spanningTree (V);
    while (G.E () < E) {
      int v = StdRandom.uniform (V);
      int w = StdRandom.uniform (V);
      G.addEdge (v, w);
    }
    return G;
  }
  public static Graph random (int V, int E) {
    if (V < 0 || E < 0) throw new IllegalArgumentException ();
    Graph G = new Graph (V);
    while (G.E () < E) {
      int v = StdRandom.uniform (V);
      int w = StdRandom.uniform (V);
      G.addEdge (v, w);
    }
    return G;
  }
  public static Graph spanningTree (int V) {
    if (V < 1) throw new IllegalArgumentException ();
    int[] vertices = new int[V];
    for (int i = 0; i < V; i++)
      vertices[i] = i;
    StdRandom.shuffle (vertices);
    Graph G = new Graph (V);
    for (int i = 1; i < V; i++) {
      int v = vertices[StdRandom.uniform (i)];
      int w = vertices[i];
      G.addEdge (v, w);
    }
    return G;
  }
  public static Graph connected(int V, int E, int c) {
    if (c >= V || c <= 0)
      throw new IllegalArgumentException("Number of components must be between 1 and V");
    if (E <= (V-c))
      throw new IllegalArgumentException("Number of edges must be at least (V-c)");
    if (E > V * (V - 1) / 2)
      throw new IllegalArgumentException("Too many edges");
    int[] label = new int[V];
    for (int v = 0; v < V; v++) {
      label[v] = StdRandom.uniform(c);
    }
    // The following hack ensures that each color appears at least once
    {
      Arrays.sort (label);
      label[0] = 0;
      for (int v = 1; v < V; v++) {
        if (label[v]-label[v-1] > 1 || V-v == c-label[v-1]-1)
          label[v] = label[v-1]+1;
      }
      StdRandom.shuffle (label);
    }
    // make all vertices with label c a connected component
    Graph G = new Graph(V);
    for (int i = 0; i < c; i++) {
      // how many vertices in component c
      int count = 0;
      for (int v = 0; v < V; v++) {
        if (label[v] == i) count++;
      }
      int[] vertices = new int[count];
      {
        int j = 0;
        for (int v = 0; v < V; v++)
          if (label[v] == i) vertices[j++] = v;
      }
      StdRandom.shuffle(vertices);
      for (int j = 1; j < count; j++) {
        int v = vertices[StdRandom.uniform (j)];
        int w = vertices[j];
        G.addEdge (v, w);
      }
    }
    while (G.E() < E) {
      int v = StdRandom.uniform(V);
      int w = StdRandom.uniform(V);
      if (v != w && label[v] == label[w]) {
        G.addEdge(v, w);
      }
    }
    return G;
  }
    /**
     * Returns a random simple bipartite graph on {@code V1} and {@code V2} vertices,
     * containing each possible edge with probability {@code p}.
     * @param V1 the number of vertices in one partition
     * @param V2 the number of vertices in the other partition
     * @param p the probability that the graph contains an edge with one endpoint in either side
     * @return a random simple bipartite graph on {@code V1} and {@code V2} vertices,
     *    containing each possible edge with probability {@code p}
     * @throws IllegalArgumentException if probability is not between 0 and 1
     */
    public static Graph bipartite(int V1, int V2, double p) {
        if (p < 0.0 || p > 1.0)
            throw new IllegalArgumentException("Probability must be between 0 and 1");
        int[] vertices = new int[V1 + V2];
        for (int i = 0; i < V1 + V2; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        Graph G = new Graph(V1 + V2);
        for (int i = 0; i < V1; i++)
            for (int j = 0; j < V2; j++)
                if (StdRandom.bernoulli(p))
                    G.addEdge(vertices[i], vertices[V1+j]);
        return G;
    }
    /**
     * Returns a path graph on {@code V} vertices.
     * @param V the number of vertices in the path
     * @return a path graph on {@code V} vertices
     */
    public static Graph path(int V) {
        Graph G = new Graph(V);
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        for (int i = 0; i < V-1; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        return G;
    }
    /**
     * Returns a complete binary tree graph on {@code V} vertices.
     * @param V the number of vertices in the binary tree
     * @return a complete binary tree graph on {@code V} vertices
     */
    public static Graph binaryTree(int V) {
        Graph G = new Graph(V);
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        for (int i = 1; i < V; i++) {
            G.addEdge(vertices[i], vertices[(i-1)/2]);
        }
        return G;
    }
    /**
     * Returns a cycle graph on {@code V} vertices.
     * @param V the number of vertices in the cycle
     * @return a cycle graph on {@code V} vertices
     */
    public static Graph cycle(int V) {
        Graph G = new Graph(V);
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        for (int i = 0; i < V-1; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        G.addEdge(vertices[V-1], vertices[0]);
        return G;
    }
    /**
     * Returns an Eulerian cycle graph on {@code V} vertices.
     *
     * @param  V the number of vertices in the cycle
     * @param  E the number of edges in the cycle
     * @return a graph that is an Eulerian cycle on {@code V} vertices
     *         and {@code E} edges
     * @throws IllegalArgumentException if either {@code V <= 0} or {@code E <= 0}
     */
    public static Graph eulerianCycle(int V, int E) {
        if (E <= 0)
            throw new IllegalArgumentException("An Eulerian cycle must have at least one edge");
        if (V <= 0)
            throw new IllegalArgumentException("An Eulerian cycle must have at least one vertex");
        Graph G = new Graph(V);
        int[] vertices = new int[E];
        for (int i = 0; i < E; i++)
            vertices[i] = StdRandom.uniform(V);
        for (int i = 0; i < E-1; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        G.addEdge(vertices[E-1], vertices[0]);
        return G;
    }
    /**
     * Returns an Eulerian path graph on {@code V} vertices.
     *
     * @param  V the number of vertices in the path
     * @param  E the number of edges in the path
     * @return a graph that is an Eulerian path on {@code V} vertices
     *         and {@code E} edges
     * @throws IllegalArgumentException if either {@code V <= 0} or {@code E < 0}
     */
    public static Graph eulerianPath(int V, int E) {
        if (E < 0)
            throw new IllegalArgumentException("negative number of edges");
        if (V <= 0)
            throw new IllegalArgumentException("An Eulerian path must have at least one vertex");
        Graph G = new Graph(V);
        int[] vertices = new int[E+1];
        for (int i = 0; i < E+1; i++)
            vertices[i] = StdRandom.uniform(V);
        for (int i = 0; i < E; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        return G;
    }
    /**
     * Returns a wheel graph on {@code V} vertices.
     * @param V the number of vertices in the wheel
     * @return a wheel graph on {@code V} vertices: a single vertex connected to
     *     every vertex in a cycle on {@code V-1} vertices
     */
    public static Graph wheel(int V) {
        if (V <= 1) throw new IllegalArgumentException("Number of vertices must be at least 2");
        Graph G = new Graph(V);
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        // simple cycle on V-1 vertices
        for (int i = 1; i < V-1; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        G.addEdge(vertices[V-1], vertices[1]);
        // connect vertices[0] to every vertex on cycle
        for (int i = 1; i < V; i++) {
            G.addEdge(vertices[0], vertices[i]);
        }
        return G;
    }
    /**
     * Returns a star graph on {@code V} vertices.
     * @param V the number of vertices in the star
     * @return a star graph on {@code V} vertices: a single vertex connected to
     *     every other vertex
     */
    public static Graph star(int V) {
        if (V <= 0) throw new IllegalArgumentException("Number of vertices must be at least 1");
        Graph G = new Graph(V);
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        // connect vertices[0] to every other vertex
        for (int i = 1; i < V; i++) {
            G.addEdge(vertices[0], vertices[i]);
        }
        return G;
    }
    /**
     * Returns a uniformly random {@code k}-regular graph on {@code V} vertices
     * (not necessarily simple). The graph is simple with probability only about e^(-k^2/4),
     * which is tiny when k = 14.
     *
     * @param V the number of vertices in the graph
     * @param k degree of each vertex
     * @return a uniformly random {@code k}-regular graph on {@code V} vertices.
     */
    public static Graph regular(int V, int k) {
        if (V*k % 2 != 0) throw new IllegalArgumentException("Number of vertices * k must be even");
        Graph G = new Graph(V);
        // create k copies of each vertex
        int[] vertices = new int[V*k];
        for (int v = 0; v < V; v++) {
            for (int j = 0; j < k; j++) {
                vertices[v + V*j] = v;
            }
        }
        // pick a random perfect matching
        StdRandom.shuffle(vertices);
        for (int i = 0; i < V*k/2; i++) {
            G.addEdge(vertices[2*i], vertices[2*i + 1]);
        }
        return G;
    }
    // http://www.proofwiki.org/wiki/Labeled_Tree_from_Prüfer_Sequence
    // http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.6484&rep=rep1&type=pdf
    /**
     * Returns a uniformly random tree on {@code V} vertices.
     * This algorithm uses a Prufer sequence and takes time proportional to <em>V log V</em>.
     * @param V the number of vertices in the tree
     * @return a uniformly random tree on {@code V} vertices
     */
    public static Graph tree(int V) {
        Graph G = new Graph(V);
        // special case
        if (V == 1) return G;
        // Cayley's theorem: there are V^(V-2) labeled trees on V vertices
        // Prufer sequence: sequence of V-2 values between 0 and V-1
        // Prufer's proof of Cayley's theorem: Prufer sequences are in 1-1
        // with labeled trees on V vertices
        int[] prufer = new int[V-2];
        for (int i = 0; i < V-2; i++)
            prufer[i] = StdRandom.uniform(V);
        // degree of vertex v = 1 + number of times it appers in Prufer sequence
        int[] degree = new int[V];
        for (int v = 0; v < V; v++)
            degree[v] = 1;
        for (int i = 0; i < V-2; i++)
            degree[prufer[i]]++;
        // pq contains all vertices of degree 1
        MinPQ<Integer> pq = new MinPQ<Integer>();
        for (int v = 0; v < V; v++)
            if (degree[v] == 1) pq.insert(v);
        // repeatedly delMin() degree 1 vertex that has the minimum index
        for (int i = 0; i < V-2; i++) {
            int v = pq.delMin();
            G.addEdge(v, prufer[i]);
            degree[v]--;
            degree[prufer[i]]--;
            if (degree[prufer[i]] == 1) pq.insert(prufer[i]);
        }
        G.addEdge(pq.delMin(), pq.delMin());
        return G;
    }
  public static void print (Graph G, String filename) {
    if (G == null) return;
    System.out.println (filename);
    System.out.println (G);
    System.out.println ();
    G.toGraphviz (filename + ".png");
  }
  
  public static void main (String[] args) {
    //StdRandom.setSeed (10);
    args = new String[] { "6", "10", "3" };
    int V = Integer.parseInt (args[0]);
    int E = Integer.parseInt (args[1]);
    int c = Integer.parseInt (args[2]);
    for (int i= 5; i>0; i--) {
      print (GraphGenerator.random (V, E), "random-" + V + "-" + E);
      print (GraphGenerator.random (V, E), "random-" + V + "-" + E);
      print (GraphGenerator.simple (V, E), "simple-" + V + "-" + E);
      print (GraphGenerator.complete (V), "complete-" + V);
      print (GraphGenerator.spanningTree (V), "spanningTree-" + V);
      print (GraphGenerator.simpleConnected (V, E), "simpleConnected-" + V + "-" + E);
      print (GraphGenerator.connected (V, E), "connected-" + V + "-" + E);
      print (GraphGenerator.path (V), "path-" + V);
      print (GraphGenerator.binaryTree (V), "binaryTree-" + V);
      print (GraphGenerator.cycle (V), "cycle-" + V);
      if (E <= (V - c)) E = (V - c) + 1;
      print (GraphGenerator.connected (V, E, c), "connected-" + V + "-" + E + "-" + c);
      print (GraphGenerator.eulerianCycle (V, E), "eulerian-" + V + "-" + E);
    }
  }
}
 |