1.5 Union Find

- dynamic connectivity
- quick find
- quick union
- improvements
- applications
Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.
dynamic connectivity
quick find
quick union
improvements
applications
Dynamic connectivity

Given a set of N objects.

- **Union command**: connect two objects.
- **Find/connected query**: is there a path connecting the two objects?

union(4, 3)
union(3, 8)
union(6, 5)
union(9, 4)
union(2, 1)

connected(0, 7)
connected(8, 9)
union(5, 0)
union(7, 2)
union(6, 1)
connected(0, 7)
union(1, 0)
Connectivity example

Q. Is there a path connecting p and q?

A. Yes.

more difficult problem: find the path
Dynamic connectivity applications involve manipulating objects of all types.

- Pixels in a digital photo.
- Computers in a network.
- Friends in a social network.
- Transistors in a computer chip.
- Elements in a mathematical set.
- Variable names in Fortran program.
- Metallic sites in a composite system.

When programming, convenient to name sites 0 to N-1.

- Use integers as array index.
- Suppress details not relevant to union-find.

can use symbol table to translate from site names to integers: stay tuned (Chapter 3)
We assume "is connected to" is an equivalence relation:

- Reflexive: \(p \) is connected to \(p \).
- Symmetric: if \(p \) is connected to \(q \), then \(q \) is connected to \(p \).
- Transitive: if \(p \) is connected to \(q \) and \(q \) is connected to \(r \), then \(p \) is connected to \(r \).

Connected components. Maximal set of objects that are mutually connected.
Implementing the operations

Find query. Check if two objects are in the same component.

Union command. Replace components containing two objects with their union.

```
union(2, 5)
```

Before:

```
{ 0 } { 1 4 5 } { 2 3 6 7 }
```

After:

```
{ 0 } { 1 2 3 4 5 6 7 }
```

3 connected components → 2 connected components
Goal. Design efficient data structure for union-find.

- Number of objects N can be huge.
- Number of operations M can be huge.
- Find queries and union commands may be intermixed.

Union-find data type (API)

```java
public class UF {
    public UF(int N) {
        // initialize union-find data structure with N objects (0 to N – 1)
    }
    void union(int p, int q) {
        // add connection between p and q
    }
    boolean connected(int p, int q) {
        // are p and q in the same component?
    }
    int find(int p) {
        // component identifier for p (0 to N–1)
    }
    int count() {
        // number of components
    }
}
```
Dynamic-connectivity client

- Read in number of objects N from standard input.
- Repeat:
 - read in pair of integers from standard input
 - if they are not yet connected, connect them and print out pair

```java
public static void main(String[] args)
{
    int N = StdIn.readInt();
    UF uf = new UF(N);
    while (!StdIn.isEmpty())
    {
        int p = StdIn.readInt();
        int q = StdIn.readInt();
        if (!uf.connected(p, q))
        {
            uf.union(p, q);
            StdOut.println(p + " " + q);
        }
    }
}
```

% more tiny.txt
```
10
4 3
3 8
6 5
9 4
2 1
8 9
5 0
7 2
6 1
1 0
6 7
```
› dynamic connectivity
› quick find
› quick union
› improvements
› applications
Quick-find [eager approach]

Data structure.

- Integer array \(\text{id[]} \) of size \(N \).
- Interpretation: \(p \) and \(q \) are connected iff they have the same id.

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text{id[]} & 0 & 1 & 1 & 8 & 8 & 0 & 0 & 1 & 8 & 8 \\
\end{array}
\]

- 0, 5 and 6 are connected
- 1, 2, and 7 are connected
- 3, 4, 8, and 9 are connected
Quick-find [eager approach]

Data structure.
- Integer array `id[]` of size `N`.
- Interpretation: `p` and `q` are connected iff they have the same id.

```
0 1 2 3 4 5 6 7 8 9
id[]: 0 1 1 8 8 0 0 1 8 8
```

Find. Check if `p` and `q` have the same id.

Union. To merge components containing `p` and `q`, change all entries whose id equals `id[p]` to `id[q]`.

```
0 1 2 3 4 5 6 7 8 9
id[]: 1 1 1 8 8 1 1 1 8 8
```

After union of 6 and 1

```
0 1 2 3 4 5 6 7 8 9
id[]: 1 1 1 8 8 1 1 1 8 8
```

Problem: many values can change
Quick-find demo
public class QuickFindUF
{
 private int[] id;

 public QuickFindUF(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++)
 id[i] = i;
 }

 public boolean connected(int p, int q)
 { return id[p] == id[q]; }

 public void union(int p, int q)
 {
 int pid = id[p];
 int qid = id[q];
 for (int i = 0; i < id.length; i++)
 if (id[i] == pid) id[i] = qid;
 }
}
Quick-find is too slow

Cost model. Number of array accesses (for read or write).

<table>
<thead>
<tr>
<th>algorithm</th>
<th>initialize</th>
<th>union</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>N</td>
<td>N</td>
<td>1</td>
</tr>
</tbody>
</table>

order of growth of number of array accesses

Quick-find defect. Union too expensive.

Ex. Takes N^2 array accesses to process sequence of N union commands on N objects.
Quadratic algorithms do not scale

Rough standard (for now).
• 10^9 operations per second.
• 10^9 words of main memory.
• Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.
• 10^9 union commands on 10^9 objects.
• Quick-find takes more than 10^{18} operations.
• 30+ years of computer time!

Quadratic algorithms don't scale with technology.
• New computer may be 10x as fast.
• But, has 10x as much memory \Rightarrow want to solve a problem that is 10x as big.
• With quadratic algorithm, takes 10x as long!
- dynamic connectivity
- quick find
- **quick union**
- improvements
- applications
Quick-union [lazy approach]

Data structure.
- Integer array \(id[] \) of size \(N \).
- Interpretation: \(id[i] \) is parent of \(i \).
- Root of \(i \) is \(id[id[id[...id[i]...]]] \).

Find. Check if \(p \) and \(q \) have the same root.

Union. To merge components containing \(p \) and \(q \), set the id of \(p \)'s root to the id of \(q \)'s root.

keep going until it doesn’t change
(algorithm ensures no cycles)

3's root is 9; 5's root is 6
3 and 5 are not connected

only one value changes
Quick-union demo
Quick-union: Java implementation

```java
public class QuickUnionUF {
    private int[] id;

    public QuickUnionUF(int N) {
        id = new int[N];
        for (int i = 0; i < N; i++) id[i] = i;
    }

    private int root(int i) {
        while (i != id[i]) i = id[i];
        return i;
    }

    public boolean connected(int p, int q) {
        return root(p) == root(q);
    }

    public void union(int p, int q) {
        int i = root(p);
        int j = root(q);
        id[i] = j;
    }
}
```
Quick-union is also too slow

Cost model. Number of array accesses (for read or write).

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Initialize</th>
<th>Union</th>
<th>Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>N</td>
<td>N</td>
<td>1</td>
</tr>
<tr>
<td>quick-union</td>
<td>N</td>
<td>N†</td>
<td>N</td>
</tr>
</tbody>
</table>

† includes cost of finding roots

Quick-find defect.
• Union too expensive (N array accesses).
• Trees are flat, but too expensive to keep them flat.

Quick-union defect.
• Trees can get tall.
• Find too expensive (could be N array accesses).
- dynamic connectivity
- quick find
- quick union
- improvements
- applications
Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each tree (number of objects).
- Balance by linking root of smaller tree to root of larger tree.
Weighted quick-union demo
Quick-union and weighted quick-union example

quick-union

weighted

average distance to root: 5.11
average distance to root: 1.52

Quick-union and weighted quick-union (100 sites, 88 union() operations)
Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array \(sz[i] \) to count number of objects in the tree rooted at \(i \).

Find. Identical to quick-union.

```java
return root(p) == root(q);
```

Union. Modify quick-union to:

- Link root of smaller tree to root of larger tree.
- Update the \(sz[] \) array.

```python
int i = root(p);
int j = root(q);
if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else { id[j] = i; sz[i] += sz[j]; }
```
Weighted quick-union analysis

Running time.
• Find: takes time proportional to depth of p and q.
• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.

$N = 10$
$\text{depth}(x) = 3 \leq \lg N$
Weighted quick-union analysis

Running time.
- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.

Pf. When does depth of x increase?
Increases by 1 when tree T_1 containing x is merged into another tree T_2.
- The size of the tree containing x at least doubles since $|T_2| \geq |T_1|$.
- Size of tree containing x can double at most $\lg N$ times. Why?
Weighted quick-union analysis

Running time.
• Find: takes time proportional to depth of \(p \) and \(q \).
• Union: takes constant time, given roots.

Proposition. Depth of any node \(x \) is at most \(\lg N \).

<table>
<thead>
<tr>
<th>algorithm</th>
<th>initialize</th>
<th>union</th>
<th>connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>N</td>
<td>N</td>
<td>1</td>
</tr>
<tr>
<td>quick-union</td>
<td>N</td>
<td>N (\dagger)</td>
<td>N</td>
</tr>
<tr>
<td>weighted QU</td>
<td>N</td>
<td>(\lg N) (\dagger)</td>
<td>(\lg N)</td>
</tr>
</tbody>
</table>

\(\dagger \) includes cost of finding roots

Q. Stop at guaranteed acceptable performance?
A. No, easy to improve further.
Improvement 2: path compression

Quick union with path compression. Just after computing the root of \(p \), set the id of each examined node to point to that root.
Quick union with path compression. Just after computing the root of p, set the id of each examined node to point to that root.
Improvement 2: path compression

Quick union with path compression. Just after computing the root of p, set the id of each examined node to point to that root.
Improvement 2: path compression

Quick union with path compression. Just after computing the root of \(p \), set the id of each examined node to point to that root.
Improvement 2: path compression

Quick union with path compression. Just after computing the root of p, set the id of each examined node to point to that root.
Path compression: Java implementation

Two-pass implementation: add second loop to `root()` to set the `id[]` of each examined node to the root.

Simpler one-pass variant: Make every other node in path point to its grandparent (thereby halving path length).

In practice. No reason not to! Keeps tree almost completely flat.

```java
private int root(int i)
{
   while (i != id[i])
   {
      id[i] = id[id[i]];
      i = id[i];
   }
   return i;
}
```
Weighted quick-union with path compression: amortized analysis

Proposition. Starting from an empty data structure, any sequence of M union-find operations on N objects makes at most proportional to $N + M \lg^* N$ array accesses.
- Proof is very difficult.
- But the algorithm is simple!
- Analysis can be improved to $N + M \alpha(M, N)$.

Linear-time algorithm for M union-find ops on N objects?
- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

Amazing fact. No linear-time algorithm exists.

Because $\lg^* N$ is a constant in this universe
Summary

Bottom line. WQUPC makes it possible to solve problems that could not otherwise be addressed.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Worst-case time</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>M N</td>
</tr>
<tr>
<td>quick-union</td>
<td>M N</td>
</tr>
<tr>
<td>weighted QU</td>
<td>N + M log N</td>
</tr>
<tr>
<td>QU + path compression</td>
<td>N + M log N</td>
</tr>
<tr>
<td>weighted QU + path compression</td>
<td>N + M lg* N</td>
</tr>
</tbody>
</table>

* M union-find operations on a set of N objects

Ex. [10^9 unions and finds with 10^9 objects]
- **WQUPC reduces time from 30 years to 6 seconds.**
- **Supercomputer won't help much; good algorithm enables solution.**
› dynamic connectivity
› quick find
› quick union
› improvements
› applications
Union-find applications

• **Percolation.** ← see also Assignment 1
• Games (Go, Hex).
✓ **Dynamic connectivity.**
• Least common ancestor.
• Equivalence of finite state automata.
• Hoshen-Kopelman algorithm in physics.
• Hinley-Milner polymorphic type inference.
• Kruskal's minimum spanning tree algorithm.
• Compiling equivalence statements in Fortran.
• Morphological attribute openings and closings.
• Matlab's `bwlabel()` function in image processing.
A model for many physical systems:

• N-by-N grid of sites.
• Each site is open with probability p (or blocked with probability $1 - p$).
• System percolates iff top and bottom are connected by open sites.

Percolation

$N = 8$
Percolation

A model for many physical systems:

• N-by-N grid of sites.
• Each site is open with probability p (or blocked with probability $1 - p$).
• System percolates iff top and bottom are connected by open sites.

<table>
<thead>
<tr>
<th>model</th>
<th>system</th>
<th>vacant site</th>
<th>occupied site</th>
<th>percolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>electricity</td>
<td>material</td>
<td>conductor</td>
<td>insulated</td>
<td>conducts</td>
</tr>
<tr>
<td>fluid flow</td>
<td>material</td>
<td>empty</td>
<td>blocked</td>
<td>porous</td>
</tr>
<tr>
<td>social interaction</td>
<td>population</td>
<td>person</td>
<td>empty</td>
<td>communicates</td>
</tr>
</tbody>
</table>
Likelihood of percolation

Depends on site vacancy probability p.

- p low (0.4) does not percolate
- p medium (0.6) percolates?
- p high (0.8) percolates
Percolation phase transition

When N is large, theory guarantees a sharp threshold p^*.

- $p > p^*$: almost certainly percolates.
- $p < p^*$: almost certainly does not percolate.

Q. What is the value of p^*?

\[
\begin{array}{c}
\text{percolation probability}
\end{array}
\]
Monte Carlo simulation

- Initialize N-by-N whole grid to be blocked.
- Declare random sites open until top connected to bottom.
- Vacancy percentage estimates p^*.
Dynamic connectivity solution to estimate percolation threshold

Q. How to check whether an N-by-N system percolates?
Q. How to check whether an N-by-N system percolates?

- Create an object for each site and name them 0 to $N^2 - 1$.

![Diagram](image-url)
Q. How to check whether an N-by-N system percolates?

- Create an object for each site and name them 0 to $N^2 - 1$.
- Sites are in same component if connected by open sites.
Dynamic connectivity solution to estimate percolation threshold

Q. How to check whether an N-by-N system percolates?
- Create an object for each site and name them 0 to $N^2 - 1$.
- Sites are in same component if connected by open sites.
- Percolates iff any site on bottom row is connected to site on top row.

Brute-force algorithm: N^2 calls to connected()
Clever trick. Introduce two virtual sites (and connections to top and bottom).

- Percolates iff virtual top site is connected to virtual bottom site.

Dynamic connectivity solution to estimate percolation threshold

efficient algorithm: only 1 call to connected()
Dynamic connectivity solution to estimate percolation threshold

Q. How to model as dynamic connectivity problem when opening a new site?

\[N = 5 \]

- open site
- blocked site

open this site
Q. How to model as dynamic connectivity problem when opening a new site?
A. Connect newly opened site to all of its adjacent open sites.

Dynamic connectivity solution to estimate percolation threshold

Example:
- Open this site
- Connect to up to 4 adjacent open sites

Grid representation:
- Open site
- Blocked site

Diagram: A grid with a highlighted open site and its connections to adjacent open sites.
Percolation threshold

Q. What is percolation threshold p^*?

A. About 0.592746 for large square lattices.

Fast algorithm enables accurate answer to scientific question.

\[N = 100 \]

\[p^* \text{ site vacancy probability} \]

\[p^* \text{ percolation probability} \]
Subtext of today’s lecture (and this course)

Steps to developing a usable algorithm.

• Model the problem.
• Find an algorithm to solve it.
• Fast enough? Fits in memory?
• If not, figure out why.
• Find a way to address the problem.
• Iterate until satisfied.

The scientific method.

Mathematical analysis.