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Algorithms
F O U R T H  E D I T I O N

R O B E R T  S E D G E W I C K   K E V I N  W A Y N E

GEOMETRIC APPLICATIONS OF BSTS

‣ 1d range search
‣ line segment intersection
‣ kd trees
‣ interval search trees
‣ rectangle intersection



This lecture.  Intersections among geometric objects.

Applications.  CAD, games, movies, virtual reality, VLSI design, databases, .…

Efficient solutions.  Binary search trees (and extensions).
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Overview

2d orthogonal range search orthogonal rectangle intersection



‣ 1d range search
‣ line segment intersection
‣ kd trees
‣ interval search trees
‣ rectangle intersection
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1d range search

Extension of ordered symbol table.

• Insert key-value pair.

• Search for key k.

• Delete key k.

• Range search:  find all keys between k1 and k2.

• Range count:  number of keys between k1 and k2.

Application.  Database queries.

Geometric interpretation.

• Keys are point on a line.

• Find/count points in a given 1d interval.

insert B  B

insert D  B D

insert A  A B D

insert I  A B D I

insert H  A B D H I

insert F  A B D F H I

insert P  A B D F H I P

count G to K  2

search G to K  H I
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1d range search:  implementations

Unordered array.  Fast insert, slow range search.
Ordered array.  Slow insert, binary search for k1 and k2 to do range search.

Parameters.

• N  = number of keys.

• R  = number of keys that match.

data structure insert range count range search

unordered array 1 N N

ordered array N log N R + log N

goal log N log N R + log N

running time is output sensitive
(number of matching keys can be N)

order of growth of running time for 1d range search
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1d range count:  BST implementation

1d range count.  How many keys between lo and hi ?

Proposition.  Running time is proportional to log N (assuming BST is balanced).
Pf.  Nodes examined = search path to lo + search path to hi.

public int size(Key lo, Key hi) 
{ 
   if (contains(hi)) return rank(hi) - rank(lo) + 1; 
   else              return rank(hi) - rank(lo); 
} 

number of keys < hi
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1d range search.  Find all keys between lo and hi.

• Recursively find all keys in left subtree (if any could fall in range).

• Check key in current node.

• Recursively find all keys in right subtree (if any could fall in range).

Proposition.  Running time is proportional to R + log N (assuming BST is balanced).
Pf.  Nodes examined = search path to lo + search path to hi + matching keys.
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1d range search:  BST implementation

black keys are
in the range

red keys are used in compares
but are not in the range

A
C

E

H

L
M

P

R

S
X

searching in the range [F..T]

Range search in a BST



‣ 1d range search
‣ line segment intersection
‣ kd trees
‣ interval search trees
‣ rectangle intersection
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Orthogonal line segment intersection search

Given N horizontal and vertical line segments, find all intersections.

Nondegeneracy assumption.  All x- and y-coordinates are distinct.
Quadratic algorithm.  Check all pairs of line segments for intersection.



Sweep vertical line from left to right.

• x-coordinates define events.

• h-segment (left endpoint):  insert y-coordinate into BST.
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Orthogonal line segment intersection search:  sweep-line algorithm
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Sweep vertical line from left to right.

• x-coordinates define events.

• h-segment (left endpoint):  insert y-coordinate into BST.

• h-segment (right endpoint):  remove y-coordinate from BST.

11

Orthogonal line segment intersection search:  sweep-line algorithm
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Sweep vertical line from left to right.

• x-coordinates define events.

• h-segment (left endpoint):  insert y-coordinate into BST.

• h-segment (right endpoint):  remove y-coordinate from BST.

• v-segment:  range search for interval of y-endpoints.
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Orthogonal line segment intersection search:  sweep-line algorithm

1d range
search
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Orthogonal line segment intersection search:  sweep-line algorithm analysis

Proposition. The sweep-line algorithm takes time proportional to N log N + R

to find all R intersections among N orthogonal line segments.

Pf.

• Put x-coordinates on a PQ (or sort).

• Insert y-coordinates into BST.

• Delete y-coordinates from BST.

• Range searches in BST.

Bottom line.  Sweep line reduces 2d orthogonal line segment intersection 
search to 1d range search.

N log N

N log N

N log N

N log N + R
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General line segment intersection search

Sweep-line algorithm.

• Maintain segments that intersect sweep line ordered by y-coordinate.

• Intersections can only occur between adjacent segments.

• Delete/add line segment  ⇒  one/two new pairs of adjacent segments.

• Intersection  ⇒  swap adjacent segments.

order of segments that intersect sweep line

A

C

B

ABC ACB

D

ACD CADA AB

insert segment

delete segment

intersectionACBD CA A
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General line segment intersection search:  implementation

Sweep-line algorithm.

• Maintain PQ of important x-coordinates:  endpoints and intersections.

• Maintain set of segments intersecting sweep line, in BST sorted by y-

coordinates.

Proposition. The sweep-line algorithm takes time proportional to
R log N + N log N to find all R intersections among N orthogonal line segments.

Implementation issues.

• Degeneracy.

• Floating-point precision.

• Must use PQ, not presort (intersection events are unknown ahead of time).

to support "next largest" and
"next smallest" queries



‣ 1d range search
‣ line segment intersection
‣ kd trees
‣ interval search trees
‣ rectangle intersection

16



17

2-d orthogonal range search

Extension of ordered symbol-table to 2d keys.

• Insert a 2d key.

• Delete a 2d key.

• Search for a 2d key.

• Range search:  find all keys that lie in a 2d range.

• Range count:  number of keys that lie in a 2d range.

Geometric interpretation.

• Keys are point in the plane.

• Find/count points in a given h-v rectangle.

Applications.  Networking, circuit design, databases.

rectangle is axis-aligned
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2d orthogonal range search:  grid implementation

Grid implementation.

• Divide space into M-by-M grid of squares.

• Create list of points contained in each square.

• Use 2d array to directly index relevant square. 

• Insert:  add (x, y) to list for corresponding square.

• Range search:  examine only those squares that intersect 2d range query.

LB

RT
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2d orthogonal range search:  grid implementation costs

Space-time tradeoff.

• Space:  M 2 + N.

• Time:  1  +  N / M 2 per square examined, on average.

Choose grid square size to tune performance.

• Too small:  wastes space.

• Too large:  too many points per square.

• Rule of thumb:  √N-by-√N grid.

Running time.  [if points are evenly distributed]

• Initialize data structure:  N.

• Insert point:  1.

• Range search:  1 per point in range.

choose M ~ √N 

LB

RT



Grid implementation.  Fast and simple solution for evenly-distributed points.

Problem.  Clustering a well-known phenomenon in geometric data.

• Lists are too long, even though average length is short.

• Need data structure that gracefully adapts to data.

20

Clustering



Grid implementation.  Fast and simple solution for evenly-distributed points.

Problem.  Clustering a well-known phenomenon in geometric data.
Ex.  USA map data.

21

Clustering

half the squares are empty half the points are
in 10% of the squares

13,000 points, 1000 grid squares



Use a tree to represent a recursive subdivision of 2d space.

Grid.  Divide space uniformly into squares.
2d tree.   Recursively divide space into two halfplanes. 
Quadtree.  Recursively divide space into four quadrants.
BSP tree.  Recursively divide space into two regions.

22

Space-partitioning trees

Grid 2d tree BSP treeQuadtree



Applications.

• Ray tracing.

• 2d range search.

• Flight simulators.

• N-body simulation.

• Collision detection.

• Astronomical databases. 

• Nearest neighbor search. 

• Adaptive mesh generation.

• Accelerate rendering in Doom.

• Hidden surface removal and shadow casting. 
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Space-partitioning trees:  applications

Grid 2d tree BSP treeQuadtree
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2d tree demo



Recursively partition plane into two halfplanes.
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Data structure.  BST, but alternate using x- and y-coordinates as key.

• Search gives rectangle containing point.

• Insert further subdivides the plane.
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2d tree implementation

even levels
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2d tree demo: 2d orthogonal range search and nearest neighbor search
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Range search.  Find all points in a query axis-aligned rectangle.

• Check if point in node lies in given rectangle.

• Recursively search left/bottom subdivision (if any could fall in rectangle).

• Recursively search right/top subdivision (if any could fall in rectangle).

Typical case.  R + log N.

Worst case (assuming tree is balanced).  R + √N.
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2d tree:  2d orthogonal range search
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2d tree:  nearest neighbor search

Nearest neighbor search.  Given a query point, find the closest point.

• Check distance from point in node to query point.

• Recursively search left/bottom subdivision (if it could contain a closer point).

• Recursively search right/top subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

Typical case.  log N. 
Worst case (even if tree is balanced).  N.

query point
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Point data type

  public class Point2D implements Comparable<Point2D>  public class Point2D implements Comparable<Point2D>  public class Point2D implements Comparable<Point2D>

Point2D(double x, double y) create point (x, y)

double x() x-coordinate

double y() y-coordinate

double distanceTo(Point2D p) Euclidean distance between two points

double distanceToSquared(Point2D p) square of Euclidean distance

int compareTo(Point2D that) natural order

boolean equals(Object that) does this point equal that?

why include this method?
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Axis-aligned rectangle data type

  public class RectHV  public class RectHV  public class RectHV

RectHV(...) create [xmin, xmax] x [ymin, ymax]

boolean contains(Point2D p) does this rectangle contain p?

boolean intersects(RectHV that) do two rectangles intersect?

double   distanceTo(Point2D p) Euclidean distance from p to rectangle

boolean equals(Object that) does this rectangle equal that?

how to implement?

intersects r

contained in r

axis-aligned rectangle r

(0.4, 0.3)

(0.0, 0.0)

(0.1, 0.4)
0.3

(0.4, 0.4)

0.5

(xmax, ymax)

(xmin, ymin)
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Flocking birds

Q.   What "natural algorithm" do starlings, migrating geese, starlings, cranes, 
bait balls of fish, and flashing fireflies use to flock?

http://www.youtube.com/watch?v=XH-groCeKbE
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Flocking boids  [Craig Reynolds, 1986]

Boids.  Three simple rules lead to complex emergent flocking behavior:

• Collision avoidance:  point away from k nearest boids.

• Flock centering:  point towards the center of mass of k nearest boids.

• Velocity matching:  update velocity to the average of k nearest boids.
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Kd tree

Kd tree.  Recursively partition k-dimensional space into 2 halfspaces. 

Implementation.  BST, but cycle through dimensions ala 2d trees.

Efficient, simple data structure for processing k-dimensional data.

• Widely used.

• Adapts well to high-dimensional and clustered data. 

• Discovered by an undergrad in an algorithms class!

level ≡ i (mod k)

points
whose ith
coordinate

is less than p’s

points
whose ith
coordinate

is greater than p’s

p

Jon Bentley



Goal.  Simulate the motion of N particles, mutually affected by gravity. 

Brute force.  For each pair of particles, compute force.
35

N-body simulation

F =
G m1 m2

r2

http://www.youtube.com/watch?v=ua7YlN4eL_w
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Appel algorithm for N-body simulation

Key idea.  Suppose particle is far, far away from cluster of particles.

• Treat cluster of particles as a single aggregate particle.

• Compute force between particle and center of mass of aggregate particle.
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Appel algorithm for N-body simulation

• Build 3d-tree with N particles as nodes.

• Store center-of-mass of subtree in each node.

• To compute total force acting on a particle, traverse tree, but stop as soon 
as distance from particle to subdivision is sufficiently large.

Impact.  Running time per step is N log N instead of N 2 ⇒ enables new research.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics
O08

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION*
ANDREW W. APPEL

Abstract. The simulation of N particles interacting in a gravitational force field is useful in astrophysics,
but such simulations become costly for large N. Representing the universe as a tree structure with the
particles at the leaves and internal nodes labeled with the centers of mass of their descendants allows several
simultaneous attacks on the computation time required by the problem. These approaches range from
algorithmic changes (replacing an O(N’) algorithm with an algorithm whose time-complexity is believed
to be O(N log N)) to data structure modifications, code-tuning, and hardware modifications. The changes
reduced the running time of a large problem (N 10,000) by a factor of four hundred. This paper describes
both the particular program and the methodology underlying such speedups.

1. Introduction. Isaac Newton calculated the behavior of two particles interacting
through the force of gravity, but he was unable to solve the equations for three particles.
In this he was not alone [7, p. 634], and systems of three or more particles can be
solved only numerically. Iterative methods are usually used, computing at each discrete
time interval the force on each particle, and then computing the new velocities and
positions for each particle.

A naive implementation of an iterative many-body simulator is computationally
very expensive for large numbers of particles, where "expensive" means days of Cray-1
time or a year of VAX time. This paper describes the development of an efficient
program in which several aspects of the computation were made faster. The initial
step was the use of a new algorithm with lower asymptotic time complexity; the use
of a better algorithm is often the way to achieve the greatest gains in speed [2].

Since every particle attracts each of the others by the force of gravity, there are
O(N2) interactions to compute for every iteration. Furthermore, for the same reasons
that the closed form integral diverges for small distances (since the force is proportional
to the inverse square of the distance between two bodies), the discrete time interval
must be made extremely small in the case that two particles pass very close to each
other. These are the two problems on which the algorithmic attack concentrated. By
the use of an appropriate data structure, each iteration can be done in time believed
to be O(N log N), and the time intervals may be made much larger, thus reducing
the number of iterations required. The algorithm is applicable to N-body problems in
any force field with no dipole moments; it is particularly useful when there is a severe
nonuniformity in the particle distribution or when a large dynamic range is required
(that is, when several distance scales in the simulation are of interest).

The use of an algorithm with a better asymptotic time complexity yielded a
significant improvement in running time. Four additional attacks on the problem were
also undertaken, each of which yielded at least a factor of two improvement in speed.
These attacks ranged from insights into the physics down to hand-coding a routine in
assembly language. By finding savings at many design levels, the execution time of a
large simulation was reduced from (an estimated) 8,000 hours to 20 (actual) hours.
The program was used to investigate open problems in cosmology, giving evidence to
support a model of the universe with random initial mass distribution and high mass
density.

* Received by the editors March 24, 1983, and in revised form October 1, 1983.r Computer Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213. This
research was supported by a National Science Foundation Graduate Student Fellowship and by the office
of Naval Research under grant N00014-76-C-0370.
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‣ 1d range search
‣ line segment intersection
‣ kd trees
‣ interval search trees
‣ rectangle intersection
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1d interval search.  Data structure to hold set of (overlapping) intervals.

• Insert an interval ( lo,  hi ).

• Search for an interval ( lo,  hi ).

• Delete an interval ( lo,  hi ).

• Interval intersection query:  given an interval ( lo,  hi ), find all intervals
in data structure overlapping ( lo,  hi ).

1d interval search

(7, 10)

(5, 8)

(4, 8) (15, 18)

(17, 19)

(21, 24)
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Nondegeneracy assumption. No two intervals have the same left endpoint.

Interval search trees

    public class IntervalST<Key extends Comparable<Key>, Value>    public class IntervalST<Key extends Comparable<Key>, Value>    public class IntervalST<Key extends Comparable<Key>, Value>

IntervalST() create interval search tree

void put(Key lo, Key hi, Value val) put interval-value pair into ST

Value get(Key lo, Key hi) value paired with given interval

void delete(Key lo, Key hi) delete the given interval

Iterable<Value> intersects(Key lo, Key hi)
all intervals that intersect

the given interval



Create BST, where each node stores an interval ( lo,  hi ).

• Use left endpoint as BST key. 

• Store max endpoint in subtree rooted at node.
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Interval search trees

binary search tree
(left endpoint is key)

(17, 19)

(5, 8) (21, 24)

(4, 8) (15, 18)

(7, 10)

24

18

8 18

10

24

max endpoint in
subtree rooted at node
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Interval search tree demo
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Insert an interval

To insert an interval ( lo,  hi ) :

• Insert into BST, using lo as the key.

• Update max in each node on search path.

(17, 19)

(5, 8) (21, 24)

(4, 8) (15, 18)

(7, 10)

24

18

8 18

10

24

insert (16, 22)
(17, 19)

(5, 8) (21, 24)

(4, 8) (15, 18)

(7, 10)

24

22

8 22

10

24

after insertion

22(16, 22)
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Search for an intersecting interval

To search for any one interval that intersects query interval ( lo,  hi ) :

• If interval in node intersects query interval, return it.

• Else if left subtree is empty, go right.

• Else if max endpoint in left subtree is less than lo, go right.

• Else go left.

 Node x = root;
 while (x != null)
 {
    if      (x.interval.intersects(lo, hi)) return x.interval;
    else if (x.left == null)                x = x.right;
    else if (x.left.max < lo)               x = x.right;
    else                                    x = x.left;
 }
 return null;
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Search for an intersecting interval

To search for any one interval that intersects query interval ( lo,  hi ) :

• If interval in node intersects query interval, return it.

• Else if left subtree is empty, go right.

• Else if max endpoint in left subtree is less than lo, go right.

• Else go left.

Case 1.  If search goes right, then no intersection in left.

Pf. 

• Left subtree is empty ⇒  trivial.

• Max endpoint max in left subtree is less than lo  ⇒
for any interval (a, b) in left subtree of x,
we have b  ≤  max  <  lo.

left subtree of x

(lo, hi)

max

(a, b)definition of max reason for going right

right subtree of x

(c, max)
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Search for an intersecting interval

To search for any one interval that intersects query interval ( lo,  hi ) :

• If interval in node intersects query interval, return it.

• Else if left subtree is empty, go right.

• Else if max endpoint in left subtree is less than lo, go right.

• Else go left.

Case 2.  If search goes left, then there is either an intersection in left 
subtree or no intersections in either.

Pf.  Suppose no intersection in left.

• Since went left, we have lo  ≤  max.

• Then for any interval (a, b) in right subtree of x, 
hi  < c  ≤  a  ⇒  no intersection in right.

no intersections
in left subtree

intervals sorted
by left endpoint

left subtree of x

(a, b)

right subtree of x

(c, max)

(lo, hi)

max
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Interval search tree:  analysis

Implementation.  Use a red-black BST to guarantee performance.

can maintain auxiliary information
using log N extra work per op

operation brute
interval

search tree
best

in theory

insert interval 1 log N log N

find interval N log N log N

delete interval N log N log N

find any one interval
that intersects (lo, hi)

N log N log N

find all intervals
that intersects (lo, hi)

N R log N R + log N

order of growth of running time for N intervals



‣ 1d range search
‣ line segment intersection
‣ kd trees
‣ interval search trees
‣ rectangle intersection
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Orthogonal rectangle intersection search

Goal.  Find all intersections among a set of N orthogonal rectangles.

Non-degeneracy assumption.  All x- and y-coordinates are distinct.
Quadratic algorithm.  Check all pairs of rectangles for intersection.

0

1

2

3
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Microprocessors and geometry

Early 1970s.  microprocessor design became a geometric problem.

• Very Large Scale Integration (VLSI).

• Computer-Aided Design (CAD).

Design-rule checking.

• Certain wires cannot intersect.

• Certain spacing needed between different types of wires.

• Debugging = orthogonal rectangle intersection search.



Sweep vertical line from left to right.

• x-coordinates of left and right endpoints define events.

• Maintain set of rectangles that intersect the sweep line in an interval 
search tree (using y-intervals of rectangle). 

• Left endpoint:  interval search for y-interval of rectangle; insert y-interval.

• Right endpoint:  remove y-interval.
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Orthogonal rectangle intersection search:  sweep-line algorithm

y-coordinates
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Orthogonal rectangle intersection search:  sweep-line algorithm analysis

Proposition. Sweep line algorithm takes time proportional to N log N + R log N

to find R intersections among a set of N rectangles. 

Pf.

• Put x-coordinates on a PQ (or sort).

• Insert y-intervals into ST.

• Delete y-intervals from ST.

• Interval searches for y-intervals. 

Bottom line.  Sweep line reduces 2d orthogonal rectangle intersection search 
to 1d interval search. 

N log N

N log N

N log N

N log N + R log N



problem example solution

1d range search BST

2d orthogonal line segment 
intersection search

sweep line reduces to
1d range search

kd range search kd tree

1d interval search interval search tree

2d orthogonal rectangle 
intersection search

sweep line reduces to
1d interval search

Geometric applications of BSTs
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