Security Properties

slides stolen from David Walker (Princeton) and Andrew Myers (Cornell)

Outline

- What is computer security?
 - Protecting against worms and viruses?
 - Making sure programs obey their specifications?
 - Still plenty of security problems even if these problems are solved...

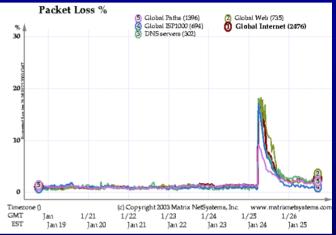
What is security?

- Security: prevent bad things from happening
 - Confidential information leaked
 - Important information damaged
 - Critical services unavailable
 - Clients not paying for services
 - Money stolen
 - Improper access to physical resources
 - System used to violate law
 - Loss of value
- ... or at least make them less likely
- Versus an adversary!

Attack Sampler #1: Morris Worm

1988: Penetrated an estimated 5 to 10 percent of the 6,000 machines on the internet.

Used a number of clever methods to gain access to a host.


- brute force password guessing
- bug in default sendmail configuration
- X windows vulnerabilities, rlogin, etc.
- buffer overrun in fingerd

Remarks:

- System diversity helped to limit the spread.
- "root kits" for cracking modern systems are easily available and largely use the same techniques.

2002: MS-SQL Slammer worm

- Jan. 25, 2002: SQL and MSDE servers on Internet
 - turned into worm broadcasters
 - YABO
 - Spread to most vulnerable servers on the Internet in less than 10 min!
- Denial of Service attack
 - Affected databases unavailable
 - Full-bandwidth network load \Rightarrow widespread service outage
 - "Worst attack ever" brought down many sites, not Internet
- Can't rely on patching!
 - Infected SQL servers at Microsoft itself
 - Owners of most MSDE systems didn't know they were running it...support for extensibility

Attack sampler #2: Love Bug, Melissa

- 1999: Two email-based viruses that exploited:
 - a common mail client (MS Outlook)
 - trusting (i.e., uneducated) users
 - VB scripting extensions within messages to:
 - look up addresses in the contacts database
 - send a copy of the message to those contacts
- Melissa: hit an estimated 1.2 million machines.
- Love Bug: caused estimated \$10B in damage.

Remarks:

- no passwords, crypto, or native code involved

Attack sampler #3: Hotmail

- 1999: All Hotmail email accounts fully accessible by anyone, without a password
- Just change username in an access URL (no programming required!)
- Selected other Hotmail headlines (1998-99)
 Hotmail bug allows password theft
 Hotmail bug pops up with JavaScript code
 Malicious hacker steals Hotmail passwords
 New security glitch for Hotmail
 Hotmail bug fix not a cure-all

Attack sampler #4: Yorktown

- 1998: "Smart Ship" USS Yorktown suffers propulsion system failure, is towed into Norfolk Naval Base
- Cause: computer operator accidentally types a zero, causing divide-by-zero error that overflows database and crashes all consoles
- Problem fixed two days later

Attack sampler #5: insiders

- Average cost of an outsider penetration is \$56,000; average insider attack cost a company \$2.7 million (Computer Security Institute/FBI)
- 63 percent of the companies surveyed reported insider misuse of their organization's computer systems. (WarRoom Research)
- Some attacks:
 - Backdoors
 - "Logic bombs"
 - Holding data hostage with encryption
 - Reprogramming cash flows
- Attacks may use legitimately held privileges!
- Many attacks (90%?) go unreported

More attack samplers & vulnerabilities

- Take a look at
 - <u>Attacking Malicious Code: A report to the Infosec</u> <u>Research Council</u>. Gary McGraw and Greg Morrisett.
 - A list of recent online attacks and defenses
- Take a look at
 - Trust in Cyberspace Fred Schneider editor
 - state of security and vulnerability in power grid and communications infrastructure

Terminology

Vulnerability

Weakness that can be exploited in a system

Attack

Method for exploiting vulnerability

Threat / Threat model

The power of the attacker (characterizes possible attacks)

• E.g., attacker can act as an ordinary user, read any data on disk, and monitor all network traffic.

Trusted Computing Base

Set of system components that are depended on for security

• Usually includes hardware, OS, some software, ...

Who are the attackers?

- Operator/user blunders.
- Hackers driven by intellectual challenge (or boredom).
- Insiders: employees or customers seeking revenge or gain
- Criminals seeking financial gain.
- Organized crime seeking gain or hiding criminal activities.
- Organized terrorist groups or nation states trying to influence national policy.
- Foreign agents seeking information for economic, political, or military purposes.
- Tactical countermeasures intended to disrupt military capability.
- Large organized terrorist groups or nation-states intent on overthrowing the US government.

What are the vulnerabilities?

- Poorly chosen passwords
- Software bugs
 - unchecked array access (buffer overflow attacks)
- Automatically running active content: macros, scripts, Java programs
- Open ports: telnet, mail
- Incorrect configuration
 - file permissions
 - administrative privileges
- Untrained users/system administrators
- Trap doors (intentional security holes)
- Unencrypted communication
- Limited Resources (i.e. TCP connections)

What are the attacks?

- Password Crackers
- Viruses:
 - ILoveYou (VBscript virus), Melissa (Word macro virus)
- Worms
 - Code Red: Port 80 (HTTP), Buffer overflow in IIS (Internet/Indexing Service)
- Trojan Horses
- Social Engineering:
 - "Hi, this is Joe from systems, I need your password to do an upgrade"
- Packet sniffers: Ethereal
- Denial of service: TCP SYN packet floods

Social engineering attacks

🔤 E-mail this to a friend

昌 Printable version

Passwords revealed by sweet deal

More than 70% of people would reveal their computer password in exchange for a bar of chocolate, a survey has found.

It also showed that 34% of respondents volunteered their password when asked without even needing to be bribed.

Security crumbles in the face of sweet bribes

A second survey found that 79% of people unwittingly gave away information that could be used to steal their identity when questioned.

Security firms predict that the lax security practices will fuel a British boom in online identity theft.

Security vs. fault tolerance

- Attacks vs. faults
- Reliability community often assumes benign, random faults
 - Failstop failures = system halts
 - Byzantine failure = system behaves arbitrarily badly (under control of adversary)
- Attackers go for the weakest link!
 - It doesn't help to have a \$1000 lock on your door if the window is open.

Assumptions and abstraction

- Arguments for security always rest on assumptions:
 - "the attacker does not have physical access to the hardware"
 - "the code of the program cannot be modified during execution"
- Assumptions are vulnerabilities
 - Sometimes known, sometimes not
- Assumptions arise from abstraction
 - security analysis only tractable on a simplification (abstraction) of actual system
 - Abstraction hides details (assumption: unimportant)

Risk management

- Cost-benefit: high security may be more expensive than benefits obtained
 - Security measures interfere with intended use

- Preventing problems may be infeasible, unnecessary; deterrence may be sufficient
 - Remove the incentive to attack
 - Make it easier to attack someone else
 - Make it too costly to attack

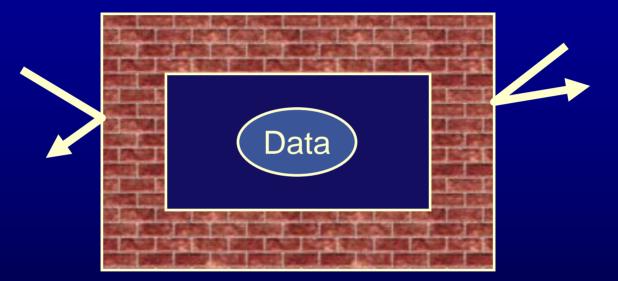
When to enforce security

Possible times to respond to security violations:

- Before execution: analyze, reject, rewrite
- During execution: monitor, log, halt, change
- After execution:

roll back, restore, audit, sue, call police

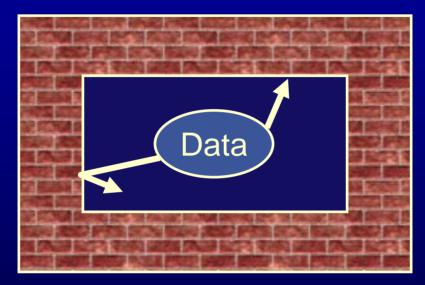
Policy vs. mechanism


- What is being protected (and from what) vs.
- How it is being protected (access control, cryptography, ...)
- Want:
 - To know what we need to be protected from
 - Mechanisms that can implement many policies

What is being protected?

- Something with value
- Information with (usually indirect) impact on real world
- Different kinds of protection are needed for different information : ensure different security properties
 - Confidentiality
 - Integrity
 - Availability

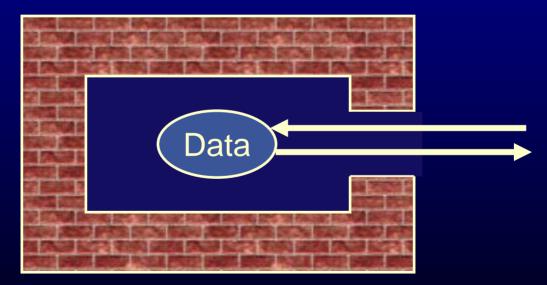
Properties: Integrity


No improper modification of data

- E.g., account balance is updated only by authorized transactions, only you can change your password
- Integrity of security mechanisms is crucial
- Enforcement: access control, digital signatures,...

Properties: Confidentiality

Protect information from improper release


- Limit knowledge of data or actions
- E.g. D-Day attack date, contract bids
- Also: secrecy
- Enforcement: access control, encryption,...
- Hard to enforce after the fact...

Properties: Privacy, anonymity

- Related to confidentiality
- Privacy: prevent misuse of personal information
- Anonymity: prevent connection from being made between identity of actor and actions
 - Keep identity secret
 - Keep actions secret

Properties: Availability

- Easy way to ensure confidentiality, integrity: unplug computer
- Availability: system must respond to requests

Properties: Nonrepudiation

- Ability to convince a third party that an event occurred (e.g., sales receipt)
- Needed for external enforcement mechanisms (e.g., police)
- Related to integrity

Properties: Safety

- "Nothing bad ever happens" (at a particular moment in time)
- A property that can be enforced using only history of program
- Amenable to purely run-time enforcement
- Examples:
 - access control (e.g. checking file permissions on file open)
 - memory safety (process does not read/write outside its own memory space)
 - type safety (data accessed in accordance with type)

Properties: Liveness

- "Something good eventually happens"
- Example: availability
 - "The email server will always respond to mail requests in less than one second"
- Violated by denial of service attacks
- Can't enforce purely at run time stopping the program violates the property!
- Tactic: restrict to a safety property
 - "web server will respond to page requests in less than 10 sec or report that it is overloaded."

Security Property Landscape "System does exactly what it should--and no more" Privacy **Digital rights** Noninterference (confidentiality, integrity) Mandatory access control **Byzantine Fault Tolerance Discretionary access control Reference** confinement **Fault Tolerance** Type safety **Availability** Memory safety Memory protection Safety properties Liveness properties

Security Mechanisms

slides stolen from David Walker (Princeton) and Andrew Myers (Cornell)

- Fundamental enforcement mechanisms
- Design principles for secure systems
- Operating system security mechanisms

Mechanisms: Authentication

- If system attempts to perform action X, should it be allowed? (e.g., read a file)
 - authentication + authorization
- Authentication: what principal p is system acting on behalf of? Is this an authentic request from p?
 - Passwords, biometrics, certificates...

Principals

- A principal is an identity; an abstraction of privileges
 - Process uid
 - E.g., a user (Bob), a group of users (Model airplane club), a role (Bob acting as president)

Mechanisms: Authorization

- Authorization: is principal p authorized to perform action A?
- Access control mediates actions by principals
- Example: file permissions (ACLs)

)4jun-software-security Prop	erties	? 🗙
General Security		
<u>G</u> roup or user names:		
🕵 Andrew Myers (TONIC\andru)	
🕵 Everyone		
🕵 None (TONIC\None)		
	Add	Remove
	Aga	
Permissions for Andrew Myers	Allow	Deny
Full Control	× .	
Full Control Modify		
	Y Y	
Modify	> > >	
Modify Read & Execute		
Modify Read & Execute Read		
Modify Read & Execute Read Write		Advanced

Mechanisms: Auditing

- For after-the-fact enforcement, need to know what happened: auditing
- Audit log records security-relevant actions (who, what, when)
- Authorization + Authentication + Audit = "The gold (Au) standard" : classic systems security
- A fourth kind of mechanism: program analysis and verification
 - Needed for extensible systems and strong security properties... more later

Principle: Complete Mediation

- Common requirement: system must have ability to mediate all security-relevant operations
 - Dangerous to assume op is not security-relevant..
 - Many places to mediate: hardware, compiler, ...
- Assumption: mediation mechanism cannot be compromised (TCB)
- Example: operating system calls
 - Kernel interface mediates access to files, memory pages, etc.
 - No other way to create/manipulate resources
 - One problem: covert timing channels

Principle: Minimize TCB

- The trusted computing base (TCB): those portions of the system that absolutely must be correct in order for the system to be "secure"
 - Observation: Complex things are more likely not to work correctly
 - Consequence: the TCB should be as small as possible
 - Consequence: Economy of Mechanism don't use three mechanisms when one will do

"Things should be made as simple as possible-but no simpler." -- A. Einstein

Principle: Failsafe Defaults

- One of the most common programming or design errors is "forgetting to handle a case"
 - as systems get larger, it becomes easier and easier to forget to consider one element of the design
 - If access is off by default, "forgetting a case" results in denial of service
 - detected quickly by legitimate users and corrected
 - If access is on by default, "forgetting a case" results in the possibility of illegitimate access
 - not detected by legitimate users and lingers as security vulnerability

Principle: Least Privilege

- A principal should be given only those privileges needed to accomplish its tasks.
 – No more, no less.
- What is the minimal set of privileges?
- What is the granularity of privileges?
 Separation of privileges (read vs. write access)
- How & when do the privileges change?
- Example violation: UNIX sendmail has root privilege

Principle: Open Design

- Success of mechanism should not depend on it being secret
 - "No security through obscurity"
 - Inevitably, the secret gets out
 - Insiders will know the secret
 - Increased assurance if many critics.
 - Some form of secret is necessary. Make these secrets replaceable data rather than the algorithm itself. eg: cryptographic keys
- An age-old controversy:
 - Open design makes critics' jobs easier, but also attackers' job.
 - Analysis tends to concentrate on core functionality;
 vulnerabilities remain off the beaten path. (Ergo: small TCB)
 - Sometimes there are economic reasons to keep secrets

Principle: Security is a Process

- Every system has vulnerabilities
 - Impossible to eliminate all of them
 - Goal: assurance
- Systems change over time
 - Security requirements change over time
 - Context of mechanisms changes over time
- Secure systems require maintenance
 - Check for defunct users
 - Update virus software
 - Patch security holes
 - Test firewalls