Knuth-Morris-Pratt
Knuth-Morris-Pratt construction

Include one state for each character in pattern (plus accept state).

Constructing the DFA for KMP substring search for A B A B A C
Knuth-Morris-Pratt construction

Match transition: advance to next state if c == pat.charAt(j).

Constructing the DFA for KMP substring search for A B A B A C.
Mismatch transition: back up if \(c \neq \text{pat.charAt}(j) \).

Knuth-Morris-Pratt construction

Constructing the DFA for KMP substring search for A B A B A C

<table>
<thead>
<tr>
<th>(j)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{pat.charAt}(j))</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>dfa[][][j]</td>
<td>A</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- **States:** 0 to 6
- **Transitions:**
 - \(B.C \) from state 1 to 2
 - \(A \) from state 0 to 1
 - \(A \) from state 2 to 3
 - \(B \) from state 3 to 4
 - \(A \) from state 4 to 5
 - \(C \) from state 5 to 6

Construction:

- \(dfa[\text{pat}[j]] = j+1 \) if \(\text{dfa}[\text{pat}[j]] = j \) if \(\text{pat}[j] \neq \text{pat}[\text{X}+1] \)
Knuth-Morris-Pratt construction

Mismatch transition: back up if \(c \neq \text{pat.charAt}(j) \).

Constructing the DFA for KMP substring search for A B A B A C
Knuth-Morris-Pratt construction

Mismatch transition: back up if \(c \neq \text{pat.charAt}(j) \).

<table>
<thead>
<tr>
<th>(j)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{pat.charAt}(j)</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>\text{dfa[][]}[j]</td>
<td>B</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>\text{dfa[][]}[X]</td>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Constructing the DFA for KMP substring search for A B A B A C
Knuth-Morris-Pratt construction

Mismatch transition: back up if $c \neq \text{pat.charAt}(j)$.
Knuth-Morris-Pratt construction

Mismatch transition: back up if $c \neq \text{pat.charAt}(j)$.
Mismatch transition: back up if $c \neq \text{pat.charAt}(j)$.

<table>
<thead>
<tr>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{pat.charAt}(j)$</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>$\text{dfa}[][j]$</td>
<td>A</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>
Knuth-Morris-Pratt construction
Knuth-Morris-Pratt
Knuth-Morris-Pratt construction

Include one state for each character in pattern (plus accept state).

Constructing the DFA for KMP substring search for A B A B A C
Knuth-Morris-Pratt construction

Match transition. For each state j, $\text{dfa}[\text{pat.charAt}(j)][j] = j+1$.

- First j characters of pattern have already been matched
- Now first $j+1$ characters of pattern have been matched

Constructing the DFA for KMP substring search for A B A B A C
Mismatch transition.

Constructing the DFA for KMP substring search for A B A B A C
Mismatch transition. For each state j and character $c \neq \text{pat.charAt}(j)$,
\[
dfa[c][j] = dfa[c][X];
\]
then update $X = dfa[\text{pat.charAt}(j)][X]$.
Knuth-Morris-Pratt construction

Mismatch transition. For each state j and char $c \neq \text{pat.charAt}(j)$, $\text{dfa}[c][j] = \text{dfa}[c][X]$; then update $X = \text{dfa[pat.charAt(j)]}[X]$.

Constructing the DFA for KMP substring search for A B A B A C
Knuth-Morris-Pratt construction

Mismatch transition. For each state j and char $c \neq \text{pat.charAt}(j)$,
\[\text{dfa}[c][j] = \text{dfa}[c][X]; \] then update $X = \text{dfa[pat.charAt(j)]}[X]$.
Knuth-Morris-Pratt construction

Mismatch transition. For each state j and char $c \neq \text{pat.charAt}(j)$, $\text{dfa}[c][j] = \text{dfa}[c][X]$; then update $X = \text{dfa}[\text{pat.charAt}(j)][X]$.
Mismatch transition. For each state \(j \) and char \(c \neq \text{pat.charAt}(j) \),
\[
dfa[c][j] = dfa[c][X]; \text{ then update } X = dfa[\text{pat.charAt}(j)][X].
\]
Knuth-Morris-Pratt construction

<table>
<thead>
<tr>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>pat.charAt(j)</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>dfa[][j]</td>
<td>A</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>