001// Exercise 4.1.13 (Solution published at http://algs4.cs.princeton.edu/)
002package algs41;
003import stdlib.*;
004import algs13.Queue;
005import algs13.Stack;
006/* ***********************************************************************
007 *  Compilation:  javac BreadthFirstPaths.java
008 *  Execution:    java BreadthFirstPaths G s
009 *  Dependencies: Graph.java Queue.java Stack.java StdOut.java
010 *  Data files:   http://algs4.cs.princeton.edu/41undirected/tinyCG.txt
011 *
012 *  Run breadth first search on an undirected graph.
013 *  Runs in O(E + V) time.
014 *
015 *  %  java Graph tinyCG.txt
016 *  6 8
017 *  0: 2 1 5
018 *  1: 0 2
019 *  2: 0 1 3 4
020 *  3: 5 4 2
021 *  4: 3 2
022 *  5: 3 0
023 *
024 *  %  java BreadthFirstPaths tinyCG.txt 0
025 *  0 to 0 (0):  0
026 *  0 to 1 (1):  0-1
027 *  0 to 2 (1):  0-2
028 *  0 to 3 (2):  0-2-3
029 *  0 to 4 (2):  0-2-4
030 *  0 to 5 (1):  0-5
031 *
032 *************************************************************************/
033
034public class BreadthFirstPaths {
035        private static final int INFINITY = Integer.MAX_VALUE;
036        private final boolean[] marked;  // marked[v] = is there an s-v path
037        private final int[] edgeTo;      // edgeTo[v] = previous edge on shortest s-v path
038        private final int[] distTo;      // distTo[v] = number of edges shortest s-v path
039
040        // single source
041        public BreadthFirstPaths(Graph G, int s) {
042                marked = new boolean[G.V()];
043                distTo = new int[G.V()];
044                edgeTo = new int[G.V()];
045                bfs(G, s);
046
047                assert check(G, s);
048        }
049
050        // multiple sources
051        public BreadthFirstPaths(Graph G, Iterable<Integer> sources) {
052                marked = new boolean[G.V()];
053                distTo = new int[G.V()];
054                edgeTo = new int[G.V()];
055                for (int v = 0; v < G.V(); v++) distTo[v] = INFINITY;
056                bfs(G, sources);
057        }
058
059
060        // BFS from single soruce
061        private void bfs(Graph G, int s) {
062                Queue<Integer> q = new Queue<>();
063                for (int v = 0; v < G.V(); v++) distTo[v] = INFINITY;
064                distTo[s] = 0;
065                marked[s] = true;
066                q.enqueue(s);
067
068                while (!q.isEmpty()) {
069                        int v = q.dequeue();
070                        for (int w : G.adj(v)) {
071                                if (!marked[w]) {
072                                        edgeTo[w] = v;
073                                        distTo[w] = distTo[v] + 1;
074                                        marked[w] = true;
075                                        q.enqueue(w);
076                                }
077                        }
078                }
079        }
080
081        // BFS from multiple sources
082        private void bfs(Graph G, Iterable<Integer> sources) {
083                Queue<Integer> q = new Queue<>();
084                for (int s : sources) {
085                        marked[s] = true;
086                        distTo[s] = 0;
087                        q.enqueue(s);
088                }
089                while (!q.isEmpty()) {
090                        int v = q.dequeue();
091                        for (int w : G.adj(v)) {
092                                if (!marked[w]) {
093                                        edgeTo[w] = v;
094                                        distTo[w] = distTo[v] + 1;
095                                        marked[w] = true;
096                                        q.enqueue(w);
097                                }
098                        }
099                }
100        }
101
102        // is there a path between s (or sources) and v?
103        public boolean hasPathTo(int v) {
104                return marked[v];
105        }
106
107        // length of shortest path between s (or sources) and v
108        public int distTo(int v) {
109                return distTo[v];
110        }
111
112        // shortest path bewteen s (or sources) and v; null if no such path
113        public Iterable<Integer> pathTo(int v) {
114                if (!hasPathTo(v)) return null;
115                Stack<Integer> path = new Stack<>();
116                int x;
117                for (x = v; distTo[x] != 0; x = edgeTo[x])
118                        path.push(x);
119                path.push(x);
120                return path;
121        }
122
123
124        // check optimality conditions for single source
125        private boolean check(Graph G, int s) {
126
127                // check that the distance of s = 0
128                if (distTo[s] != 0) {
129                        StdOut.println("distance of source " + s + " to itself = " + distTo[s]);
130                        return false;
131                }
132
133                // check that for each edge v-w dist[w] <= dist[v] + 1
134                // provided v is reachable from s
135                for (int v = 0; v < G.V(); v++) {
136                        for (int w : G.adj(v)) {
137                                if (hasPathTo(v) != hasPathTo(w)) {
138                                        StdOut.println("edge " + v + "-" + w);
139                                        StdOut.println("hasPathTo(" + v + ") = " + hasPathTo(v));
140                                        StdOut.println("hasPathTo(" + w + ") = " + hasPathTo(w));
141                                        return false;
142                                }
143                                if (hasPathTo(v) && (distTo[w] > distTo[v] + 1)) {
144                                        StdOut.println("edge " + v + "-" + w);
145                                        StdOut.println("distTo[" + v + "] = " + distTo[v]);
146                                        StdOut.println("distTo[" + w + "] = " + distTo[w]);
147                                        return false;
148                                }
149                        }
150                }
151
152                // check that v = edgeTo[w] satisfies distTo[w] + distTo[v] + 1
153                // provided v is reachable from s
154                for (int w = 0; w < G.V(); w++) {
155                        if (!hasPathTo(w) || w == s) continue;
156                        int v = edgeTo[w];
157                        if (distTo[w] != distTo[v] + 1) {
158                                StdOut.println("shortest path edge " + v + "-" + w);
159                                StdOut.println("distTo[" + v + "] = " + distTo[v]);
160                                StdOut.println("distTo[" + w + "] = " + distTo[w]);
161                                return false;
162                        }
163                }
164
165                return true;
166        }
167
168
169        // test client
170        public static void main(String[] args) {
171                //args = new String [] { "data/tinyAG.txt", "0"};
172                args = new String [] { "data/tinyG.txt", "0" };
173                In in = new In(args[0]);
174                Graph G = GraphGenerator.fromIn (in);
175                StdOut.println(G);
176
177                int s = Integer.parseInt(args[1]);
178                BreadthFirstPaths bfs = new BreadthFirstPaths(G, s);
179
180                for (int v = 0; v < G.V(); v++) {
181                        if (bfs.hasPathTo(v)) {
182                                StdOut.format("%d to %d (%d):  ", s, v, bfs.distTo(v));
183                                for (int x : bfs.pathTo(v)) {
184                                        if (x == s) StdOut.print(x);
185                                        else        StdOut.print("-" + x);
186                                }
187                                StdOut.println();
188                        }
189
190                        else {
191                                StdOut.format("%d to %d (-):  not connected\n", s, v);
192                        }
193
194                }
195        }
196
197
198}