
Understanding Java Stack Inspection
�

Dan S. Wallach Edward W. Felten
dwallach@cs.princeton.edu felten@cs.princeton.edu

Secure Internet Programming Laboratory
Department of Computer Science

Princeton University

Abstract

Current implementations of Java make security decisions
by searching the runtime call stack. These systems have
attractive security properties, but they have been criticized
as being dependent on specific artifacts of the Java imple-
mentation.

This paper models the stack inspection algorithm in
terms of a well-understood logic for access control and
demonstrates how stack inspection is a useful tool for ex-
pressing and managing complex trust relationships. We
show that an access control decision based on stack in-
spection corresponds to the construction of a proof in the
logic, and we present an efficient decision procedure for
generating these proofs.

By examining the decision procedure, we demonstrate
that many statements in the logic are equivalent and can
thus be expressed in a simpler form. We show that there
are a finite number of such statements, allowing us to rep-
resent the security state of the system as a pushdown au-
tomaton. We also show that this automaton may be em-
bedded in Java by rewriting all Java classes to pass an ad-
ditional argument when a procedure is invoked. We call
this security-passing style and describe its benefits over
previous stack inspection systems. Finally, we show how
the logic allows us to describe a straightforward design for
extending stack inspection across remote procedure calls.

1 Introduction

The Java language [7] and virtual machine [11] are
now being used in a wide variety of applications: Web

�
Copyright 1998 IEEE. Published in the Proceedings of S&P’98,

3-6 May 1998 in Oakland, California. Personal use of this material is
permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works, must be obtained from the IEEE.
Contact: Manager, Copyrights and Permissions / IEEE Service Center /
445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA.
Telephone: + Intl. 908-562-3966.

browsers and servers, multi-user chat systems (MUDs),
agent systems, commerce applications, smart cards, and
more. Some systems use Java simply as a better pro-
gramming language, using Java’s type-safety to prevent
a host of bugs endemic to C programming. In other sys-
tems, Java is also being relied upon for access control.
Java’s promise, from its initial debut in the HotJava Web
browser, has been to allow mutually untrusting code mod-
ules to co-exist in the same virtual machine in a secure and
controllable manner. While there have been several secu-
rity problems along the way [4, 13], the security of Java
implementations is improving and Java has continued to
grow in popularity.

To implement a Java application that runs untrusted
code within itself (such as the HotJava Web browser), the
Java system libraries need a way to distinguish between
calls originating from untrusted code, which should be re-
stricted, and calls originating from the application itself,
which should be allowed to proceed (subject to any access
controls applied by the underlying operating system). To
solve this problem, the Java runtime system exports an
interface to allow security-checking code to examine the
runtime stack for frames executing untrusted code, and al-
lows security decisions to be made at runtime based on the
state of the stack.

While a number of other techniques may be used to
achieve the same goals as stack inspection [21], stack in-
spection has proven to be quite attractive and has been
adopted by all the major Java vendors [15, 6, 14] to meet
their need to provide more flexible security policies than
the rigid “sandbox” policy, which restricted all non-local
code to the same set of privileges. Stack inspection is also
a useful technique to allow highly-trusted code to operate
with less than its full privileges, which can help prevent
common program bugs from becoming security holes.

Stack inspection has been criticized for its
implementation-specific and seemingly ad-hoc defi-
nition, which restricts the flexibility of an optimizing
compiler and hinders its applicability to other languages.
To address these concerns, we will present a model of

1

stack inspection using a belief logic designed by Abadi,
Burrows, Lampson, and Plotkin [1] (hereafter, ABLP
logic) to reason about access control. Using this logic,
we will derive an alternate technique for implementing
stack inspection which is applicable to Java and other
languages. Our procedure applies to remote procedure
calls as well as local ones.

This paper is organized as follows. Section 2 begins
by reviewing Java’s stack inspection model. Next, Sec-
tion 3 explains the subset of ABLP logic we use. Sec-
tion 4 shows the mapping from stack inspection to ABLP
logic and discusses their equivalence. Section 5 presents
a high-performance and portable procedure to implement
stack inspection. Finally, Section 6 considers remote pro-
cedure calls and shows how stack inspection helps to ad-
dress remote procedure call security. The appendices list
the axioms of ABLP logic used in this paper, and present
proofs of our theorems.

2 Java Stack Inspection

This section describes Java’s current stack inspection
mechanism1. Variations on this approach are taken
by Netscape’s Communicator 4.0 [15], Microsoft’s In-
ternet Explorer 4.0 [14], and Sun’s Java Development
Kit 1.2 [6].

Stack inspection has a number of useful security prop-
erties [21] but very little prior art. In some ways, it resem-
bles dynamic variables (where free variables are resolved
from the caller’s environment rather than from the envi-
ronment in which the function is defined), as used in early
versions of LISP [12]. In other ways, it resembles the no-
tion of effective user ID in Unix, where the current ID is
either inherited from the calling process or set to the exe-
cutable’s owner through an explicit setuid bit.

2.1 Type Safety and Encapsulation

Java’s security depends fundamentally on the type safety
of the Java language. Type safety guarantees that a pro-
gram may not treat pointers as integers and vice versa
and likewise may not exceed the allocated size of an ar-
ray. This prevents arbitrary access to memory and makes
it possible for a software module to encapsulate its state:
to declare that some of its variables and procedures may
not be accessed by code outside itself. By allowing ac-
cess only through a few carefully written entry points, a
module can apply access control checks to all attempts to
access its state.

For example, the Java virtual machine protects access
to operating system calls in this way. Only the virtual

1This approach is sometimes incorrectly referred to as “capability-
based security” in vendor literature.

machine may directly make a system call, and other code
must call into the virtual machine through explicit entry
points which implement security checks.

2.2 Simplified Stack Inspection

To explain how stack inspection works, we will first con-
sider a simplified model of stack inspection. In this model,
the only principals are “system” and “untrusted”. Like-
wise, the only privilege available is “full.” This model
resembles the stack inspection system used internally in
Netscape Navigator 3.0 [17].

In this model, every stack frame is labeled with a princi-
pal (“system” if the frame is executing code that is part of
the virtual machine or its built-in libraries, and “untrusted”
otherwise), and contains a privilege flag which may be set
by a system class which chooses to “enable its privileges,”
explicitly stating that it wants to do something dangerous.
An untrusted class cannot set its privilege flag. When a
stack frame exits, its privilege flag (if any) automatically
disappears.

All procedures about to perform a dangerous operation
such as accessing the file system or network first apply a
stack inspection algorithm to decide whether access is al-
lowed. The stack inspection algorithm searches the frames
on the caller’s stack in sequence, from newest to oldest.
The search terminates, allowing access, upon finding a
stack frame with a privilege flag. The search also termi-
nates, forbidding access and throwing an exception, upon
finding an untrusted stack frame (which could never have
gotten a privilege flag).

2.3 Stack Inspection

The stack inspection algorithm used in current Java sys-
tems can be thought of as a generalization of the simple
stack inspection model described above. Rather than hav-
ing only “system” and “untrusted” principals, many prin-
cipals may exist. Likewise, rather than having only “full”
privileges, a number of more specific privileges are de-
fined, so different principals may have different degrees
of access to the system.

Four fundamental primitives are necessary to use stack
inspection:2

� enablePrivilege()

� disablePrivilege()

� checkPrivilege()

� revertPrivilege()

2Each Java vendor has different syntax for these primitives. This
paper follows the Netscape syntax.

2

When a dangerous resource R (such as the file system)
needs to be protected, the system must be sure to call
checkPrivilege(R) before accessing R.

When code wishes to use R, it must first call
enablePrivilege(R). This consults the local pol-
icy to see whether the principal of the caller is per-
mitted to use R. If it is permitted, an enabled-
privilege(R) annotation is made on the current stack
frame. The code may then use R normally. Af-
terward, the code may call revertPrivilege(R)
or disablePrivilege(R) to discard the anno-
tation or it may simply return, causing the anno-
tation to be discarded along with the stack frame.
disablePrivilege() creates a stack annotation
that can hide an earlier enabled privilege, whereas
revertPrivilege() simply removes annotations
from the current frame.

The generalized checkPrivilege() algorithm,
used by all three implementations, is shown in figure 1.
The algorithm searches the frames on the caller’s stack
in sequence, from newest to oldest. The search termi-
nates, allowing access, upon finding a stack frame that has
an appropriate enabled-privilege annotation. The search
also terminates, forbidding access (and throwing an ex-
ception), upon finding a stack frame that is either forbid-
den by the local policy from accessing the target or that
has explicitly disabled its privileges.

We note that each vendor takes different actions when
the search reaches the end of the stack uneventfully:
Netscape denies permission, while both Sun and Mi-
crosoft allow it.

3 Access Control Logic

We will model the behavior of Java stack inspection using
ABLP logic [1, 9]. ABLP logic allows us to reason about
what we believe to be true given the state of the system
and a set of axioms. It has been used to describe authen-
tication and authorization in distributed systems such as
Taos [22] and appears to be a good match for describing
access control within Java. We use a subset of the full
ABLP logic, which we will describe here. Readers who
want a full description and a more formal development of
the logic should see [1] or [9].

The logic is based on a few simple concepts: principals,
conjunctions of principals, targets, statements, quotation,
and authority.

� A principal is a person, organization or any other en-
tity that may have the right to take actions or autho-
rize actions. In addition, entities such as programs
and cryptographic keys are often modeled as princi-
pals.

checkPrivilege (target)
�

// loop, newest to oldest stack frame
foreach stackFrame

�
if (local policy forbids access to target

by class executing in stackFrame)
throw ForbiddenException;

if (stackFrame has enabled privilege for target)
return; // allow access

if (stackFrame has disabled privilege for target)
throw ForbiddenException;�

// if we reached here, we fell off the end of the stack
if (Netscape 4.0)

throw ForbiddenException;
if (Microsoft IE 4.0 ��� Sun JDK 1.2)

return; // allow access�

Figure 1: Java’s stack inspection algorithm.

� A target represents a resource that we wish to protect.
Loosely speaking, a target is something to which
we might like to attach an access control list. (Tar-
gets are traditionally known as “objects” in the liter-
ature, but this can be confusing when talking about
an object-oriented language.)

� A statement is any kind of utterance a principal can
emit. Some statements are made explicitly by a prin-
cipal, and some are made implicitly as a side-effect
of actions the principal takes. In other words, we in-
terpret P says s as meaning that we can act as if the
principal P supports the statement s. Note that say-
ing something does not make it true; a speaker could
make a false statement carelessly or maliciously. The
logic supports the informal notion that we should
place faith in a statement only if we trust the speaker
and it is the kind of statement that the speaker has the
authority to make.

The most common type of statement we will use
looks like P says Ok(T) where P is a principal and T
is a target; this statement means that P is authorizing
access to the target T. By saying an action is “Ok”
the speaker is saying the action should be allowed
in the current context but is not specifically ordering
that the action take place.

� The logic supports conjunctions of principals.
Specifically, saying � A � B � says s is the same as

3

saying both A says s and B says s.

� Quotation allows a principal to make a statement
about what another principal says. The notation
A � B says s, which we pronounce “A quoting B says
s,” is equivalent to A says � B says s � . As with any
statement, we must consider whether A’s utterance
might be incorrect, and our degree of faith in s will
depend on our beliefs about A and B. When A quotes
B, we have no guarantee that B ever actually said any-
thing.

� We grant authority to a principal by allowing that
principal to speak for another principal who has
power to do something. The statement A � B, pro-
nounced “A speaks for B,” means that if A makes a
statement, we can assume that B supports the same
statement. If A � B, then A has at least as much au-
thority as B. Note that the � -operator can be used
to represent group membership: if P is a member of
the group G, we can say P � G, meaning that P can
exercise the rights granted to G.

Appendix A gives a full list of the axioms of the logic.
This is a subset of the ABLP logic: we omit some of the
operators defined by ABLP since we do not need them.

4 Mapping Java to ABLP

We will now describe a mapping from the stack, the priv-
ilege calls, and the stack inspection algorithm into ABLP
logic.

4.1 Principals

In Java, code is digitally signed with a private key, then
shipped to the virtual machine where it will run. If KSigner

is the public key of Signer, the public-key infrastructure
can generate a proof3 of the statement

KSigner
� Signer. (1)

Signer’s digital signature on the code Code is interpreted
as

KSigner says Code � KSigner. (2)

Using equations 1 and 18, this implies that

Code � Signer � (3)

3Throughout this paper we assume that sound cryptographic proto-
cols are used, and we ignore the extremely unlikely possibility that an
adversary will successfully guess a private key.

When Code is invoked, it generates a stack frame Frame.
The virtual machine assumes that the frame speaks for the
code it is executing:

Frame � Code � (4)

The transitivity of � (which can be derived from equa-
tion 17) then implies

Frame � Signer � (5)

We define Φ to be the set of all such valid Frame � Signer
statements. We call Φ the frame credentials.

Note also that code can be signed by more than one
principal. In this case, the code and its stack frames speak
for all of the signers. To simplify the discussion, all of our
examples will use single signers, but the theory supports
multiple signers without any extra difficulty.

4.2 Targets

Recall that the resources we wish to protect are called tar-
gets. For each target, we create a dummy principal whose
name is identical to that of the target. These dummy prin-
cipals do not make any statements themselves, but various
principals may speak for them.

For each target T, the statement Ok(T) means that access
to T should be allowed in the present context. The axiom

�
T � Targets � � T says Ok(T) ��� Ok(T) (6)

says that T can allow access to itself.
Many targets are defined in relation to services offered

by the operating system underlying the Java Virtual Ma-
chine (JVM). From the operating system’s point of view,
the JVM is a single process and all system calls coming
from the JVM are performed under the authority of the
JVM’s principal (often the user running the JVM). The
JVM’s responsibility, then, is to allow a system call only
when there is justification for issuing that system call un-
der the JVM’s authority. Our model will support this in-
tuition by requiring the JVM to prove in ABLP logic that
each system call has been authorized by a suitable princi-
pal.

4.3 Setting Policy

We use a standard access matrix [10] to keep track of
which principals have permission to access which targets.
If VM is a Java virtual machine, we define AVM to be a set
of statements of the form P � T where P is a principal and
T is a target. Informally, if � P � T ��� AVM, this means that
the local policy in VM allows P to access T. We call AVM

the access credentials for the virtual machine VM.

4

F1 enablePrivilege(T1)
Ok(T1)

F2 enablePrivilege(T2)
F1 says Ok(T1)

Ok(T2)

F3 disablePrivilege(T1)
F2 says Ok(T2)

F4 enablePrivilege(T2)
F3 | F2 says Ok(T2)

Ok(T2)

Figure 2: Example of interaction between stack frames. Each rectangle represents a stack frame. Each
stack frame is labeled with its name. In this example, each stack frame makes one enablePrivilege()
or disablePrivilege() call, which is also written inside the rectangle. Below each frame is written
its belief set after its call to enablePrivilege() or disablePrivilege().

4.4 Stacks

When a Java program is executing, we treat each stack
frame as a principal. At any point in time, a stack frame F
has a set of statements that it believes. We refer to this as
the belief set of F and write it BF . We now describe where
the beliefs come from.

4.4.1 Starting a Program

When a program starts, we need to set the belief set of the
initial stack frame, BF0 . In the Netscape model, BF0

� � �
.

In the Sun and Microsoft models, BF0
� �

Ok � T � � T �
Targets

�
. These correspond to Netscape’s initial unprivi-

leged state and Sun and Microsoft’s initial privileged state.

4.4.2 Enabling Privileges

If a stack frame F calls enablePrivilege(T) for
some target T , it is really saying it authorizes access to
the target. We can represent this simply by adding Ok(T)
to BF .

4.4.3 Calling a Procedure

When a stack frame F makes a procedure call, this creates
a new stack frame G. As a side-effect of the creation of G,
F tells G all of F’s beliefs. When F tells G a statement S,
the statement F says S is added to BG.

4.4.4 Disabling and Reverting Privileges

A stack frame can also choose to disable some of its priv-
ileges. The call disablePrivilege(T) asks to dis-
able any privilege to access the target T . This is imple-
mented by giving the frame a new belief set which con-
sists of the old belief set with all statements in which
anyone says Ok(T) removed. revertPrivilege()
is handled in a similar manner, by giving the frame a
new belief set that is equal to the belief set it originally
had. While our treatment of disablePrivilege()
and revertPrivilege() is a bit inelegant, it seems
to be the best we can do.

4.4.5 Example

Figure 2 shows an example of these rules in ac-
tion. In the beginning, BF1

� � �
. F1 then calls

enablePrivilege(T1), which adds the statement
Ok � T1 � to BF1 .

When F2 is created, F1 tells it Ok � T1 � , so
BF2 is initially

�
F1 says Ok � T1 � �

. F2 then calls
enablePrivilege(T2), which adds Ok � T2 � to BF2 .

BF3 initially contains F2 � F1 says Ok � T1 �
and F2 says Ok � T2 � . When F3 calls
disablePrivilege(T2), the latter belief is deleted
from BF3 . BF4 initially contains F3 � F2 says Ok � T1 � .
When F4 calls enablePrivilege(T2), this adds
Ok � T2 � to BF4 .

4.5 Checking Privileges

Before making a system call or otherwise invoking
a dangerous operation, the Java virtual machine calls
checkPrivilege() to make sure that the requested
operation is authorized. checkPrivilege(T) re-
turns true if the statement Ok(T) can be derived from Φ,
AVM, and BF (the belief set of the frame which called
checkPrivilege()).

We define VM(F) to be the virtual machine in which a
given frame F is running. Next, we can define

EF
� � Φ � AVM(F) � BF � � (7)

We call EF the environment of the frame F.
The goal of checkPrivilege(T) is to determine,

for the frame F invoking it, whether EF � Ok(T).
While such questions are generally undecidable in ABLP
logic, there is an efficient decision procedure that
gives the correct answer for our subset of the logic.
checkPrivilege() implements that decision proce-
dure.

The decision procedure used by
checkPrivilege() takes, as arguments, an en-
vironment EF and a target T. The decision procedure
examines the statements in EF and divides them into
three classes.

5

� Class 1 statements have the form Ok(U), where U is
a target.

� Class 2 statements have the form P � Q, where P
and Q are atomic principals.

� Class 3 statements have the form

F1 � F2 � ����� � Fk says Ok(U) �

where Fi is an atomic principal for all i, k
�

1, and U
is a target.

The decision procedure next examines all Class 1 state-
ments. If any of them is equal to Ok(T), the decision pro-
cedure terminates and returns true.

Next, the decision procedure uses all of the Class 2
statements to construct a directed graph which we will call
the speaks-for graph of EF . This graph has an edge � A � B �
if and only if there is a Class 2 statement A � B.

Next, the decision procedure examines the Class 3
statements one at a time. When examining the statement
F1 � F2 � ����� � Fk says Ok(U), the decision procedure ter-
minates and returns true if both

� for all i ��� 1 � k � , there is a path from Fi to T in the
speaks-for graph, and

� U � T.

If the decision procedure examines all of the Class 3 state-
ments without success, it terminates and returns false.

Theorem 1 (Termination) The decision procedure al-
ways terminates.

Theorem 2 (Soundness) If the decision procedure re-
turns true when invoked in stack frame F, then there exists
a proof in ABLP logic that EF � Ok � T � .

Proofs of these two theorems appear in Appendix B.

Conjecture 1 (Completeness) If the decision procedure
returns false when invoked in stack frame F, then there is
no proof in ABLP logic of the statement EF � Ok � T � .
Although we believe this conjecture to be true, we do not
presently have a complete proof. If the conjecture is false,
then some legitimate access may be denied. However, as
a result of theorem 2, no access will improperly granted.

If the conjecture is true, then Java stack inspection, our
access control decision procedure, and proving statements
in our subset of ABLP logic are all mutually equivalent.

Theorem 3 (Equivalence to Stack Inspection) The de-
cision procedure described above is equivalent to the Java
stack inspection algorithm of section 2.

A proof of this theorem appears in Appendix B.

4.6 Other Differences

There are a number of cases in which Java implemen-
tations differ from the model we have described. These
are minor differences with no effect on the strength of the
model.

4.6.1 Extension: Groups

It is natural to extend the model by allowing the definition
of groups. In ABLP logic, a group is represented as a
principal, and membership in the group is represented by
saying the member speaks for the group. Deployed Java
systems use groups in several ways to simplify the process
of defining policy.

The Microsoft system defines “security zones” which
are groups of principals. A user or administrator can di-
vide the principals into groups with names like “local”,
“intranet”, and “internet”, and then define policies on a
per-group basis.

Netscape defines “macro targets” which are groups of
targets. A typical macro target might be called “typical
game privileges.” This macro target would speak for those
privileges that network games typically need.

The Sun system has a general notion of targets in which
one target can imply another. In fact, each target is re-
quired to define an implies() procedure, which can be
used to ask the target whether it implies a particular other
target. This can be handled with a simple extension to the
model.

4.6.2 Extension: Threads

Java is a multi-threaded language, meaning there can be
multiple threads of control, and hence multiple stacks
can exist concurrently. When a new thread is created in
Netscape’s system, the first frame on the new stack begins
with an empty belief set. In Sun and Microsoft’s systems,
the first frame on the stack of the new thread is told the be-
lief set of the stack frame that created the thread in exactly
the same way as what happens during a normal procedure
call.

4.6.3 Optimization: Enabling a Privilege

The model of enablePrivilege() in section 4.4.2
differs somewhat from the Netscape implementation of
stack inspection, where a stack frame F cannot success-
fully call enablePrivilege(T) unless the local ac-
cess credentials include F � T. The restriction imposed by
Netscape is related to their user interface and is not neces-
sary in our formulation, since the statement F says Ok(T)
is ineffectual unless F � T. Sun JDK 1.2’s implementation
is closer to our model.

6

4.6.4 Optimization: Frame Credentials

Java implementations do not treat stack frames or their
code as separate principals. Instead, they only track the
public key which signed the code and call this the frame’s
principal. As we saw in section 4.1, for any stack frame,
we can prove the stack frame speaks for the public key
which signed the code. In practice, neither the stack frame
nor the code speaks for any principal except the public
key. Likewise, access control policies are represented di-
rectly in terms of the public keys, so there is no need to
separately track the principal for which the public key
speaks. As a result, the Java implementations say the prin-
cipal of any given stack frame is exactly the public key
which signed that frame’s code. This means that Java im-
plementations do not have an internal notion of the frame
credentials used here.

5 Improved Implementation

In addition to improving our understanding of stack in-
spection, our model and decision procedure can help us
find more efficient implementations of stack inspection.
We improve the performance in two ways. First, we show
that the evolution of belief sets can be represented by a
finite pushdown automaton; this opens up a variety of ef-
ficient implementation techniques. Second, we describe
security-passing style, an efficient and convenient integra-
tion of the pushdown automaton with the state of the pro-
gram.

5.1 Belief Sets and Automata

We can simplify the representation of belief sets by mak-
ing two observations about our decision procedure.

1. Interchanging the positions of two principals in any
quoting chain does not affect the outcome of the de-
cision procedure.

2. If P is an atomic principal, replacing P � P by P in any
statement does not affect the result of the decision
procedure.

Both observations are easily proven, since they follow di-
rectly from the structure of the decision procedure.

It follows that without affecting the result of the deci-
sion procedure we can rewrite each belief into a canoni-
cal form in which each atomic principal appears at most
once, and the atomic principals appear in some canonical
order. After rewriting the beliefs into canonical form, we
can discard any duplicate beliefs from the belief set.

Since the set of principals is finite, and the set of targets
is finite, and no principal or target may be mentioned more
than once in a canonical-form belief, there is a finite set of

possible canonical-form beliefs. It follows by a simple ar-
gument that only a finite number of canonical-form belief
sets may exist.

We can therefore represent the evolution of a stack
frame’s belief set by a finite automaton. Since
stack frames are created and destroyed in LIFO or-
der, the execution of a thread can be represented
by a finite pushdown automaton, where calling a
procedure corresponds to a push operation (and a
state transition), returning from a procedure corre-
sponds to a pop operation, and enablePrivilege(),
disablePrivilege() and revertPrivilege()
correspond to state transitions4.

Representing the system as an automaton has several
advantages. It allows us to use analysis tools such as
model checkers to derive properties of particular policies.
It also admits a variety of efficient implementation tech-
niques such as lazy construction of the state set and the
use of advanced data structures.

5.2 Security-Passing Style

The implementation discussed thus far has the disadvan-
tage that security state is tracked separately from the rest
of the program’s state. This means that there are two
subsystems (the security subsystem and the code execu-
tion subsystem) with separate semantics and separate im-
plementations of pushdown stacks coexisting in the same
Java Virtual Machine (JVM). We can improve this situa-
tion by implementing the security mechanisms in terms of
the existing JVM mechanisms.

We do this by adding an extra, implicit argument to
every procedure. The extra argument encodes the secu-
rity state (the finite-state representation of the belief set)
of the procedure’s stack frame. This eliminates the need
to have a separate pushdown stack for security states.
We dub this approach security-passing style, by analogy
to continuation-passing style [18], a transformation tech-
nique used by some compilers that also replaces an ex-
plicit pushdown stack with implicitly-passed procedure
arguments.

We note that security-passing style can be implemented
by rewriting code as it is being loaded into the system,
to add the extra parameter to all procedures and proce-
dure calls, and to rewrite the privilege-manipulation op-
erations into equivalent operations on the security state.
This is straightforward to implement for Java bytecode,
since the bytecode format contains enough information to
make rewriting possible.

4One more nicety is required. To implement
revertPrivilege(), we need to remember what the security
state was when each stack frame was created. We can encode this
information in the finite state, or we can store it on the stack by doing
another push operation on procedure call.

7

The main advantage of security-passing style is that
once a program has been rewritten, it no longer needs any
special security functionality from the JVM. The rewritten
program consists of ordinary Java bytecode, which can be
executed by any JVM, even one that knows nothing about
stack inspection. This has many advantages, including
portability and efficiency. The main performance benefit
is that the JVM can use standard compiler optimizations
such as dead-code elimination and constant propagation
to remove unused security tracking code, or inlining and
tail-recursion elimination to reduce procedure call over-
head.

Another advantage of security-passing style is that it
lets us express the stack inspection model within the exist-
ing semantics of the Java language, rather than requiring
an additional and possibly incompatible definition for the
semantics of the security mechanisms. Security-passing
style also lets us more easily transplant the stack inspec-
tion idea into other language and systems.

We are currently implementing security-passing style
by rewriting bytecode at load time using the JOIE [3] tool.
The rewriter is a trusted module which we add to the JVM.

A full description of security-passing style and its
implications for programming language implementations
will appear in a future paper.

6 Remote Procedure Calls

Another advantage of security-passing style is that it sug-
gests an implementation strategy for remote procedure
call (RPC) security. Though a simple translation of
security-passing style into the RPC case does not work,
security-passing style with a few modifications works well
for RPCs.

RPC security has received a good deal of attention in
the literature. The two prevailing styles of security are ca-
pabilities and access control lists [19, 5, 8, 16, 20]. Most
of these systems support only simple principals. Even in
systems that support more complex principals [22], the
mechanisms to express those principals are relatively un-
wieldy.

This section discusses how to extend the Java stack in-
spection model across RPCs. One of the principal uses for
ABLP logic is in reasoning about access control in dis-
tributed systems, and we use the customary ABLP model
of network communication to derive a straightforward ex-
tension of our model to the case of RPC.

6.1 Channels

When two machines establish an encrypted channel be-
tween them, each machine proves that it knows a specific
private key which corresponds to a well-known public key.

When one side sends a message through the encrypted
channel, we model this (following [1] and [22]) as a state-
ment made by the sender’s session key: we write K says s,
where K is the sender’s session key and s is the statement.
As discussed in section 4.1, the public-key infrastructure
and the session key establishment protocol together let us
establish that K speaks for the principal that sent the mes-
sage.

In order to extend Java stack inspection to RPCs, each
RPC call must transmit the belief set of the RPC caller to
the RPC callee. Since each of the caller’s beliefs is sent
through a channel established by the caller’s virtual ma-
chine, a belief B of the caller’s frame arrives on the callee
side as KCVM says B, where KCVM is a cryptographic
key that speaks for the caller’s virtual machine. The stack
frame that executes the RPC on the callee is given an ini-
tial belief set consisting of all of these arriving statements.

Note that this framework supports the intuition that a
remote caller should not be allowed to access resources
unless that caller’s virtual machine is trustworthy. All of
the beliefs transmitted across the network arrive as state-
ments of the caller’s virtual machine (or more properly, of
its key); the callee will disbelieve these statements unless
it trusts the caller’s virtual machine.

This strategy fits together well with security-passing
style. We can think of the transmitted belief set as a rep-
resentation of the caller’s security state: to pass a secu-
rity state across the net we translate it into a belief set in
canonical form; on arrival at the destination we translate
it back into a security state.

There is one more issue to deal with. The RPC caller’s
belief set is expressed in terms of the caller’s stack frames;
though these are the “correct” beliefs of the caller, they
are not useful to the callee, since the callee does not know
about caller-side stack frames. To address this issue, be-
fore the caller sends a belief across the network, the caller
replaces each stack-frame principal Fi with an encryption-
key principal Ki such that Fi

� Ki. Ki can be the key that
signed Fi’s code. If Fi was running unsigned code, then
Fi is powerless anyway so beliefs regarding its statements
can safely be discarded.

Figure 3 presents an example of how this would work.
The Java stack inspection algorithm executes on the
callee’s machine when an access control decision must be
made, exactly as in the local case.

6.2 Dealing with Malicious Callers

An interesting question is what an attacker can accomplish
by sending false or misleading statements across a chan-
nel. If the caller’s virtual machine is malicious, it may
send whatever “beliefs” it wants, provided that they have
the correct format. Regardless of the beliefs sent, each be-
lief arrives at the callee as a statement made by the caller’s

8

F1 enablePrivilege(T1)
Ok(T1)

F2 enablePrivilege(T2)
F1 says Ok(T1)

Ok(T2)

F3 disablePrivilege(T1)
KVM1

 | K2 says Ok(T2)

VM2VM1

KVM1

F2 = K2>

Figure 3: Example of interaction between stack frames via remote procedure call. Each rectangle
represents a stack frame. Each stack frame is labeled with its name and its belief set (after its call
to enablePrivilege() or disablePrivilege()). The larger rounded rectangles represent separate
Java virtual machines, and the dotted arrow represents the channel used for a remote procedure call.

virtual machine. If the callee does not trust the caller, such
statements will not convince the callee to allow access.

Suppose a malicious caller’s virtual machine MC wants
to cause an access to target T on some callee. The
most powerful belief MC can send to support this at-
tempt is simply Ok(T)5; this will arrive at the callee as
MC says Ok(T). Note that this is a statement that MC can
make without lying, since MC is entitled to add Ok(T) to
its own belief set. Any lie that MC can tell is less power-
ful than this true statement, so lying cannot help MC gain
access to T. The most powerful thing MC can do is to ask,
under its own authority, to access T.

6.3 Dealing with Malicious Code on a Trust-
worthy Caller

Malicious code on a trustworthy caller also does not cause
any new problems. The malicious code can add Ok(T) to
its belief set, and that belief will be transmitted correctly
to the callee. The callee will then allow access to T only
if it trusts the malicious code to access T. This is the same
result that would have occurred had the malicious code
been running directly on the callee. This matches the in-
tuition that (with proper use of cryptography for authen-
tication, confidentiality, and integrity of communication)
we can ignore machine boundaries if the communicating
processes trust each other and the platforms on which they
are running.

7 Conclusion

Commercial Java applications often need to execute un-
trusted code, such as applets, within themselves. In order
to allow sufficiently expressive security policies, granting
different privileges to code signed by different principals,
the latest Java implementations now support a runtime

5Technically, MC could send the belief false, which is even
stronger; but we assume the protocol for transmitting beliefs will not
allow this.

mechanism to search the call-stack for code with different
privileges and decide whether a given call-stack configu-
ration is authorized to access a protected resource.

This paper has presented a formalization of Java’s stack
inspection using a logic developed by Abadi, Burrows,
Lampson, and Plotkin [1]. Using this model, we have
demonstrated how Java’s access control decisions corre-
spond to proving statements in ABLP logic. We have re-
duced the stack inspection model to a finite pushdown au-
tomaton, and described how to implement the automaton
efficiently using security-passing style. We have also ex-
tended our model to apply to remote procedure calls and
we have used the ABLP expression of this model to sug-
gest a novel implementation for a Java-based secure RPC
system. While the implementation of such an RPC system
is future work, our model gives us greater confidence that
the system would be both useful and sound.

8 Acknowledgments

Thanks to Martı́n Abadi, Andrew Appel, Dirk Balfanz,
Drew Dean and the anonymous referees for their com-
ments and suggestions on this work and our presentation
of it. Andrew Appel coined the term “security-passing
style,” convinced us of the importance of that technique,
and suggested some of the state-machine implementation
ideas.

Our work is supported by donations from Intel, Mi-
crosoft, Sun Microsystems, Bellcore, and Merrill Lynch.
Edward Felten is supported in part by an NSF National
Young Investigator award and an Alfred P. Sloan Fellow-
ship.

References

[1] ABADI, M., BURROWS, M., LAMPSON, B., AND

PLOTKIN, G. D. A calculus for access control in
distributed systems. ACM Transactions on Program-

9

ming Languages and Systems 15, 4 (Sept. 1993),
706–734.

[2] BIRRELL, A. D., NELSON, G., OWICKI, S., AND

WOBBER, E. P. Network objects. Software: Prac-
tice and Experience S4, 25 (Dec. 1995), 87–130.

[3] COHEN, G., CHASE, J., AND KAMINSKY, D. Au-
tomatic program transformation with JOIE. In Proc.
1998 Usenix Technical Symposium (June 1998). To
appear.

[4] DEAN, D., FELTEN, E. W., AND WALLACH, D. S.
Java security: From HotJava to Netscape and be-
yond. In Proceedings of the 1996 IEEE Symposium
on Security and Privacy (Oakland, California, May
1996), pp. 190–200.

[5] GONG, L. A secure identity-based capability sys-
tem. In Proceedings of the 1989 IEEE Symposium
on Security and Privacy (Oakland, California, May
1989), pp. 56–63.

[6] GONG, L., AND SCHEMERS, R. Implementing pro-
tection domains in the Java Development Kit 1.2.
In The Internet Society Symposium on Network and
Distributed System Security (San Diego, California,
Mar. 1998), Internet Society.

[7] GOSLING, J., JOY, B., AND STEELE, G. The Java
Language Specification. Addison-Wesley, Reading,
Massachusetts, 1996.

[8] HU, W. DCE Security Programming. O’Reilly &
Associates, Inc., Sebastopol, California, July 1995.

[9] LAMPSON, B., ABADI, M., BURROWS, M., AND

WOBBER, E. Authentication in distributed systems:
Theory and practice. ACM Transactions on Com-
puter Systems 10, 4 (Nov. 1992), 265–310.

[10] LAMPSON, B. W. Protection. In Proceedings
of the Fifth Princeton Symposium on Information
Sciences and Systems (Princeton University, Mar.
1971), pp. 437–443. Reprinted in Operating Systems
Review, 8 1 (Jan. 1974), pp. 18–24.

[11] LINDHOLM, T., AND YELLIN, F. The Java Virtual
Machine Specification. Addison-Wesley, Reading,
Massachusetts, 1996.

[12] MCCARTHY, J., ABRAHAMS, P. W., EDWARDS,
D. J., HART, T. P., AND LEVIN, M. I. LISP
1.5 Programmer’s Manual, 2nd ed. The Computa-
tion Center and Research Laboratory of Electronics,
Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1962.

[13] MCGRAW, G., AND FELTEN, E. W. Java Security:
Hostile Applets, Holes, and Antidotes. John Wiley
and Sons, New York, New York, 1997.

[14] MICROSOFT CORPORATION. Trust-Based Se-
curity for Java. Redmond, Washington, Apr.
1997. http://www.microsoft.com/java/
security/jsecwp.htm.

[15] NETSCAPE COMMUNICATIONS CORPO-
RATION. Introduction to the Capabilities
Classes. Mountain View, California, Aug. 1997.
http://developer.netscape.com/
library/documentation/signedobj/
capabilities/index.html.

[16] OBJECT MANAGEMENT GROUP. Common Secure
Interoperability, July 1996. OMG Document Num-
ber: orbos/96-06-20.

[17] ROSKIND, J. Evolving the Security Model
For Java From Navigator 2.x to Navigator
3.x. Netscape Communications Corporation,
Mountain View, California, Aug. 1996. http:
//developer.netscape.com/library/
technote/security/sectn1.html.

[18] STEELE, G. L. Rabbit: a compiler for Scheme.
Tech. Rep. AI-TR-474, MIT, Cambridge, MA, 1978.

[19] TANENBAUM, A. S., MULLENDER, S. J., AND

VAN RENESSE, R. Using sparse capabilities in a dis-
tributed operating system. In 6th International Con-
ference on Distributed Computing Systems (Cam-
bridge, Massachusetts, May 1986), pp. 558–563.

[20] VAN DOORN, L., ABADI, M., BURROWS, M., AND

WOBBER, E. Secure network objects. In Proceed-
ings of the 1996 IEEE Symposium on Security and
Privacy (Oakland, California, May 1996).

[21] WALLACH, D. S., BALFANZ, D., DEAN, D., AND

FELTEN, E. W. Extensible security architectures for
Java. In Proceedings of the Sixteenth ACM Sympo-
sium on Operating System Principles (Saint-Malo,
France, Oct. 1997), pp. 116–128.

[22] WOBBER, E., ABADI, M., BURROWS, M., AND

LAMPSON, B. Authentication in the Taos operating
system. ACM Transactions on Computer Systems 12,
1 (Feb. 1994), 3–32.

A ABLP Logic

Here is a list of the subset of axioms in ABLP logic used
in this paper. We omit axioms for delegation, roles, and

10

exceptions because they are not necessary to discuss Java
stack inspection.

Axioms About Statements

If s is an instance of a theorem of proposi-
tional logic then s is true in ABLP.

(8)

If s and s � s
�
then s

�
� (9)

� A says s � A says � s � s
� � � � A says s

�
� (10)

If s then A says s for every principal A � (11)

Axioms About Principals

� A � B � says s � � A says s � � � B says s � (12)

� A � B � says s � A says B says s (13)

A � B � � A says s � B says s � (14)

� is associative. (15)

� distributes over � in both arguments. (16)

� A � B � � � A � A � B � (17)

� A says � B � A � � � � B � A � (18)

B Proofs

This section proves the theorems from section 4.5.

Theorem 1 (Termination) The decision procedure al-
ways terminates.

Proof: The result follows directly from the fact that EF

has bounded cardinality. This implies that each loop in the
algorithm has a bounded number of iterations; and clearly
the amount of work done in each iteration is bounded.

Theorem 2 (Soundness) If the decision procedure re-
turns true when invoked in stack frame F, then there exists
a proof in ABLP logic that EF � Ok � T � .
Lemma 1 If there is a path from A to B in the speaks-for
graph of EF , then EF � � A � B � .

Proof: By assumption, there is a path

� A � v1 � v2 � � � � � vk � B �
in the speaks-for graph of EF . In order for this path to
exist, we know that the statements

A � v1 �

vi
� vi � 1 for all i � � 1 � k � 1 � �

and

vk
� B

are all members of EF . Since � is transitive, this implies
that

EF � A � B �

Proof of Theorem 2: There are two cases in which the
decision procedure can return true.

1. The decision procedure returns true while it is iterat-
ing over the Class 1 statements. This occurs when the
decision procedure finds the statement Ok(T) � EF .
In this case, Ok(T) follows trivially from EF .

2. The decision procedure returns true while it is iterat-
ing over the Class 2 statements. In this case we know
that the decision procedure found a Class 2 statement
of the form

P1 � P2 � ����� � Pk says Ok(T) �

where for all i � � 1 � k � there is path from Pi to T in the
speaks-for graph of EF . It follows from Lemma 1
that for all i � � 1 � k � , Pi

� T. It follows that

EF � � T � T � ����� � T says Ok(T) � � (19)

Applying equation 6 repeatedly, we can directly de-
rive EF � Ok(T).

Theorem 3 (Equivalence to Stack Inspection) The de-
cision procedure described in section 4.5 is equivalent to
the Java stack inspection algorithm of section 2.

Proof: The Java stack inspection algorithm (Figure 1)
itself does not have a formal definition. However, we can
treat the evolution of the system inductively and focus on
the enablePrivilege() andcheckPrivilege()
primitives.

Our induction is over the number of steps taken,
where a step is either a procedure call or an
enablePrivilege() operation. For clarity, we
ignore the existence of disablePrivilege(),
revertPrivilege(), and procedure return opera-
tions; our proof can easily be extended to accommodate
them.

We also assume Netscape semantics. A simple adjust-
ment to the base case can be used to prove equivalence
between the decision procedure and the Sun/Microsoft se-
mantics.

Base case: In the base case, no steps have been taken.
In this case, the stack inspection system has a single stack
frame with no privilege annotation; in the ABLP model,
the stack frame’s belief set is empty. In this base case,
checkPrivilege() will fail in both systems.

11

Inductive step: We assume that N steps have been
taken (N

�
0) and we are in a situation where any

checkPrivilege() call would yield the same result
in both models. Now there are two cases:

enablePrivilege(T) step: In the stack inspection sys-
tem, this adds an enabled-privilege(T) annotation on the
current stack frame. In the ABLP model, it adds Ok(T) to
the current belief set.

If this is followed by a checkPrivilege(T) oper-
ation, the operation will succeed in both systems, because
of the new stack annotation or the new belief.

If it is followed by checkPrivilege(U)with U
��

T , the new stack annotation or belief will be irrelevant, so
we fall back on the inductive hypothesis to show that both
systems give the same result.

Procedure call step: Let P be the principal of the pro-
cedure that is called. In the stack inspection system, this
adds to the stack an unannotated stack frame belonging to
P. In the ABLP system, it prepends “P says” to the front
of every statement in the current belief set.

If checkPrivilege(T) now occurs, there are two
sub-cases. In the first sub-case, P is not trusted for T. In
the stack inspection case, checkPrivilege(T) will
fail because the current frame is not trusted to access T. In
the ABLP case, the decision procedure will deny access
because every belief starts with “P says” and P does not
speak for T.

In the second sub-case, P is trusted for T. In the stack
inspection case, the stack search will ignore the current
frame and proceed to the next frame on the stack. In the
ABLP case, since P � T, the “P says” on the front of ev-
ery belief has no effect. Thus both systems give the same
answer they would have given before the last step. By
the inductive hypothesis, both systems thus give the same
result.

12

