Combinatorial Search

- permutations
- backtracking
- counting
- subsets
- paths in a graph
Implications of NP-completeness

"I can't find an efficient algorithm, but neither can all these famous people."
Overview

Exhaustive search. Iterate through all elements of a search space.

Applicability. Huge range of problems (include intractable ones).

Caveat. Search space is typically exponential in size ⇒ effectiveness may be limited to relatively small instances.

Backtracking. Systematic method for examining feasible solutions to a problem, by systematically pruning infeasible ones.
Warmup: enumerate N-bit strings

Goal. Process all 2^N bit strings of length N.
- Maintain array $a[]$ where $a[i]$ represents bit i.
- Simple recursive method does the job.

```java
// enumerate bits in a[k] to a[N-1]
private void enumerate(int k) {
  if (k == N) {
    process(); return;
  }
  enumerate(k+1);
  a[k] = 1;
  enumerate(k+1);
  a[k] = 0;
}
```

Remark. Equivalent to counting in binary from 0 to $2^N - 1$.
public class BinaryCounter
{
 private int N; // number of bits
 private int[] a; // a[i] = ith bit

 public BinaryCounter(int N)
 {
 this.N = N;
 this.a = new int[N];
 enumerate(0);
 }

 private void process()
 {
 for (int i = 0; i < N; i++)
 StdOut.print(a[i]) + " ";
 StdOut.println();
 }

 private void enumerate(int k)
 {
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0;
 }
}

public static void main(String[] args)
{
 int N = Integer.parseInt(args[0]);
 new BinaryCounter(N);
}

% java BinaryCounter 4
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
- permutations
- backtracking
- counting
- subsets
- paths in a graph
N-rooks problem

Q. How many ways are there to place N rooks on an N-by-N board so that no rook can attack any other?

Representation. No two rooks in the same row or column \Rightarrow permutation.

Challenge. Enumerate all $N!$ permutations of N integers 0 to $N - 1$.

```c
int[] a = { 2, 0, 1, 3, 6, 7, 4, 5 };`
Enumerating permutations

Recursive algorithm to enumerate all $N!$ permutations of $N$ elements.

- Start with permutation $a[0]$ to $a[N-1]$.
- For each value of $i$:
  - swap $a[i]$ into position 0
  - enumerate all $(N-1)!$ permutations of $a[1]$ to $a[N-1]$
  - clean up (swap $a[i]$ back to original position)
Enumerating permutations

Recursive algorithm to enumerate all $N!$ permutations of $N$ elements.

- Start with permutation $a[0]$ to $a[N-1]$.
- For each value of $i$:
  - swap $a[i]$ into position 0
  - enumerate all $(N-1)!$ permutations of $a[1]$ to $a[N-1]$
  - clean up (swap $a[i]$ back to original position)

```java
private void enumerate(int k)
{
 if (k == N)
 { process(); return; }

 for (int i = k; i < N; i++)
 {
 exch(k, i);
 enumerate(k+1);
 exch(i, k);
 }
}
```

Enumerating permutations:

<table>
<thead>
<tr>
<th>N</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

0 followed by perms 1 2 3
1 followed by perms 0 2 3
2 followed by perms 1 0 3
3 followed by perms 1 2 0
public class Rooks
{
    private int N;
    private int[] a;  // bits (0 or 1)

    public Rooks(int N)
    {
        this.N = N;
        a = new int[N];
        for (int i = 0; i < N; i++)
            a[i] = i;
        enumerate(0);
    }

    private void enumerate(int k)
    { /* see previous slide */ }

    private void exch(int i, int j)
    { int t = a[i]; a[i] = a[j]; a[j] = t; }

    public static void main(String[] args)
    {
        int N = Integer.parseInt(args[0]);
        new Rooks(N);
    }
}
4-rooks search tree
N-rooks problem: back-of-envelope running time estimate

Slow way to compute $N!$.

```
% java Rooks 7 | wc -l
5040
% java Rooks 8 | wc -l
40320
% java Rooks 9 | wc -l
362880
% java Rooks 10 | wc -l
3628800
% java Rooks 25 | wc -l
...
```

Hypothesis. Running time is about $2 \left( \frac{N!}{8!} \right)$ seconds.
permutations
backtracking
counting
subsets
paths in a graph
N-queens problem

Q. How many ways are there to place $N$ queens on an $N$-by-$N$ board so that no queen can attack any other?

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a[1] = 6 means the queen from row 1 is in column 6

int[] a = { 2, 7, 3, 6, 0, 5, 1, 4 };

Representation. No two queens in the same row or column $\Rightarrow$ permutation.

Additional constraint. No diagonal attack is possible.

Challenge. Enumerate (or even count) the solutions. Unlike N-rooks problem, nobody knows answer for $N > 30$
4-queens search tree

diagonal conflict on partial solution: no point going deeper

solutions
4-queens search tree (pruned)
N-queens problem: backtracking solution

Backtracking paradigm. Iterate through elements of search space.
• When there are several possible choices, make one choice and recur.
• If the choice is a dead end, backtrack to previous choice, and make next available choice.

Benefit. Identifying dead ends allows us to prune the search tree.

Ex. [backtracking for $N$-queens problem]
• Dead end: a diagonal conflict.
• Pruning: backtrack and try next column when diagonal conflict found.
N-queens problem: backtracking solution

```java
private boolean canBacktrack(int k) {
 for (int i = 0; i < k; i++) {
 if ((a[i] - a[k]) == (k - i)) return true;
 if ((a[k] - a[i]) == (k - i)) return true;
 }
 return false;
}

// place N-k queens in a[k] to a[N-1]
private void enumerate(int k) {
 if (k == N) {
 process(); return;
 }
 for (int i = k; i < N; i++) {
 exch(k, i);
 if (!canBacktrack(k)) enumerate(k+1);
 exch(i, k);
 }
}
```

Sample output:

```
% java Queens 4
1 3 0 2
2 0 3 1
% java Queens 5
0 2 4 1 3
0 3 1 4 2
1 3 0 2 4
1 4 2 0 3
2 0 3 1 4
2 4 1 3 0
3 1 4 2 0
3 0 2 4 1
4 1 3 0 2
4 2 0 3 1
% java Queens 6
1 3 5 0 2 4
2 5 1 4 0 3
3 0 4 1 5 2
4 2 0 5 3 1
```
N-queens problem: effectiveness of backtracking

Pruning the search tree leads to enormous time savings.

<table>
<thead>
<tr>
<th>N</th>
<th>Q(N)</th>
<th>N!</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>720</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>5,040</td>
</tr>
<tr>
<td>8</td>
<td>92</td>
<td>40,320</td>
</tr>
<tr>
<td>9</td>
<td>352</td>
<td>362,880</td>
</tr>
<tr>
<td>10</td>
<td>724</td>
<td>3,628,800</td>
</tr>
<tr>
<td>11</td>
<td>2,680</td>
<td>39,916,800</td>
</tr>
<tr>
<td>12</td>
<td>14,200</td>
<td>479,001,600</td>
</tr>
<tr>
<td>13</td>
<td>73,712</td>
<td>6,227,020,800</td>
</tr>
<tr>
<td>14</td>
<td>365,596</td>
<td>87,178,291,200</td>
</tr>
</tbody>
</table>
N-queens problem: How many solutions?

Hypothesis. Running time is about \((N! / 2.5^N) / 43,000\) seconds.

Conjecture. \(Q(N) \sim N! / c^N\), where \(c\) is about 2.54.
**Goal.** Enumerate all $N$-digit base-$R$ numbers.

**Solution.** Generalize binary counter in lecture warmup.

```java
private static void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 for (int r = 0; r < R; r++)
 {
 a[k] = r;
 enumerate(k+1);
 }
 a[k] = 0; // cleanup not needed; why?
}
```
**Counting application: Sudoku**

**Goal.** Fill 9-by-9 grid so that every row, column, and box contains each of the digits 1 through 9.
Counting application: Sudoku

Goal. Fill 9-by-9 grid so that every row, column, and box contains each of the digits 1 through 9.

Solution. Enumerate all 81-digit base-9 numbers (with backtracking).
Iterate through elements of search space.

- For each empty cell, there are 9 possible choices.
- Make one choice and recur.
- If you find a conflict in row, column, or box, then backtrack.

Sudoku: backtracking solution
private void enumerate(int k) {
    if (k == 81) {
        process(); return;
    }
    if (a[k] != 0) {
        enumerate(k+1); return;
    }
    for (int r = 1; r <= 9; r++) {
        a[k] = r;
        if (!canBacktrack(k))
            enumerate(k+1);
    }
    a[k] = 0;
}
Remark. Natural generalization of Sudoku is NP-complete.
› permutations
› backtracking
› counting
› **subsets**
› paths in a graph
Given $N$ elements, enumerate all $2^N$ subsets.

- Count in binary from 0 to $2^N - 1$.
- Maintain array $a[]$ where $a[i]$ represents element $i$.
- If 1, $a[i]$ in subset; if 0, $a[i]$ not in subset.

<table>
<thead>
<tr>
<th>i</th>
<th>binary</th>
<th>subset</th>
<th>complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0</td>
<td>empty</td>
<td>4 3 2 1</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 1</td>
<td>1</td>
<td>4 3 2</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1 0</td>
<td>2</td>
<td>4 3 1</td>
</tr>
<tr>
<td>3</td>
<td>0 0 1 1</td>
<td>2 1</td>
<td>4 3</td>
</tr>
<tr>
<td>4</td>
<td>0 1 0 0</td>
<td>3</td>
<td>4 2 1</td>
</tr>
<tr>
<td>5</td>
<td>0 1 0 1</td>
<td>3 1</td>
<td>4 2</td>
</tr>
<tr>
<td>6</td>
<td>0 1 1 0</td>
<td>3 2</td>
<td>4 1</td>
</tr>
<tr>
<td>7</td>
<td>0 1 1 1</td>
<td>3 2 1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1 0 0 0</td>
<td>4</td>
<td>3 2 1</td>
</tr>
<tr>
<td>9</td>
<td>1 0 0 1</td>
<td>4 1</td>
<td>3 2</td>
</tr>
<tr>
<td>10</td>
<td>1 0 1 0</td>
<td>4 2</td>
<td>3 1</td>
</tr>
<tr>
<td>11</td>
<td>1 0 1 1</td>
<td>4 2 1</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>1 1 0 0</td>
<td>4 3</td>
<td>2 1</td>
</tr>
<tr>
<td>13</td>
<td>1 1 0 1</td>
<td>4 3 1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>1 1 1 0</td>
<td>4 3 2</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1 1 1 1</td>
<td>4 3 2 1</td>
<td>empty</td>
</tr>
</tbody>
</table>
Enumerating subsets: natural binary encoding

Given $N$ elements, enumerate all $2^N$ subsets.

- Count in binary from 0 to $2^N - 1$.
- Maintain array $a[]$ where $a[i]$ represents element $i$.
- If 1, $a[i]$ in subset; if 0, $a[i]$ not in subset.

Binary counter from warmup does the job.

```java
private void enumerate(int k) {
 if (k == N) { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0;
}
```
Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit one at a time, such that each subset of actors appears exactly once.

\[
\begin{array}{ccc}
\text{code} & \text{subset} & \text{move} \\
0 0 0 0 & \text{empty} & \\
0 0 0 1 & 1 & \text{enter 1} \\
0 0 1 1 & 2 1 & \text{enter 2} \\
0 0 1 0 & 2 & \text{exit 1} \\
0 1 1 0 & 3 2 & \text{enter 3} \\
0 1 1 1 & 3 2 1 & \text{enter 1} \\
0 1 0 1 & 3 1 & \text{exit 2} \\
0 1 0 0 & 3 & \text{exit 1} \\
1 1 0 0 & 4 3 & \text{enter 4} \\
1 1 0 1 & 4 3 1 & \text{enter 1} \\
1 1 1 1 & 4 3 2 1 & \text{enter 2} \\
1 1 1 0 & 4 3 2 & \text{exit 1} \\
1 0 1 0 & 4 2 & \text{exit 3} \\
1 0 1 1 & 4 2 1 & \text{enter 1} \\
1 0 0 1 & 4 1 & \text{exit 2} \\
1 0 0 0 & 4 & \text{exit 1} \\
\end{array}
\]
Digression: Samuel Beckett play

**Quad.** Starting with empty stage, 4 characters enter and exit one at a time, such that each subset of actors appears exactly once.

“faceless, emotionless one of the far future, a world where people are born, go through prescribed movements, fear non-being even though their lives are meaningless, and then they disappear or die.” — Sidney Homan
Def. The $k$-bit binary reflected Gray code is:

- The $(k - 1)$ bit code with a 0 prepended to each word, followed by
- The $(k - 1)$ bit code in reverse order, with a 1 prepended to each word.
Enumerating subsets using Gray code

Two simple changes to binary counter from warmup:

- Flip \( a[k] \) instead of setting it to 1.
- Eliminate cleanup.

Gray code binary counter

```java
private void enumerate(int k) {
 if (k == N) {
 process(); return;
 }
 enumerate(k+1);
 a[k] = 1 - a[k];
 enumerate(k+1);
}
```

standard binary counter (from warmup)

```java
private void enumerate(int k) {
 if (k == N) {
 process(); return;
 }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0;
}
```

Advantage. Only one element in subset changes at a time.
More applications of Gray codes

3-bit rotary encoder

8-bit rotary encoder

Towers of Hanoi

Chinese ring puzzle (Baguenaudier)

(move ith smallest disk when bit i changes in Gray code)

(move ith ring from right when bit i changes in Gray code)
Scheduling

Scheduling (set partitioning). Given $N$ jobs of varying length, divide among two machines to minimize the makespan (time the last job finishes).

or, equivalently, difference between finish times

<table>
<thead>
<tr>
<th>job</th>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.41</td>
</tr>
<tr>
<td>1</td>
<td>1.73</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
</tr>
<tr>
<td>3</td>
<td>2.23</td>
</tr>
</tbody>
</table>

Remark. This scheduling problem is NP-complete.
Scheduling: improvements

Brute force. Enumerate $2^N$ subsets; compute makespan of each; return best.

Many opportunities to improve.

- Fix first job to be on machine 0.
- Maintain difference in finish times.
  (and avoid recomputing cost from scratch)
- Backtrack when partial schedule cannot beat best known.
- Preprocess all $2^k$ subsets of last $k$ jobs;
  cache results in memory.

```java
private void enumerate(int k)
{
 if (k == N) { process(); return; }
 if (canBacktrack(k)) return;
 enumerate(k+1);
 a[k] = 1 - a[k];
 enumerate(k+1);
}
```

factor of 2 speedup
factor of N speedup (using Gray code order)
huge opportunities for improvement on typical inputs
reduces time to $2^{N-k}$ at cost of $2^k$ memory
- permutations
- backtracking
- counting
- subsets
- paths in a graph
Enumerating all paths on a grid

Goal. Enumerate all simple paths on a grid of adjacent sites.

Application. Self-avoiding lattice walk to model polymer chains.
Enumerating all paths on a grid: Boggle

**Boggle.** Find all words that can be formed by tracing a simple path of adjacent cubes (left, right, up, down, diagonal).

![Boggle grid with path and letters]

**Backtracking.** Stop as soon as no word in dictionary contains string of letters on current path as a prefix \Rightarrow use a trie.

- B
- BA
- BAX
Boggle: Java implementation

```java
private void dfs(String prefix, int i, int j)
{
 if ((i < 0 || i >= N) ||
 (j < 0 || j >= N) ||
 (visited[i][j]) ||
 !dictionary.containsAsPrefix(prefix))
 return;

 visited[i][j] = true;
 prefix = prefix + board[i][j];

 if (dictionary.contains(prefix))
 found.add(prefix);

 for (int ii = -1; ii <= 1; ii++)
 for (int jj = -1; jj <= 1; jj++)
 dfs(prefix, i + ii, j + jj);

 visited[i][j] = false;
}
```

- **backtrack**
- **add current character**
- **add to set of found words**
- **try all possibilities**
- **clean up**

string of letters on current path to (i, j)
Hamilton path

Goal. Find a simple path that visits every vertex exactly once.

Remark. Euler path easy, but Hamilton path is NP-complete.
**Knight's tour**

**Goal.** Find a sequence of moves for a knight so that (starting from any desired square) it visits every square on a chessboard exactly once.

**Solution.** Find a Hamilton path in knight's graph.
Hamilton path: backtracking solution

Backtracking solution. To find Hamilton path starting at $v$:

- Add $v$ to current path.
- For each vertex $w$ adjacent to $v$
  - find a simple path starting at $w$ using all remaining vertices
- Clean up: remove $v$ from current path.

Q. How to implement?
A. Add cleanup to DFS (!!)
Hamilton path: Java implementation

```java
public class HamiltonPath
{
 private boolean[] marked; // vertices on current path
 private int count = 0; // number of Hamiltonian paths

 public HamiltonPath(Graph G)
 {
 marked = new boolean[G.V()];
 for (int v = 0; v < G.V(); v++)
 dfs(G, v, 1);
 }

 private void dfs(Graph G, int v, int depth)
 {
 marked[v] = true;
 if (depth == G.V()) count++;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w, depth+1);
 marked[v] = false;
 }
}
```

- **public class HamiltonPath**
  - marker: boolean[]
  - count: int

- **public HamiltonPath(Graph G)**
  - marker: boolean[G.V()]
  - for (int v = 0; v < G.V(); v++)
    - dfs(G, v, 1)

- **private void dfs(Graph G, int v, int depth)**
  - marker: boolean[v]
  - if (depth == G.V()) count++
  - for (int w : G.adj(v))
    - if (!marker[w]) dfs(G, w, depth+1)
  - marker[v] = false

- **found one**
- **length of current path (depth of recursion)**
- **backtrack if w is already part of path**
- **clean up**
Exhaustive search: summary

<table>
<thead>
<tr>
<th>problem</th>
<th>enumeration</th>
<th>backtracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-rooks</td>
<td>permutations</td>
<td>no</td>
</tr>
<tr>
<td>N-queens</td>
<td>permutations</td>
<td>yes</td>
</tr>
<tr>
<td>Sudoku</td>
<td>base-9 numbers</td>
<td>yes</td>
</tr>
<tr>
<td>scheduling</td>
<td>subsets</td>
<td>yes</td>
</tr>
<tr>
<td>Boggle</td>
<td>paths in a grid</td>
<td>yes</td>
</tr>
<tr>
<td>Hamilton path</td>
<td>paths in a graph</td>
<td>yes</td>
</tr>
</tbody>
</table>