001// Exercise 2.3.22 (Solution published at http://algs4.cs.princeton.edu/)
002package algs23;
003import stdlib.*;
004/* ***********************************************************************
005 *  Compilation:  javac QuickX.java
006 *  Execution:    java QuickX N
007 *
008 *  Uses the Bentley-McIlroy 3-way partitioning scheme,
009 *  chooses the partitioning element using Tukey's ninther,
010 *  and cuts off to insertion sort.
011 *
012 *  Reference: Engineering a Sort Function by Jon L. Bentley
013 *  and M. Douglas McIlroy. Softwae-Practice and Experience,
014 *  Vol. 23 (11), 1249-1265 (November 1993).
015 *
016 *************************************************************************/
017
018public class XQuickX {
019        private static final int CUTOFF = 8;  // cutoff to insertion sort, must be >= 1
020
021        public static <T extends Comparable<? super T>> void sort(T[] a) {
022                sort(a, 0, a.length - 1);
023        }
024
025        private static <T extends Comparable<? super T>> void sort(T[] a, int lo, int hi) {
026                int N = hi - lo + 1;
027
028                // cutoff to insertion sort
029                if (N <= CUTOFF) {
030                        insertionSort(a, lo, hi);
031                        return;
032                }
033
034                // use median-of-3 as partitioning element
035                else if (N <= 40) {
036                        int m = median3(a, lo, lo + N/2, hi);
037                        exch(a, m, lo);
038                }
039
040                // use Tukey ninther as partitioning element
041                else  {
042                        int eps = N/8;
043                        int mid = lo + N/2;
044                        int m1 = median3(a, lo, lo + eps, lo + eps + eps);
045                        int m2 = median3(a, mid - eps, mid, mid + eps);
046                        int m3 = median3(a, hi - eps - eps, hi - eps, hi);
047                        int ninther = median3(a, m1, m2, m3);
048                        exch(a, ninther, lo);
049                }
050
051                // Bentley-McIlroy 3-way partitioning
052                int i = lo, j = hi+1;
053                int p = lo, q = hi+1;
054                while (true) {
055                        T v = a[lo];
056                        while (less(a[++i], v))
057                                if (i == hi) break;
058                        while (less(v, a[--j]))
059                                if (j == lo) break;
060                        if (i >= j) break;
061                        exch(a, i, j);
062                        if (eq(a[i], v)) exch(a, ++p, i);
063                        if (eq(a[j], v)) exch(a, --q, j);
064                }
065                exch(a, lo, j);
066
067                i = j + 1;
068                j = j - 1;
069                for (int k = lo+1; k <= p; k++) exch(a, k, j--);
070                for (int k = hi  ; k >= q; k--) exch(a, k, i++);
071
072                sort(a, lo, j);
073                sort(a, i, hi);
074        }
075
076
077        // sort from a[lo] to a[hi] using insertion sort
078        private static <T extends Comparable<? super T>> void insertionSort(T[] a, int lo, int hi) {
079                for (int i = lo; i <= hi; i++)
080                        for (int j = i; j > lo && less(a[j], a[j-1]); j--)
081                                exch(a, j, j-1);
082        }
083
084
085        // return the index of the median element among a[i], a[j], and a[k]
086        private static <T extends Comparable<? super T>> int median3(T[] a, int i, int j, int k) {
087                return (less(a[i], a[j]) ?
088                                (less(a[j], a[k]) ? j : less(a[i], a[k]) ? k : i) :
089                                        (less(a[k], a[j]) ? j : less(a[k], a[i]) ? k : i));
090        }
091
092        /* *********************************************************************
093         *  Helper sorting functions
094         ***********************************************************************/
095
096        // is v < w ?
097        private static <T extends Comparable<? super T>> boolean less(T v, T w) {
098                if (COUNT_OPS) DoublingTest.incOps ();
099                return (v.compareTo(w) < 0);
100        }
101
102        // does v == w ?
103        private static <T extends Comparable<? super T>> boolean eq(T v, T w) {
104                if (COUNT_OPS) DoublingTest.incOps ();
105                return (v.compareTo(w) == 0);
106        }
107
108        // exchange a[i] and a[j]
109        private static void exch(Object[] a, int i, int j) {
110                Object swap = a[i];
111                a[i] = a[j];
112                a[j] = swap;
113        }
114
115
116        /* *********************************************************************
117         *  Check if array is sorted - useful for debugging
118         ***********************************************************************/
119        private static <T extends Comparable<? super T>> boolean isSorted(T[] a) {
120                for (int i = 1; i < a.length; i++)
121                        if (less(a[i], a[i-1])) return false;
122                return true;
123        }
124
125
126        // test code
127        private static boolean COUNT_OPS = false;
128        public static void main(String[] args) {
129
130                StdIn.fromFile ("data/words3.txt");
131
132                String[] a = StdIn.readAllStrings();
133                sort(a);
134
135                // display results
136                for (int i = 0; i < a.length; i++) {
137                        StdOut.println(a[i]);
138                }
139                StdOut.println("isSorted = " + isSorted(a));
140
141                COUNT_OPS = true;
142                DoublingTest.run (20000, 5, N -> ArrayGenerator.integerRandomUnique (N),          (Integer[] x) -> sort (x));
143                DoublingTest.run (20000, 5, N -> ArrayGenerator.integerRandom (N, 2),             (Integer[] x) -> sort (x));
144                DoublingTest.run (20000, 5, N -> ArrayGenerator.integerPartiallySortedUnique (N), (Integer[] x) -> sort (x));
145        }
146
147}