Geometric Applications of BSTs

- 1d range search
- line segment intersection
- kd trees
- interval search trees
- rectangle intersection
Overview

This lecture. Intersections among geometric objects.

Applications. CAD, games, movies, virtual reality, VLSI design, databases,

Efficient solutions. Binary search trees (and extensions).
1d range search
- line segment intersection
- kd trees
- interval search trees
- rectangle intersection
1d range search

Extension of ordered symbol table.
• Insert key-value pair.
• Search for key k.
• Delete key k.
• Range search: find all keys between k_1 and k_2.
• Range count: number of keys between k_1 and k_2.

Application. Database queries.

Geometric interpretation.
• Keys are point on a line.
• Find/count points in a given 1d interval.

insert B B
insert D B D
insert A A B D
insert I A B D I
insert H A B D H I
insert F A B D F H I
insert P A B D F H I P
count G to K 2
search G to K H I
1d range search: implementations

Unordered array. Fast insert, slow range search.

Ordered array. Slow insert, binary search for k_1 and k_2 to do range search.

<table>
<thead>
<tr>
<th>data structure</th>
<th>insert</th>
<th>range count</th>
<th>range search</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ordered array</td>
<td>N</td>
<td>log N</td>
<td>R + log N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters.</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N = number of keys.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R = number of keys that match.</td>
<td></td>
<td>running time is output sensitive</td>
<td>(number of matching keys can be N)</td>
</tr>
</tbody>
</table>
1d range count: BST implementation

1d range count. How many keys between lo and hi?

Proposition. Running time is proportional to $\log N$ (assuming BST is balanced).

Pf. Nodes examined = search path to lo + search path to hi.

public int size(Key lo, Key hi) {
 if (contains(hi)) return rank(hi) - rank(lo) + 1;
 else return rank(hi) - rank(lo); // number of keys < hi
1d range search. Find all keys between \(lo \) and \(hi \).
- Recursively find all keys in left subtree (if any could fall in range).
- Check key in current node.
- Recursively find all keys in right subtree (if any could fall in range).

Proposition. Running time is proportional to \(R + \log N \) (assuming BST is balanced).

Pf. Nodes examined = search path to \(lo \) + search path to \(hi \) + matching keys.
- 1d range search
- line segment intersection
- kd trees
- interval search trees
- rectangle intersection
Orthogonal line segment intersection search

Given N horizontal and vertical line segments, find all intersections.

Nondegeneracy assumption. All x- and y-coordinates are distinct.

Quadratic algorithm. Check all pairs of line segments for intersection.
Orthogonal line segment intersection search: sweep-line algorithm

Sweep vertical line from left to right.
• \(x\)-coordinates define events.
• \(h\)-segment (left endpoint): insert \(y\)-coordinate into BST.
Orthogonal line segment intersection search: sweep-line algorithm

Sweep vertical line from left to right.
• \(x\)-coordinates define events.
• \(h\)-segment (left endpoint): insert \(y\)-coordinate into BST.
• \(h\)-segment (right endpoint): remove \(y\)-coordinate from BST.
Orthogonal line segment intersection search: sweep-line algorithm

Sweep vertical line from left to right.
- \(x\)-coordinates define events.
- \(h\)-segment (left endpoint): insert \(y\)-coordinate into BST.
- \(h\)-segment (right endpoint): remove \(y\)-coordinate from BST.
- \(v\)-segment: range search for interval of \(y\)-endpoints.
Orthogonal line segment intersection search: sweep-line algorithm analysis

Proposition. The sweep-line algorithm takes time proportional to $N \log N + R$ to find all R intersections among N orthogonal line segments.

Pf.
- Put x-coordinates on a PQ (or sort). $\longrightarrow N \log N$
- Insert y-coordinates into BST. $\longrightarrow N \log N$
- Delete y-coordinates from BST. $\longrightarrow N \log N$
- Range searches in BST. $\longrightarrow N \log N + R$

Bottom line. Sweep line reduces 2d orthogonal line segment intersection search to 1d range search.
General line segment intersection search

Sweep-line algorithm.
- Maintain segments that intersect sweep line ordered by y-coordinate.
- Intersections can only occur between adjacent segments.
- Delete/add line segment \Rightarrow one/two new pairs of adjacent segments.
- Intersection \Rightarrow swap adjacent segments.
General line segment intersection search: implementation

Sweep-line algorithm.
• Maintain PQ of important x-coordinates: endpoints and intersections.
• Maintain set of segments intersecting sweep line, in BST sorted by y-coordinates.

Proposition. The sweep-line algorithm takes time proportional to
$R \log N + N \log N$ to find all R intersections among N orthogonal line segments.

Implementation issues.
• Degeneracy.
• Floating-point precision.
• Must use PQ, not presort (intersection events are unknown ahead of time).
- 1d range search
- line segment intersection
- **kd trees**
- interval search trees
- rectangle intersection
2-d orthogonal range search

Extension of ordered symbol-table to 2d keys.

- Insert a 2d key.
- Delete a 2d key.
- Search for a 2d key.
- **Range search**: find all keys that lie in a 2d range.
- **Range count**: number of keys that lie in a 2d range.

Geometric interpretation.

- Keys are point in the plane.
- Find/count points in a given \(h-v \) rectangle.

Applications. Networking, circuit design, databases.
Grid implementation.

- Divide space into M-by-M grid of squares.
- Create list of points contained in each square.
- Use 2d array to directly index relevant square.
- Insert: add (x, y) to list for corresponding square.
- Range search: examine only those squares that intersect 2d range query.
2d orthogonal range search: grid implementation costs

Space-time tradeoff.
- Space: $M^2 + N$.
- Time: $1 + N / M^2$ per square examined, on average.

Choose grid square size to tune performance.
- Too small: wastes space.
- Too large: too many points per square.
- Rule of thumb: \sqrt{N}-by-\sqrt{N} grid.

Running time. [if points are evenly distributed]
- Initialize data structure: N.
- Insert point: 1.
- Range search: 1 per point in range.
Clustering

Grid implementation. Fast and simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.
- Lists are too long, even though average length is short.
- Need data structure that *gracefully* adapts to data.
Clustered

Grid implementation. Fast and simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.

Ex. USA map data.

13,000 points, 1000 grid squares

half the squares are empty

half the points are in 10% of the squares
Space-partitioning trees

Use a tree to represent a recursive subdivision of 2d space.

Grid. Divide space uniformly into squares.

2d tree. Recursively divide space into two halfplanes.

Quadtree. Recursively divide space into four quadrants.

BSP tree. Recursively divide space into two regions.
Space-partitioning trees: applications

Applications.
• Ray tracing.
• 2d range search.
• Flight simulators.
• N-body simulation.
• Collision detection.
• Astronomical databases.
• Nearest neighbor search.
• Adaptive mesh generation.
• Accelerate rendering in Doom.
• Hidden surface removal and shadow casting.

Grid
2d tree
Quadtree
BSP tree
2d tree demo
Recursively partition plane into two halfplanes.
Data structure. BST, but alternate using x- and y-coordinates as key.

- Search gives rectangle containing point.
- Insert further subdivides the plane.
2d tree demo: 2d orthogonal range search and nearest neighbor search
Range search. Find all points in a query axis-aligned rectangle.
- Check if point in node lies in given rectangle.
- Recursively search left/bottom subdivision (if any could fall in rectangle).
- Recursively search right/top subdivision (if any could fall in rectangle).

Typical case. $R + \log N$.

Worst case (assuming tree is balanced). $R + \sqrt{N}$.
Nearest neighbor search. Given a query point, find the closest point.
• Check distance from point in node to query point.
• Recursively search left/bottom subdivision (if it could contain a closer point).
• Recursively search right/top subdivision (if it could contain a closer point).
• Organize recursive method so that it begins by searching for query point.

Typical case. $\log N$.
Worst case (even if tree is balanced). N.

query point

closest point = 5
Point data type

```java
public class Point2D implements Comparable<Point2D>
```

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Point2D(double x, double y)</code></td>
<td>create point ((x, y))</td>
</tr>
<tr>
<td><code>double x()</code></td>
<td>(x)-coordinate</td>
</tr>
<tr>
<td><code>double y()</code></td>
<td>(y)-coordinate</td>
</tr>
<tr>
<td><code>double distanceTo(Point2D p)</code></td>
<td>Euclidean distance between two points</td>
</tr>
<tr>
<td><code>double distanceToSquared(Point2D p)</code></td>
<td>square of Euclidean distance</td>
</tr>
<tr>
<td><code>int compareTo(Point2D that)</code></td>
<td>natural order</td>
</tr>
<tr>
<td><code>boolean equals(Object that)</code></td>
<td>does this point equal that?</td>
</tr>
</tbody>
</table>

why include this method?
Axis-aligned rectangle data type

public class RectHV

- RectHV(...) create \([x_{min}, x_{max}] \times [y_{min}, y_{max}]\)
- boolean contains(Point2D p) does this rectangle contain \(p\)?
- boolean intersects(RectHV that) do two rectangles intersect?
- double distanceTo(Point2D p) Euclidean distance from \(p\) to rectangle
- boolean equals(Object that) does this rectangle equal \(that\)?

how to implement?

![Diagram showing an axis-aligned rectangle and points](image)
Flocking birds

Q. What "natural algorithm" do starlings, migrating geese, starlings, cranes, bait balls of fish, and flashing fireflies use to flock?

http://www.youtube.com/watch?v=XH-groCeKbE
Flocking boids [Craig Reynolds, 1986]

Boids. Three simple rules lead to complex emergent flocking behavior:
• Collision avoidance: point away from \(k \) nearest boids.
• Flock centering: point towards the center of mass of \(k \) nearest boids.
• Velocity matching: update velocity to the average of \(k \) nearest boids.
Kd tree

Kd tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

Efficient, simple data structure for processing k-dimensional data.

• Widely used.
• Adapts well to high-dimensional and clustered data.
• Discovered by an undergrad in an algorithms class!

Jon Bentley
Goal. Simulate the motion of N particles, mutually affected by gravity.

Brute force. For each pair of particles, compute force.

$$F = \frac{G m_1 m_2}{r^2}$$

http://www.youtube.com/watch?v=ua7YIN4eL_w
Key idea. Suppose particle is far, far away from cluster of particles.

- Treat cluster of particles as a single aggregate particle.
- Compute force between particle and center of mass of aggregate particle.
Appel algorithm for N-body simulation

- Build 3d-tree with \(N \) particles as nodes.
- Store center-of-mass of subtree in each node.
- To compute total force acting on a particle, traverse tree, but stop as soon as distance from particle to subdivision is sufficiently large.

\[\text{AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION}^* \]

ANDREW W. APPEL†

Abstract. The simulation of \(N \) particles interacting in a gravitational force field is useful in astrophysics, but such simulations become costly for large \(N \). Representing the universe as a tree structure with the particles at the leaves and internal nodes labeled with the centers of mass of their descendants allows several simultaneous attacks on the computation time required by the problem. These approaches range from algorithmic changes (replacing an \(O(N^2) \) algorithm with an algorithm whose time-complexity is believed to be \(O(N \log N) \)) to data structure modifications, code-tuning, and hardware modifications. The changes reduced the running time of a large problem (\(N = 10,000 \)) by a factor of four hundred. This paper describes both the particular program and the methodology underlying such speedups.

Impact. Running time per step is \(N \log N \) instead of \(N^2 \) \(\Rightarrow \) enables new research.
1d range search
line segment intersection
kd trees
interval search trees
rectangle intersection
1d interval search

1d interval search. Data structure to hold set of (overlapping) intervals.
- Insert an interval \((lo, hi)\).
- Search for an interval \((lo, hi)\).
- Delete an interval \((lo, hi)\).
- **Interval intersection query**: given an interval \((lo, hi)\), find all intervals in data structure overlapping \((lo, hi)\).
Interval search trees

```java
public class IntervalST<Key extends Comparable<Key>, Value> {
    IntervalST() {
        // create interval search tree
    }
    void put(Key lo, Key hi, Value val) {
        // put interval-value pair into ST
    }
    Value get(Key lo, Key hi) {
        // value paired with given interval
    }
    void delete(Key lo, Key hi) {
        // delete the given interval
    }
    Iterable<Value> intersects(Key lo, Key hi) {
        // all intervals that intersect the given interval
    }
}
```

Nondegeneracy assumption. No two intervals have the same left endpoint.
Interval search trees

Create BST, where each node stores an interval \((lo, hi)\).
- Use left endpoint as BST key.
- Store max endpoint in subtree rooted at node.
Interval search tree demo
Insert an interval

To insert an interval \((lo, hi)\):

- Insert into BST, using \(lo\) as the key.
- Update max in each node on search path.

insert (16, 22)

after insertion
Search for an intersecting interval

To search for any one interval that intersects query interval \((lo, hi)\):
- If interval in node intersects query interval, return it.
- Else if left subtree is empty, go right.
- Else if max endpoint in left subtree is less than \(lo\), go right.
- Else go left.

```java
Node x = root;
while (x != null)
{
    if      (x.interval.intersects(lo, hi)) return x.interval;
    else if (x.left == null)                x = x.right;
    else if (x.left.max < lo)               x = x.right;
    else                                    x = x.left;
}
return null;
```
Search for an intersecting interval

To search for any one interval that intersects query interval \((lo, hi)\):
• If interval in node intersects query interval, return it.
• Else if left subtree is empty, go right.
• Else if max endpoint in left subtree is less than \(lo\), go right.
• Else go left.

Case 1. If search goes right, then no intersection in left.

Pf.
• Left subtree is empty \(\Rightarrow\) trivial.
• Max endpoint \(\max\) in left subtree is less than \(lo\) \(\Rightarrow\)
 for any interval \((a, b)\) in left subtree of \(x\),
 we have \(b \leq \max < lo\).
Search for an intersecting interval

To search for any one interval that intersects query interval \((lo, hi)\):

- If interval in node intersects query interval, return it.
- Else if left subtree is empty, go right.
- Else if max endpoint in left subtree is less than \(lo\), go right.
- Else go left.

Case 2. If search goes left, then there is either an intersection in left subtree or no intersections in either.

Pf. Suppose no intersection in left.

- Since went left, we have \(lo \leq max\).
- Then for any interval \((a, b)\) in right subtree of \(x\),

 \[hi < c \leq a \Rightarrow \text{no intersection in right}.\]
Interval search tree: analysis

Implementation. Use a **red-black BST** to guarantee performance.

- can maintain auxiliary information using log N extra work per op

<table>
<thead>
<tr>
<th>operation</th>
<th>brute</th>
<th>interval search tree</th>
<th>best in theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert interval</td>
<td>1</td>
<td>log N</td>
<td>log N</td>
</tr>
<tr>
<td>find interval</td>
<td>N</td>
<td>log N</td>
<td>log N</td>
</tr>
<tr>
<td>delete interval</td>
<td>N</td>
<td>log N</td>
<td>log N</td>
</tr>
<tr>
<td>find any one interval that intersects (lo, hi)</td>
<td>N</td>
<td>log N</td>
<td>log N</td>
</tr>
<tr>
<td>find all intervals that intersects (lo, hi)</td>
<td>N</td>
<td>R log N</td>
<td>R + log N</td>
</tr>
</tbody>
</table>

order of growth of running time for N intervals
1d range search
line segment intersection
kd trees
interval search trees
rectangle intersection
Orthogonal rectangle intersection search

Goal. Find all intersections among a set of N orthogonal rectangles.

Non-degeneracy assumption. All x- and y-coordinates are distinct.

Quadratic algorithm. Check all pairs of rectangles for intersection.
Microprocessors and geometry

Early 1970s. microprocessor design became a geometric problem.
- Very Large Scale Integration (VLSI).
- Computer-Aided Design (CAD).

Design-rule checking.
- Certain wires cannot intersect.
- Certain spacing needed between different types of wires.
- Debugging = orthogonal rectangle intersection search.
Orthogonal rectangle intersection search: sweep-line algorithm

Sweep vertical line from left to right.

- \(x\)-coordinates of left and right endpoints define events.
- Maintain set of rectangles that intersect the sweep line in an interval search tree (using \(y\)-intervals of rectangle).
- Left endpoint: interval search for \(y\)-interval of rectangle; insert \(y\)-interval.
- Right endpoint: remove \(y\)-interval.
Orthogonal rectangle intersection search: sweep-line algorithm analysis

Proposition. Sweep line algorithm takes time proportional to $N \log N + R \log N$ to find R intersections among a set of N rectangles.

Pf.

- Put x-coordinates on a PQ (or sort). $\leftarrow N \log N$
- Insert y-intervals into ST. $\leftarrow N \log N$
- Delete y-intervals from ST. $\leftarrow N \log N$
- Interval searches for y-intervals. $\leftarrow N \log N + R \log N$

Bottom line. Sweep line reduces 2d orthogonal rectangle intersection search to 1d interval search.
Geometric applications of BSTs

<table>
<thead>
<tr>
<th>problem</th>
<th>example</th>
<th>solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1d range search</td>
<td></td>
<td>BST</td>
</tr>
<tr>
<td>2d orthogonal line segment intersection search</td>
<td></td>
<td>sweep line reduces to 1d range search</td>
</tr>
<tr>
<td>kd range search</td>
<td></td>
<td>kd tree</td>
</tr>
<tr>
<td>1d interval search</td>
<td></td>
<td>interval search tree</td>
</tr>
<tr>
<td>2d orthogonal rectangle intersection search</td>
<td></td>
<td>sweep line reduces to 1d interval search</td>
</tr>
</tbody>
</table>