2.3 Quicksort

- quicksort
- selection
- duplicate keys
- system sorts
Two classic sorting algorithms

Critical components in the world’s computational infrastructure.
• Full scientific understanding of their properties has enabled us to develop them into practical system sorts.
• Quicksort honored as one of top 10 algorithms of 20th century in science and engineering.

Mergesort.
• Java sort for objects.
• Perl, C++ stable sort, Python stable sort, Firefox JavaScript, ...

Quicksort.
• Java sort for primitive types.
• C qsort, Unix, Visual C++, Python, Matlab, Chrome JavaScript, ...
public static void quicksort(char[] items, int left, int right)
{
 int i, j;
 char x, y;
 i = left; j = right;
 x = items[(left + right) / 2];
 do
 {
 while ((items[i] < x) && (i < right)) i++;
 while ((x < items[j]) && (j > left)) j--;
 if (i <= j)
 {
 y = items[i];
 items[i] = items[j];
 items[j] = y;
 i++; j--;
 }
 } while (i <= j);
 if (left < i) quicksort(items, left, i);
 if (i < right) quicksort(items, i, right);
}
- quicksort
- selection
- duplicate keys
- system sorts
Quicksort

Basic plan.

• **Shuffle** the array.
• **Partition** so that, for some j
 - entry $a[j]$ is in place
 - no larger entry to the left of j
 - no smaller entry to the right of j
• **Sort** each piece recursively.

Sir Charles Antony Richard Hoare
1980 Turing Award
Quicksort partitioning demo
Quicksort partitioning

Basic plan.

- Scan i from left for an item that belongs on the right.
- Scan j from right for an item that belongs on the left.
- Exchange $a[i]$ and $a[j]$.
- Repeat until pointers cross.

Partitioning trace (array contents before and after each exchange)
Quicksort: Java code for partitioning

private static int partition(Comparable[] a, int lo, int hi) {
 int i = lo, j = hi+1;
 while (true) {
 while (less(a[++i], a[lo]))
 if (i == hi) break;

 while (less(a[lo], a[--j]))
 if (j == lo) break;

 if (i >= j) break;
 exch(a, i, j);
 }
 exch(a, lo, j);
 return j;
}
public class Quick
{
 private static int partition(Comparable[] a, int lo, int hi)
 {
 /* see previous slide */
 }

 public static void sort(Comparable[] a)
 {
 StdRandom.shuffle(a);
 sort(a, 0, a.length - 1);
 }

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;
 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
 }
}
Quicksort trace

| lo | j | hi | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|----|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| | | | Q U I C K S O R T E X A M P L E | K R A T E L E P U I M Q C X O S | | | | | | | | | | | | |
| 0 | 5 | 15 | E C A I E K L P U T M Q R X O S | | | | | | | | | | | | | | | |
| 0 | 3 | 4 | E C A E I K L P U T M Q R X O S | | | | | | | | | | | | | | | |
| 0 | 2 | 2 | A C E E I K L P U T M Q R X O S | | | | | | | | | | | | | | | |
| 0 | 0 | 1 | A C E E E I K L P U T M Q R X O S | | | | | | | | | | | | | | | |
| 1 | 1 | 1 | A C E E E I K L P U T M Q R X O S | | | | | | | | | | | | | | | |
| 4 | 4 | 6 | A C E E E I K L P U T M Q R X O S | | | | | | | | | | | | | | | |
| 6 | 6 | 15 | A C E E E I K L P U T M Q R X O S | | | | | | | | | | | | | | | |
| 7 | 9 | 15 | A C E E E I K L M O P T Q R X U S | | | | | | | | | | | | | | | |
| 7 | 7 | 8 | A C E E E I K L M O P T Q R X U S | | | | | | | | | | | | | | | |
| 8 | 8 | 8 | A C E E E I K L M O P T Q R X U S | | | | | | | | | | | | | | | |
| 10 | 13| 15 | A C E E E I K L M O P T Q R T U X | | | | | | | | | | | | | | | |
| 10 | 12| 12 | A C E E E I K L M O P T Q R T U X | | | | | | | | | | | | | | | |
| 10 | 11| 11 | A C E E E I K L M O P T Q R T U X | | | | | | | | | | | | | | | |
| 10 | 10| 10 | A C E E E I K L M O P T Q R T U X | | | | | | | | | | | | | | | |
| 14 | 14| 15 | A C E E E I K L M O P Q R S T U X | | | | | | | | | | | | | | | |
| 15 | 15| 15 | A C E E E I K L M O P Q R S T U X | | | | | | | | | | | | | | | |

Quicksort trace (array contents after each partition)
Quicksort animation

50 random items

http://www.sorting-algorithms.com/quick-sort
Quick sort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier (and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier than it might seem.

Staying in bounds. The (j == lo) test is redundant (why?), but the (i == hi) test is not.

Preserving randomness. Shuffling is needed for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) better to stop on keys equal to the partitioning item's key.
Quicksort: empirical analysis

Running time estimates:

• Home PC executes 10^8 compares/second.
• Supercomputer executes 10^{12} compares/second.

<table>
<thead>
<tr>
<th>computer</th>
<th>insertion sort (N^2)</th>
<th>mergesort ($N \log N$)</th>
<th>quicksort ($N \log N$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>thousand</td>
<td>million</td>
<td>billion</td>
</tr>
<tr>
<td>home</td>
<td>instant</td>
<td>2.8 hours</td>
<td>317 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>instant</td>
<td>1 second</td>
</tr>
<tr>
<td>super</td>
<td>instant</td>
<td>1 second</td>
<td>1 week</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lesson 1. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.
Quicksort: best-case analysis

Best case. Number of compares is $\sim N \lg N$.
Quicksort: worst-case analysis

Worst case. Number of compares is $\sim \frac{1}{2} N^2$.

<table>
<thead>
<tr>
<th></th>
<th>lo</th>
<th>j</th>
<th>hi</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial values</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>random shuffle</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>14</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>14</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>14</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>14</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>14</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>14</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>14</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>14</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>14</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>14</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>14</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>14</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>14</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>14</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>14</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>
Quicksort: average-case analysis

Proposition. The average number of compares C_N to quicksort an array of N distinct keys is $\sim 2N \ln N$ (and the number of exchanges is $\sim \frac{1}{3} N \ln N$).

Pf 1. C_N satisfies the recurrence $C_0 = C_1 = 0$ and for $N \geq 2$:

$$C_N = (N + 1) + \left(\frac{C_0 + C_{N-1}}{N} \right) + \left(\frac{C_1 + C_{N-2}}{N} \right) + \ldots + \left(\frac{C_{N-1} + C_0}{N} \right)$$

• Multiply both sides by N and collect terms:

$$NC_N = N(N + 1) + 2(C_0 + C_1 + \ldots + C_{N-1})$$

• Subtract this from the same equation for $N - 1$:

$$NC_N - (N - 1)C_{N-1} = 2N + 2C_{N-1}$$

• Rearrange terms and divide by $N(N + 1)$:

$$\frac{C_N}{N + 1} = \frac{C_{N-1}}{N} + \frac{2}{N + 1}$$
Quicksort: average-case analysis

• Repeatedly apply above equation:

\[
\frac{C_N}{N+1} = \frac{C_{N-1}}{N} + \frac{2}{N+1} \\
= \frac{C_{N-2}}{N-1} + \frac{2}{N} + \frac{2}{N+1} \\
= \frac{C_{N-3}}{N-2} + \frac{2}{N-1} + \frac{2}{N} + \frac{2}{N+1} \\
= \frac{2}{3} + \frac{2}{4} + \frac{2}{5} + \ldots + \frac{2}{N+1}
\]

previous equation

• Approximate sum by an integral:

\[
C_N = 2(N + 1) \left(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \ldots + \frac{1}{N+1} \right)
\]

\[
\sim 2(N + 1) \int_{3}^{N+1} \frac{1}{x} \, dx
\]

• Finally, the desired result:

\[
C_N \sim 2(N + 1) \ln N \approx 1.39N \lg N
\]
Quick sort: average-case analysis

Proposition. The average number of compares C_N to quicksort an array of N distinct keys is $\sim 2N \ln N$ (and the number of exchanges is $\sim \frac{1}{3} N \ln N$).

Pf 2. Consider BST representation of keys 1 to N.

![BST representation of keys](image)
QuickSort: average-case analysis

Proposition. The average number of compares C_N to quicksort an array of N distinct keys is $\sim 2N \ln N$ (and the number of exchanges is $\sim \frac{1}{3} N \ln N$).

Pf 2. Consider BST representation of keys 1 to N.

- A key is compared only with its ancestors and descendants.
- Probability i and j are compared equals $2 / |j - i + 1|$.

![BST representation of keys 1 to N.](image)
Quicksort: average-case analysis

Proposition. The average number of compares C_N to quicksort an array of N distinct keys is $\sim 2N \ln N$ (and the number of exchanges is $\sim \frac{1}{3} N \ln N$).

Pf 2. Consider BST representation of keys 1 to N.

- A key is compared only with its ancestors and descendants.
- Probability i and j are compared equals $\frac{2}{|j - i + 1|}$.

- Expected number of compares:

\[
\sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{2}{j - i + 1} = 2 \sum_{i=1}^{N} \sum_{j=2}^{N-i+1} \frac{1}{j} \\
\leq 2N \sum_{j=1}^{N} \frac{1}{j} \\
\sim 2N \int_{x=1}^{N} \frac{1}{x} \, dx \\
= 2N \ln N
\]
Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.
• $N + (N - 1) + (N - 2) + \ldots + 1 \sim \frac{1}{2} N^2$.
• More likely that your computer is struck by lightning bolt.

Average case. Number of compares is $\sim 1.39 N \lg N$.
• 39% more compares than mergesort.
• But faster than mergesort in practice because of less data movement.

Random shuffle.
• Probabilistic guarantee against worst case.
• Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if array
• Is sorted or reverse sorted.
• Has many duplicates (even if randomized!)
Proposition. Quicksort is an in-place sorting algorithm.
Pf.
- Partitioning: constant extra space.
- Depth of recursion: logarithmic extra space (with high probability).

Proposition. Quicksort is not stable.
Pf.

```
<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>B₁</td>
<td>C₁</td>
<td>C₂</td>
<td>A₁</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>B₁</td>
<td>C₁</td>
<td>C₂</td>
<td>A₁</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>B₁</td>
<td>A₁</td>
<td>C₂</td>
<td>C₁</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>A₁</td>
<td>B₁</td>
<td>C₂</td>
<td>C₁</td>
</tr>
</tbody>
</table>
```
Insertion sort small subarrays.

- Even quicksort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for \(\approx 10 \) items.
- Note: could delay insertion sort until one pass at end.

```java
private static void sort(Comparable[] a, int lo, int hi)
{
    if (hi <= lo + CUTOFF - 1)
    {
        Insertion.sort(a, lo, hi);
        return;
    }
    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
}
```
Median of sample.

- Best choice of pivot item = median.
- Estimate true median by taking median of sample.
- Median-of-3 (random) items.

```java
private static void sort(Comparable[] a, int lo, int hi) {
    if (hi <= lo) return;
    int m = medianOf3(a, lo, lo + (hi - lo)/2, hi);
    swap(a, lo, m);
    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
}
```
Quicksort with median-of-3 and cutoff to insertion sort: visualization
› quicksort
› selection
› duplicate keys
› system sorts
Selection

Goal. Given an array of N items, find the k^{th} largest.

Ex. Min ($k = 0$), max ($k = N - 1$), median ($k = N / 2$).

Applications.
- Order statistics.
- Find the "top k.

Use theory as a guide.
- Easy $N \log N$ upper bound. How?
- Easy N upper bound for $k = 1, 2, 3$. How?
- Easy N lower bound. Why?

Which is true?
- $N \log N$ lower bound? is selection as hard as sorting?
- N upper bound? is there a linear-time algorithm for each k?
Quick-select

Partition array so that:
• Entry \(a[j] \) is in place.
• No larger entry to the left of \(j \).
• No smaller entry to the right of \(j \).

Repeat in one subarray, depending on \(j \); finished when \(j \) equals \(k \).

```java
class QuickSelect {
    public static Comparable select(Comparable[] a, int k) {
        StdRandom.shuffle(a);
        int lo = 0, hi = a.length - 1;
        while (hi > lo) {
            int j = partition(a, lo, hi);
            if (j < k) lo = j + 1;
            else if (j > k) hi = j - 1;
            else return a[k];
        }
        return a[k];
    }
}
```
Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average.

Pf sketch.

- Intuitively, each partitioning step splits array approximately in half:
 \[N + N/2 + N/4 + \ldots + 1 \sim 2N \text{ compares}. \]
- Formal analysis similar to quicksort analysis yields:
 \[
 C_N = 2N + k \ln \left(\frac{N}{k} \right) + (N - k) \ln \left(\frac{N}{N - k} \right)
 \]

 \((2 + 2 \ln 2) N \) to find the median

Remark. Quick-select uses \(\sim \frac{1}{2} N^2 \) compares in the worst case, but (as with quicksort) the random shuffle provides a probabilistic guarantee.

Remark. But, constants are too high ⇒ not used in practice.

Use theory as a guide.

• Still worthwhile to seek practical linear-time (worst-case) algorithm.
• Until one is discovered, use quick-select if you don’t need a full sort.
Generic methods

In our `select()` implementation, client needs a cast.

```java
Double[] a = new Double[N];
for (int i = 0; i < N; i++)
    a[i] = StdRandom.uniform();

Double median = (Double) Quick.select(a, N/2);
```

The compiler complains.

```bash
% javac Quick.java
Note: Quick.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.
```

Q. How to fix?
Generic methods

Pedantic (safe) version. Compiles cleanly, no cast needed in client.

```java
public class QuickPedantic {
    public static <Key extends Comparable<Key>> Key select(Key[] a, int k)
    { /* as before */ }

    public static <Key extends Comparable<Key>> void sort(Key[] a)
    { /* as before */ }

    private static <Key extends Comparable<Key>> int partition(Key[] a, int lo, int hi)
    { /* as before */ }

    private static <Key extends Comparable<Key>> boolean less(Key v, Key w)
    { /* as before */ }

    private static <Key extends Comparable<Key>> void exch(Key[] a, int i, int j)
    {  Key swap = a[i]; a[i] = a[j]; a[j] = swap;  }
}
```

can declare variables of generic type

generic type variable (value inferred from argument a[])

return type matches array type

Remark. Obnoxious code needed in system sort; not in this course (for brevity).
› quicksort
› selection
› duplicate keys
› system sorts
Duplicate keys

Often, purpose of sort is to bring items with equal keys together.

- Sort population by age.
- Find collinear points.
- Remove duplicates from mailing list.
- Sort job applicants by college attended.

Typical characteristics of such applications.

- Huge array.
- Small number of key values.

<table>
<thead>
<tr>
<th>City</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago</td>
<td>09:25:52</td>
</tr>
<tr>
<td>Chicago</td>
<td>09:03:13</td>
</tr>
<tr>
<td>Chicago</td>
<td>09:21:05</td>
</tr>
<tr>
<td>Chicago</td>
<td>09:19:46</td>
</tr>
<tr>
<td>Chicago</td>
<td>09:19:32</td>
</tr>
<tr>
<td>Chicago</td>
<td>09:00:00</td>
</tr>
<tr>
<td>Chicago</td>
<td>09:35:21</td>
</tr>
<tr>
<td>Chicago</td>
<td>09:00:59</td>
</tr>
<tr>
<td>Houston</td>
<td>09:01:10</td>
</tr>
<tr>
<td>Houston</td>
<td>09:00:13</td>
</tr>
<tr>
<td>Phoenix</td>
<td>09:37:44</td>
</tr>
<tr>
<td>Phoenix</td>
<td>09:00:03</td>
</tr>
<tr>
<td>Phoenix</td>
<td>09:14:25</td>
</tr>
<tr>
<td>Seattle</td>
<td>09:10:25</td>
</tr>
<tr>
<td>Seattle</td>
<td>09:36:14</td>
</tr>
<tr>
<td>Seattle</td>
<td>09:22:43</td>
</tr>
<tr>
<td>Seattle</td>
<td>09:10:11</td>
</tr>
<tr>
<td>Seattle</td>
<td>09:22:54</td>
</tr>
</tbody>
</table>
Duplicate keys

Mergesort with duplicate keys. Always between $\frac{1}{2} N \lg N$ and $N \lg N$ compares.

Quicksort with duplicate keys.
• Algorithm goes **quadratic** unless partitioning stops on equal keys!
• 1990s C user found this defect in `qsort()`.

Several textbook and system implementation also have this defect.

STOP ONE QUAL KEYS

- swap
- if we don't stop on equal keys
- if we stop on equal keys
Duplicate keys: the problem

Mistake. Put all items equal to the partitioning item on one side.

Consequence. $\sim \frac{1}{2} N^2$ compares when all keys equal.

\[
\begin{array}{cccccccc}
\end{array}
\]

Recommended. Stop scans on items equal to the partitioning item.

Consequence. $\sim N \lg N$ compares when all keys equal.

\[
\begin{array}{cccccccc}
\end{array}
\]

Desirable. Put all items equal to the partitioning item in place.

\[
\begin{array}{cccccccc}
\end{array}
\]
3-way partitioning

Goal. Partition array into 3 parts so that:
- Entries between \(lt \) and \(gt \) equal to partition item \(v \).
- No larger entries to left of \(lt \).
- No smaller entries to right of \(gt \).

Dutch national flag problem. [Edsger Dijkstra]
- Conventional wisdom until mid 1990s: not worth doing.
- New approach discovered when fixing mistake in C library `qsort()`.
- Now incorporated into `qsort()` and Java system sort.
Dijkstra's 3-way partitioning: demo
Dijkstra 3-way partitioning algorithm

3-way partitioning.
• Let \(v \) be partitioning item \(a[lo] \).
• Scan \(i \) from left to right.
 - \(a[i] \) less than \(v \): exchange \(a[lt] \) with \(a[i] \) and increment both \(lt \) and \(i \)
 - \(a[i] \) greater than \(v \): exchange \(a[gt] \) with \(a[i] \) and decrement \(gt \)
 - \(a[i] \) equal to \(v \): increment \(i \)

Most of the right properties.
• In-place.
• Not much code.
• Linear time if keys are all equal.
Dijkstra's 3-way partitioning: trace

3-way partitioning trace (array contents after each loop iteration)
3-way quicksort: Java implementation

private static void sort(Comparable[] a, int lo, int hi) {
 if (hi <= lo) return;
 int lt = lo, gt = hi;
 Comparable v = a[lo];
 int i = lo;
 while (i <= gt) {
 int cmp = a[i].compareTo(v);
 if (cmp < 0) exch(a, lt++, i++);
 else if (cmp > 0) exch(a, i, gt--);
 else i++;
 }
 sort(a, lo, lt - 1);
 sort(a, gt + 1, hi);
}

41
3-way quicksort: visual trace

equal to partitioning element
Duplicate keys: lower bound

Sorting lower bound. If there are \(n \) distinct keys and the \(i^{th} \) one occurs \(x_i \) times, any compare-based sorting algorithm must use at least

\[
\lg \left(\frac{N!}{x_1! \, x_2! \cdots x_n!} \right) \sim - \sum_{i=1}^{n} x_i \lg \frac{x_i}{N}
\]

compares in the worst case.

Proposition. [Sedgewick-Bentley, 1997] Quicksort with 3-way partitioning is entropy-optimal.

Pf. [beyond scope of course]

Bottom line. Randomized quicksort with 3-way partitioning reduces running time from linearithmic to linear in broad class of applications.
› selection
› duplicate keys
› comparators
› system sorts
Sorting algorithms are essential in a broad variety of applications:

- Sort a list of names.
- Organize an MP3 library.
- Display Google PageRank results.
- List RSS feed in reverse chronological order.

- Find the median.
- Find the closest pair.
- Binary search in a database.
- Identify statistical outliers.
- Find duplicates in a mailing list.

- Data compression.
- Computer graphics.
- Computational biology.
- Supply chain management.
- Load balancing on a parallel computer.

...

Every system needs (and has) a system sort!
Java system sorts

Arrays.sort().

- Has different method for each primitive type.
- Has a method for data types that implement Comparable.
- Has a method that uses a Comparator.
- Uses tuned quicksort for primitive types; tuned mergesort for objects.

Q. Why use different algorithms for primitive and reference types?

```java
import java.util.Arrays;

public class StringSort
{
    public static void main(String[] args)
    {
       String[] a = StdIn.readStrings();
       Arrays.sort(a);
       for (int i = 0; i < N; i++)
          StdOut.println(a[i]);
    }
}
```
AT&T Bell Labs (1991). Allan Wilks and Rick Becker discovered that a `qsort()` call that should have taken a few minutes was consuming hours of CPU time.

At the time, almost all `qsort()` implementations based on those in:
- Version 7 Unix (1979): quadratic time to sort organ-pipe arrays.
- BSD Unix (1983): quadratic time to sort random arrays of 0s and 1s.
Basic algorithm = quicksort.

- Cutoff to insertion sort for small subarrays.
- Partitioning scheme: Bentley-McIlroy 3-way partitioning. [ahead]
- Partitioning item.
 - small arrays: middle entry
 - medium arrays: median of 3
 - large arrays: Tukey’s ninther [next slide]

Now widely used. C, C++, Java,
Tukey's ninther

Tukey's ninther. Median of the median of 3 samples, each of 3 entries.

- Approximates the median of 9.
- Uses at most 12 compares.

Q. Why use Tukey's ninther?
A. Better partitioning than random shuffle and less costly.
Bentley-McIlroy 3-way partitioning

Partition items into four parts:
- No larger entries to left of i.
- No smaller entries to right of j.
- Equal entries to left of p.
- Equal entries to right of q.

Afterwards, swap equal keys into center.

All the right properties.
- In-place.
- Not much code.
- Linear time if keys are all equal.
- Small overhead if no equal keys.
Achilles heel in Bentley-McIlroy implementation (Java system sort)

Q. Based on all this research, Java’s system sort is solid, right?

A. No: a killer input.
 • Overflows function call stack in Java and crashes program.
 • Would take quadratic time if it didn’t crash first.

```java
% java IntegerSort 250000 < 250000.txt
Exception in thread "main"
java.lang.StackOverflowError
   at java.util.Arrays.sort1(Arrays.java:562)
   at java.util.Arrays.sort1(Arrays.java:606)
   at java.util.Arrays.sort1(Arrays.java:608)
   at java.util.Arrays.sort1(Arrays.java:608)
   at java.util.Arrays.sort1(Arrays.java:608)
   ...
```

250,000 integers between 0 and 250,000

Java's sorting library crashes, even if you give it as much stack space as Windows allows
Achilles heel in Bentley-McIlroy implementation (Java system sort)

McIlroy's devious idea. [A Killer Adversary for Quicksort]

- Construct malicious input *on the fly* while running system quicksort, in response to the sequence of keys compared.
- Make partitioning item compare low against all items not seen during selection of partitioning item (but don't commit to their relative order).
- Not hard to identify partitioning item.

Consequences.

- Confirms theoretical possibility.
- Algorithmic complexity attack: you enter linear amount of data; server performs quadratic amount of work.

Good news. Attack is not effective if `sort()` shuffles input array.

Q. Why do you think `Arrays.sort()` is deterministic?
System sort: Which algorithm to use?

Many sorting algorithms to choose from:

Internal sorts.
• Insertion sort, selection sort, bubblesort, shaker sort.
• Quicksort, mergesort, heapsort, samplesort, shellsort.
• Solitaire sort, red-black sort, splaysort, Dobosiewicz sort, psort, ...

External sorts. Poly-phase mergesort, cascade-merge, oscillating sort.

String/radix sorts. Distribution, MSD, LSD, 3-way string quicksort.

Parallel sorts.
• Bitonic sort, Batcher even-odd sort.
• Smooth sort, cube sort, column sort.
• GPUsort.
System sort: Which algorithm to use?

Applications have diverse attributes.
- Stable?
- Parallel?
- Deterministic?
- Keys all distinct?
- Multiple key types?
- Linked list or arrays?
- Large or small items?
- Is your array randomly ordered?
- Need guaranteed performance?

Elementary sort may be method of choice for some combination.
Cannot cover all combinations of attributes.

Q. Is the system sort good enough?
A. Usually.
Sorting summary

<table>
<thead>
<tr>
<th>inplace?</th>
<th>stable?</th>
<th>worst</th>
<th>average</th>
<th>best</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection</td>
<td>✔️</td>
<td>N²/2</td>
<td>N²/2</td>
<td>N²/2</td>
<td>N exchanges</td>
</tr>
<tr>
<td>insertion</td>
<td>✔️ ✔️</td>
<td>N²/2</td>
<td>N²/4</td>
<td>N</td>
<td>use for small N or partially ordered</td>
</tr>
<tr>
<td>shell</td>
<td>✔️</td>
<td>?</td>
<td>?</td>
<td>N</td>
<td>tight code, subquadratic</td>
</tr>
<tr>
<td>merge</td>
<td>✔️</td>
<td>N \lg N</td>
<td>N \lg N</td>
<td>N \lg N</td>
<td>N \log N guarantee, stable</td>
</tr>
<tr>
<td>quick</td>
<td>✔️</td>
<td>N²/2</td>
<td>2N \ln N</td>
<td>N \lg N</td>
<td>N \log N probabilistic guarantee fastest in practice</td>
</tr>
<tr>
<td>3-way quick</td>
<td>✔️</td>
<td>N²/2</td>
<td>2N \ln N</td>
<td>N</td>
<td>improves quicksort in presence of duplicate keys</td>
</tr>
<tr>
<td>???</td>
<td>✔️ ✔️</td>
<td>N \lg N</td>
<td>N \lg N</td>
<td>N \lg N</td>
<td>holy sorting grail</td>
</tr>
</tbody>
</table>