A New Type Systemfor Secue Information Flow

Geofrey Smith
Schoolof ComputerScience
FloridaInternationalUniversity
Miami, Florida33199,USA
smthg@s.fiu.edu

Abstract

With the variables of a program classifiedas L (low,
public) or H (high, private), we wish to preventthe pro-
gram from leaking information about H variablesinto L
variables. Given a multi-threadedimpentive language
with probabilistic scheduling the goal can be formalized
as a property called probabilistic noninterfeence Previ-
ous work identified a type systemsuficient to guarantee
probabilistic noninterfeence but at the costof severe re-
strictions: to preventtiming leaks, H variableswere dis-
allowedfromthe guards of while loops. Here we presenta
new typesystenthatgiveseach command typeof theform
71 cmdTs; thistypesaysthatthe commandassignsonly to
variablesof level ; (or higher) and hasrunning time that
dependonly on variablesof level 7, (or lower). Alsowe
usetypesof theformr cmdn for commandshatterminate
in exactlyn steps.Wth thesetypings,we can preventtim-
ing leaksby demandinghatnoassignmento an L variable
maysequentiallyfollow a commandvhoserunningtimede-
pendson H variables.Asa result,wecanuseH variables
more flexibly; for example underthe new systema thread
that involvesonly H variablesis alwayswell typed. The
soundnessf the type systenis proved usingthe notion of
probabilisticbisimulation.

1 Intr oduction

In this paper asin [10] and[13], we considera simple
multi-threadedmperative programminganguagen which
eachvariableis classifiedeitheras L (low, public) or H
(high, private). Our goalis to developa staticanalysisthat
ensureshata programcannot‘leak” thevaluesof H vari-
ables.Of course the possiblewaysof leakinginformation
dependnwhatis obsenable.If wecanobsenetherunning
programfrom the outside seeingrunningtime or theusage
of varioussystemresourcesthencontrolling leaksis very
difficult, becausdeakscanbe basedon very low-level im-

plementatiordetails,suchascachingbehaior. Henceour
focus,asin previouswork, is on controllinginternal leaks,
in which informationaboutH variablesis someha trans-
mitted to L variables. This makesthe taskmoretractable,
becausave cancontrol whatis obsenableby the running
program—forexample ,we candery it accesso areal-time
clock.

More precisely we wish to achieve noninterfeence
propertieswhich asserthat changingthe initial valuesof
H variablescannotaffect the final valuesof L variables.
Giventhe nondeterminisnassociateavith multi-threading,
andour assumptiorthatthreadschedulings probabilistic,
we requiremorepreciselythatchangingheinitial valuesof
H variablescannotaffect the joint probability distribution
of the possiblefinal valuesof L variables;this propertyis
calledprobabilisticnoninterfeence

A type systemthatguaranteea wealer property called
possibilisticnoninterfeence wasgivenin [10]. Building on
that work, a type systemfor probabilisticnoninterference
wasgivenin [13]. Therestrictionsimposedby thatsystem
canbe summarizedsfollows:

1. An expressione is H if it containsary H variables;
otherwiseit is L.

2. Only L expressionganbeassignedo L variables.

3. A guardeccommandwith H guardcannotassignto L
variables.

4. Theguardof awhile loop mustbe L.

5. An if with H guardmustbe protected so thatit ex-
ecutesatomically and can contain no while loops
within its branches.

Restrictions2 and 3 prevent what Denning [3] long ago
calleddirectandindirectflows, respectiely. In alanguage
without concurreng, restrictions2 and 3 are sufficient to
guaranteaoninterference—sef@r example[15]. Restric-
tions4 and5 wereintroducedo preventtiming-basedlows

in multi-threadedorogramsunfortunately they restrictthe
setof allowableprogramsjuite severely.

A recentpaperby Honda,Vasconcelosand Yoshida[6]
exploressecurdanformationflow in ther-calculus shaving
in particularthatthe systemof [10] canbe embeddednto
their system Mostinterestinglythey proposeenrichingthe
setof commandypesof [10] from

e H cmd for commandshatassignonly to H variables
andareguaranteedo terminate;and

e .cmd for commandsthat assignto L variablesor
might notterminate,

to

e 7 cmd |}, for commandshat assignonly to variables
of type 7 (or higher)andareguaranteedo terminate;
and

e 7 cmd 1, for commandshat assignonly to variables
of type (or higher)andmight notterminate.

They thenarguethatin somecasesH variablescanbeused
in theguardsof while loopswithout sacrificingpossibilistic
noninterference.

Inspiredby this suggestionywe canobsenethatthecom-
mandtypingsusedin [10] and[13] conflatetwo distinctis-
sues:whatdoesacommandassignto, andwhatis thecom-
mands running time. This leadsus to proposecommand
typeswith two parameterso addresshesetwo issuessepa-
rately More precisely our new systemwill make useof the
following commandypes:

e 73 cmdTy, for commandghatassignonly to variables
of typer; (or higher)andwhoserunningtime depends
only on variablesof type, (or lower);and

e 7 cmdn, for commandghat assignonly to variables
of type 7 (or higher)andwhich areguaranteedo ter
minatein exactlyn steps.

With thesetypings, we canimposemore accuraterestric-
tionsto preventflows basedntiming. In particular we can
replacerestrictions4 and5 above with thefollowing rule:

A commandwhoserunningtime dependson H
variablescannotbe followed sequentiallyby a
commandhatassigngo L variables.

Let's now considersomeexamplesinformally, assuming
thatz : H andy : L.

1. 2:=0 : Hcmdl
2.y:=0: Lcmdl

3. if z =0thenz := 5 elseskip : H cmd2

4. whiley =0doskip : HcmdL

5. whiley =0doy:=y—1 : LcmdL
6. if z = 0then
while y = 0 do skip
else
skip : HcmdH

7. y:=5;while x + 1 doskip : LcmdH
8. (while x = 0 doskip);y :=5 : illegal

Example3 shavs thatanif canhave a H guardandnever-
thelesshave aknown runningtime; suchacommandanbe
sequentiallyfollowedby a L assignmentvithout ary prob-
lem.

Example8, onthe otherhand,is illegal becauseherun-
ningtime of thewhile loop depend®nthe H variablez, so
we can' follow it sequentiallywith anassignmento the L
variabley. This examplewould be dangerousbhecausen-
otherthreadcouldreliably determinewvhetherz is 0 or not,
simply by waiting for awhile (to give thethreadscheduler
achanceo runall threadsandthenseeingwhethery is 5.

Our typingsalsosatisfyinterestingsubtypingrules. As
usual,we have L. C H. Furthermorecommandypesare
contravariantin their first position, and covariantin their
secondposition. Also, 7 cmdn C 7 cmd L, becausdf
a commandalways haltsin n steps,thenits runningtime
doesnt dependnthevaluesof H variables Thissubtyping
rule impliesthatexample3 above alsohastype H cmd L.

The rest of the paperis organizedas follows. Sec-
tion 2 reviewsthedefinitionof ourmulti-threadedanguage,
whichis thesameasthelanguageof [13], andSection3 de-
finesour type systemprecisely The soundnessf thetype
systemis thenprovedin Section4, which arguesthat ev-
ery well-typedmulti-threadedbrogramsatisfiegprobabilis-
tic noninterferenceFinally, Section5 concludesandmen-
tionssomefuturedirections.

2 The Multi-Thr eadedLanguage

Threadsarewrittenin thesimpleimperative language:

(phrase$ p u= e|c

(expressiony e == z | n | e1+e |

erxey | eg=e2 | ...

(commands ¢ == z:=e |

skip |

if e then¢; elsecy |
while edoc |
cier |

protectc

In our syntax,metavariablexz rangesover identifiersandn
overintegerliterals. Integersarethe only values;we use0
for falseandnonzerdfor true. We assumehatexpressions
arefreeof sideeffectsandaretotal. Thecommandrotectc
causes to be executedatomically, this is importantonly
whenconcurrenyg is considered.

Programsare executedwith respectto a memory y,
which is a mappingfrom identifiersto integers. Also, we
assumdor simplicity that expressionsare evaluatedatom-
ically; thuswe simply extenda memory in the obvious
way to mapexpressiongo integers,writing u(e) to denote
thevalueof expressiore in memoryp.

We definethe semanticof commandsvia a sequential
transitionrelation — on configurations.A configuation
C'is eithera pair (¢, u) or simply amemoryy. In thefirst
case,c is the commandyet to be executed;in the second
case,the commandhasterminated yielding final memory
. The sequentiatransitionrelationis definedby the fol-
lowing (completelystandard}tructuraloperationakeman-
tics:
(UPDATE) x € dom(p)

(z:=e,p)—plz

= p(e)]

(No-0P) (skip, p)—p

ple) # 0

(if e then ¢y elsecs, u)— (c1, 1)

ple) =0
(if e then ¢, elsecy, u)— (ca, 1)

(BRANCH)

(Loop) ple) =
(while e do ¢, p)— 1

fu(e) #
while e dO cy) —>

c1,) —>

a1 Cz,)—>(Cz,u')

(
(
(
(e1,) — (1, ')
(
(
(

(c; while e do ¢,)

(SEQUENCE)

c1; ¢z, p)—>(cy; 2, 1)

(ATomICITY) (e, p)—*p!

protectc, u)—p'

In rule (ATOMICITY), notethat(asusual)—* denoteghe
reflexive transitve closureof —.

Notethatour sequentiatransitionrelation— is deter
ministicandtotal (if someobviousrestrictionsaremet):

Lemma 2.1 If everyidentifierin cisin dom(y) andnosub-
commandnvolvingwhile is protectedin ¢, thenthereis a
uniqueconfigumation C' sud that (¢, u)—C.

Also, the behaior of sequentiatompositionis charac-
terizedby thefollowing two lemmas:

Lemma2.2 If (¢,) —* p' and (ca, p') —7 ", then

(c1; €,) —7H p”".

Lemma 2.3 If (cy;c2, p)—7p!, thenthere existi and "
sudthat0 < i < j, (c1, p)—>n", and(cz, u")—7 4.

Themulti-threadedrogramshatwe considetherecon-
sistsimply of a setof commandgthethreadsyunningcon-
currentlyundera sharedmemoryu. We modelthis setasa
threadpool O, which is afinite functionfrom threadiden-
tifiers (o, 8, ...) to commands.A pair (O, i), consisting
of a threadpool and a sharedmemory is called a global
configuation.

A multi-threadedprogramis executedn aninterleaving
manner by repeatedlychoosinga threadto run for a step.
We assumehat the choiceis madeprobabilistically with
eachthreadhaving an equalprobability of beingchosenat
eachstep—thais, we assumea uniform thread schedulet
We formalize this by defining a global transitionrelation
=25 onglobalconfigurations:

(GLOBAL) O(a)=c
(¢, p)—p!
p=1/]0]|

(0, m)=>

O(a)=c
(¢,) —(c', 1)
p=1/]0]|
(0, m)=

{hw={1}.n

Thejudgment(0, u)=%(0', ') assertghat the probabil-
ity of goingfrom global configuration(O, u) to (O', ') is
p. NotethatO — « denoteghethreadpool obtainedby re-
moving threado. from O, andOJ[a := ¢] denoteghethread
pool obtainedby updatingthe commandassociateavith o
to ¢'. Thethird rule (GLOBAL), which dealswith anempty
threadpool, allows usto view a multi-threadedporogramas
adiscreteMarkov chain[4]. Thestatesof theMarkov chain
are global configurationsand the transitionmatrix is gov-

ernedby =%

(0 —a,p)

3 The Type System

Ourtypesystemis baseduponthefollowing types:

(datatypes T u= L | H
(phrasetypey p == 7 | rvar | 7, cmdry |
T cmdn

(R-VAL)

(INT)

(sum)

(ASSIGN)

(sK1P)

(1F)

(WHILE)

(COMPOSE)

(PROTECT)

~v(z) =7 var

yhxz:T

yFn:L

yhe i1, yhey:T

’7"61"‘6227‘

v(x) =Tvar, yFe:T

yFz:=e:7cmdl

v skip : H cmd1

yhe:T
vk e T emdn
vk ¢ ecmdn

v Fif ethenc; elsecs : 7 cmdn + 1

yhe:mn
71 C 7o

’7"61 I Ty Cde3
’7"62 I Ty Cde3

vk if ethene elsecs : 2 cmdm V 73

yhe:mn
1 C7
73 C T
vk c:memdrs

v+ whileedoc:m cmdr V3

vk e T emdm
vk c2:7emdn

vk e;ee : Temdm +n

Y Fei:m Cde2
T2 C 73
vk e 3 cmdry

yEe;e AT emdry Vg

yFec:m cmdr
¢ containsno while loops

v F protectc: 74 cmd1l

Figure 1. Typing rules

(BASE)

(cmD)

LCH

1Cm, »CTy

7 cmdre C 7 cmdT)

™ Cr

7cmdn C 7 cmdn

7cmdn C 7 ecmdL

(REFLEX)

(TRANS)

pCp

p1 C p2, p2 Cps

P Cps

(SuBsSUMP)

YEp:ip1, p1 Cpo

YED:p2

Figure 2. Subtyping rules

The rulesof the type systemaregivenin Figuresl and?2.
In therules(IF), (WHILE), and(COMPOSE), V denotegoin
(least upper bound and A denotesmeet(greatestlower
bound. Therulesallow usto prove typing judgmentsof
theform v F p : p aswell assubtypingijudgmentsof the
form p; C p2. Herey denotesnidentifiertyping, mapping
identifiersto phrasetypesof theform 7 var. As usual,we
saythatphrasep is well typedundery if v - p : p for some
p. Similarly, threadpool O is well typedunder+ if each
threadin O is well typedunder-y.

As anexample let’s shaw thederivationof thetyping of
example7 from the Introduction:

vk y:=5;whilez +1doskip : LcmdH,
assuminghaty(z) = H var andy(y) = L var. We have
YF5: L (1)
by rule (INT). Thenwe get
yFy:=5: Lcmdl (2)
by rule (AssIGN) on (1), and
yFy:=5: LcmdL 3

by rule (suesumP) on (2) usingthethird rule (cMD). Next
we have
vz : H (4)

fromrule (R-vAL) and
yH1: L (5)
by rule (INT), which gives

yH1: H (6)

by rule (suBsump) on (5) usingrule (BASE), and
yFz+1: H (7
by rule (sum) on (4) and(6). Next
v skip : H cmdl (8)
by rule (skiP), andhence
v+ skip : HcmdL (9)

by rule (sussumP) on (8) using the third rule (CmD).
Hencewe get

~v F while z + 1doskip : HcmdH (20)

by rule (WHILE) on (7) and (9), since H C H (by rule
(REFLEX)) andL C H (byrule(BASE)), andsinceHV L =
H. And finally, we get

vtk y:=5;whilexz+1doskip : LcmdH (11)

by the secondrule (coMPOSE) on (3) and(10), sinceL C
H,LANH =L,andLV H = H.

We now give somediscussiorof thetypingrules.

Thefirst (1F) rule saysthatanif statementakesn + 1
stepsif bothits branchegake n steps.This rule cansome-
times be usedto “pad” a commandto eliminate timing
leaks,asin thetransformatiorapproactproposedy Johan
Agat[1]. For example,f = : H andy : L, thenthethread

if x = 0then

TI=T*X; T =T *ZT
else

r:=z+1;
y:=0

is dangeroushecausghetime atwhich y is assigned de-
pendsonthevalueof . And this programis notwell typed
underour rules—thehen branchof theif hastype H cmd?2

andthe elsebranchhastype H cmd1, which meansthat
the first (1F) rule doesnot apply. Insteadwe mustcoerce
thetwo branchego type H cmd L andusethe second(IF)

rule, which givestheif type H cmd H. But this malkesit

illegal (underthe secondrule (CoMPOSE)) to sequentially
composeheif with theassignmeny := 0, which hastype
L cmdl,andH ¢ L. To maketheprogramwell typed,we

canpadtheelsebranchto = := x + 1; skip, which hastype

H cmd2. Now we cantypetheif usingthefirst (IF) rule,

giving it type H cmd3, andthenwe can give the thread
type L cmd4, using the first rule (comPOSE). It should
be noted, however, that Agat’s transformatiorapproachis

moregenerakhatwhatwe canachieve here.

The secondule (IF) is rathercomplex. Onemight hope
thatwe couldexploit subtypingto simplify therule, but this
is not possiblehere. We would not wantto coercethe type
of e upto 75, becauséhenit would appeathattheexecution
time of theif depend®n r, variables.Nor would we want
to coercethetypesof ¢; andcs to 7y cmd s, becausehen
it would appeathattheif canassigrnto 7y variables.

We can,however, specializeahesecondule (IF) to apair
of rulesin the casewhere L and H arethe only security
levels;the samespecializatiorcanbe doneto rule (WHILE)
andthe secondrule (comPOSE). The specializedtyping
rulesareshownin Figure3.

The constraintrs C 7 in rule (WHILE) is perhapssur
prising? but the typing rules are unsoundwithout it. The
problemis that while e do ¢ implicitly involvessequential
compositionof ¢ andthe entireloop, asshown in the sec-
ondrule (LooP). As aresult,if ¢'srunningtime depends
on H variablesthenc mustnotassignto L variables.For
example,if z is H andy is L, thenwithout the constraint
73 C 79 in rule (WHILE), the following programwould be
well typed:

while 1 do
(y := y + 1; while z do skip)

Notethaty := y + 1 hastype L cmd L andwhile z do skip
hastype H cmd H, so the loop body hastype L cmd H.
Hence,without the constraintr; C 72, the while loop can
begiventype L cmd H. But theloopis dangerous—ift =
0, theny is incrementednly once,andif z # 0, theny is
incrementedepeatedly

Finally, we notethat protect ¢ takesa commandthatis
guaranteedo terminateand makesit appearto runin just
onestep.This givesanothemwvay of dealingwith the exam-
ple programdiscussedbove; ratherthanpaddingthe else
branch,we canjust protecttheif (or justits then branch),

lindeed, did notoriginally noticethe needfor it.

therebymaskingary timing differencegesultingfrom dif-
ferentvaluesof z.

4 Propertiesof the Type System

In this section,we formally establishthe propertiesof
thetype system We begin with alemmathatshovsthatthe
typesystendoesnotrestrictathreadatall unlesghethread
involvesboth L and H variables:

Lemma4.1 Anycommandnvolvingonly L variableshas
type L cmd L. Any commandnvolving only H variables
hastypeH cmdH.

Note this is certainly not the casefor the type systemof
[13], since(for example)thatsystemdisallovs H variables
in theguardsof while loops.

Now we establisithe soundnessf thetype system.

Lemma 4.2 (Simple Security) If v F e : L, thencontains
only L variables.

Proof. By inductiononthestructureofe. [

Lemma4.3(Confinement) If v F ¢ :
doesnotassignto any L variables.

H cmdr, thenc

Proof. By inductiononthestructureof ¢c. [

Lemma 4.4 (Subject Reduction) Supposethat (c, u)—
(c,u). fvF ¢c: 7 cmdr, theny F ¢ : 7 cmdrs.
Andif y ¢ : 7 cmdn theny - ¢ : 7 emd(n — 1).

Proof. By inductionon the structureof c.

The resultholds vacuouslyif ¢ is of the form z := e,
skip, or protectc'.

If cisof theform if e then ¢; elsecs, thenc is eithere;
or co. Now, if ¢ hastype = cmdn, thenit mustbe typed
by thefirst rule (1F), whichimpliesthatbothc; andc, have
typer cmd(n — 1). And if ¢ hastype 1 cmdr,, thenit
is typed either with the first rule (IF) (using the fact that
71 cmdm C 7, cmdTy), or with the secondrule (IF). In
thefirst caseg; andey havetyper; cmdm, whichimplies
thatthey alsohave type ; cmdr,. In the secondcase c;
andc, have type; cmdrs, for somers with 73 C 5. So
they havetypers cmdr, aswell, by rule (SUBSUMP).

If ¢ is of the form while e do ¢;, thenc' is of the form
c1;¢. In this case,c cannothave type 7 cmdn; it must
have type 1 cmdr, by rule (WHILE). Hencec; hastype
71 cmdr3 for somers with 3 C 75 andrs C 1. Therefore,
by thesecondule (COMPOSE), ¢1; ¢ hastyper; cmds.?

Finally, if ¢ is of the form cy; co, thenc' is eithercs (if
(c1, w)—p') Or cj;ea (if (1, p)—(cq, p'))- If ¢ hastype

2Notethatthis laststepwould fail withoutthe constraintrs C .

(1F)

(WHILE)

(COMPOSE)

yFe:L
’}/}—61:7'1 Cde2
7}_02:7—1 Cde2

v Fif ethenc; elsecy : 74 cmd

yre:H
yke : HemdH
vk e : HemdH

~ Fif ethenc; elsecy : H cmdH

v+ whileedoc: cmdr

yke:H
vk ec: HemdH

v+ whileedoc: HcmdH

Y Fe:im cmdLL
Y Feoy:m Cde2

Y F C1;C2 © T1 CdeQ

vk e :TemdH
vk eco: HecmdH

vk e3¢0 0 TemdH

Figure 3. Typing rules specialized to L and H

T cmdn, thenit mustbetypedby thefirst rule (COMPOSE)
which meansthat ¢; hastype 7 cmdk and ¢z hastype
7 cmd! for somek andl with k +1 = n. If ¢’ is ¢a, then
we musthave k = 1, socy hastyper cmd(n — 1). If ¢
is ¢} ; c2, thenby inductionc} hastyper cmd(k — 1), and
thereforec’ hastyper cmd(k —1+1) = 7 cmd(n — 1).
And if ¢ hastype m cmdr,, then it must be typed by
the secondrule (comPOSE) which meansthatc; hastype
T3 cmdTy and ¢, hastype 75 cmdrg, for somers, 7y,
75, and 7 satisfyingthe subtypingconstraintsry, C 73,
T4 C 12,76 € 2,1 C 713, andn C 73. Now, if ¢
is ¢z, thenby rule (suBsumP) it alsohastype 7, cmdr,
sincers cmdrg C 71 cmdr. And if ¢ is ¢f; ca, thenby
induction¢] hastype 3 cmd7y, andthereforec’ hastype
1 CdeQ. O

Lemma4.5 If ¥ F ¢ : 7 cmd1 and dom(p) = dom(v),
then(c, u)— ' for somey’.

Proof. Theonly commandswith typer cmd1l arex := e,
skip, and protectc;. The resultis immediatein the first
two cases;in the caseof protectc; we notethatif ¢; is
well typedandfree of while loops,thene; is guaranteedo
terminate. [

Definition 4.1 Memoriesy and v are equivalentwith re-

spectto «y, written u~., v, if u, v, andy havethe samedo-
mainand g andv agreeonall L variables.

We now explore the behaior of a well-typedcommand
¢ whenrun undertwo equivalentmemories We begin with
aMutual Terminationlemmafor while-free programs:

Lemma 4.6 (Mutual Termination) Let ¢ be a command
containingnowhile loops.If ¢ is well typedundery, u~, v,
and (¢, p)—*p', thenthereis av' sud that (¢, v)—*'
andp'~,v'.

Proof. Similarto Lemma5.60f [13]. [

In the context of multi-threadegrogramshowever, it is
notenougho considemonly thefinalmemoryresultingfrom
theexecutionof ¢ (asin theMutual Terminationemmay);we
mustalsoconsidertiming. Thekey propertythatletsuses-
tablishprobabilisticnoninterferencés this: if awell-typed
command: is run undertwo equivalentmemoriesjt makes
exactly the samesequencef assignmentto L variablesat
thesamdimes Hencethetwo memoriewill remainequiv-
alentafter every executionstep. (Note however thatc may
terminatefasterunderonememorythanthe other;but then
the slower executionwill not make any more assignments
to L variables.)

Heresanexamplethatillustratessomeof theworking of
the type system. Supposehat ¢ is a well-typed command
of theform

(if e thenc; elsecs); cs.

What happenswvhen ¢ is run undertwo equialent mem-
oriesp andv? If e : L, thenu(e) = v(e) by Simple
Security and henceboth executionswill choosethe same
branch. If, instead,e : H, thenthe two executionsmay
choosedifferentbranches.But if the if is typedusingthe
first rule (1F), then both brancheshave type H cmdn for
somen. Thereforeneitherbranchassignsto L variables,
by Confinementandbothbrancheserminateaftern steps,
by SubjectReduction.Henceboth executionswill reaches
atthe sametime, andthe memorieswill still be equivalent.
And if theif is typedusingthesecondule (IF), thenit gets
type H cmd H, whichis alsothetypegivento eachbranch.
Again, neitherbranchassignsto L variables,by Confine-
ment.Now, in this casethetwo branchesnaynotterminate
atthe sametime—indeedpnemayterminateandthe other
may not. But the entirecommand(if e then ¢; elsecs); ¢3
will haveto betypedby thesecondule (COMPOSE), which
meanghatcs : H cmd H. Hencecs makesno assignments
to L variableswhich meanshat, asfar as L variablesare
concernedjt doesnt matterwhen (or evenwhether)cs is
executed.

To formalizetheseideas,we needto definea notion of
equivalenceon configurationsthenwe canamguethat —
takesequivalentconfigurationgo equivalentconfigurations.
But first we make someobsenationsaboutsequentiatom-
position. Any commandc canbe written in the standad
form

(---((e13¢2)5¢3);- -)5 ¢
for somek > 1, wherec; is not a sequentiatomposition
(but c2 throughe, mightbesequentiatompositions)If we
adoptthe corventionthatsequentiatompositiorassociates
to theleft, thenwe canwrite this moresimply as

C1;C2;C35...5Ck.

Now, if ¢ is executedjt followsfrom the(SEQUENCE) rules
thatthefirst executionsteptouchesonly ¢ ; thatis, we have
either

(c15¢a53; - -5 Chy 1) —>(C2; €35+ - -5 Chy),
if (c1,pu)— ', Orelse
(cr;e563; -5 cp, p)—> (5 c5635 - -5 cy 1),

if (¢1,u)—>(ci,p'). Now we defineour notion of equiva-
lenceon commands:

Definition 4.2 We saythat commands and d are equiva-
lentwith respecto ~y, written c~. d, if c andd are bothwell
typedunder~y andeither

e c=d,
e c andd bothhavetypeH cmdr, or

e ¢ hasstandad formc;; c;c3;. .. ; ¢k, d hasstandad
formdy; co;cs;. . . ¢k, fOr somek, ande; andd; both
havetype H cmdn for somen.

We extend the notion of equivalenceto configurationsby
sayingthat configurationsC and D areequialent,written
C~, D, if ary of thefollowing four casesapplies:

e Cisof theform (¢, 1), D is of theform (d, v), c~,d,
andy~.,v.

e (' isof theform (¢, u), D is of theform v, ¢ hastype
H cmdr, andy~v.

e (' isof theform u, D is of theform (d, v), d hastype
H cmdr, andy~,v.

e (Cisoftheform y, D is of theform v, andpu~,v.

(In effect, we aresayingthata commandof type H cmdr
is equivalentto aterminateccommand.)

Theorem 4.7 (SequentialNoninterfer ence) Supposehat
(¢, p)~~(d,v), (c,p)—C', and (d,v)—D'. Then
C'~,D'.

Proof. We begin by dealingwith thecasewhenc andd both
have type H cmdr, for somer. In this case by the Con-
finement_emma,neitherc nord assigngo ary L variables.
Hencethe memoriesof C' and D' remainequivalent.Now,
if C' is of theform (¢, ') and D' is of the form (d',v'),
thenby the SubjectReductionLemma,c¢’ andd’ bothhave
type H cmdr, which gives¢'~,d'. ThecasesvhenC’ is
of theform p' and/orD’ is of theform ' aresimilar.

Now considerthe casewherec andd do not both have
type H cmdr. Let ¢ have standardorm cy;c2;¢3;. .. ; ck.
We canseefrom the definitionof ~, thateitherc = d ord
hasstandardorm dy; cs; ¢35 . . . ; ¢, Wheree; andd; both
havetype H cmdn for somen.

In the latter case,we have by the Confinement.emma
that neithere¢; nor dy assignsto ary L variables. Hence
the memoriesof C' and D' areequivalent. And if n > 1,
thenby the SubjectReductionLemma,C’ andD' areof the
form (ci;ea;¢3;. .. 5¢, p') @and(dy; eo;e35.. .5 cp, V'), rE-
spectvely, wherec] andd} bothhavetype H cmd(n — 1).
ThusC'~,D'. Andif n = 1, thenC' and D’ are of
theform (c2; ¢35 - - - 5 ek, p') and(eo; 35 - - -5 ek, V'), respec-
tively.® SoagainC’~., D',

We areleft, finally, with thecasewherec = d. Letthem
have standardform c¢;; cs; ¢35 - - - 5 ¢, andconsiderin turn
eachof the possibleformsof ¢; :

SActually, if & = 1 thenC’ and D’ arejust u’ andv’ here. We'll
ignorethis pointin therestof this proof.

Casez := e. In thiscasewe havethatC'’ is

(c2;3¢35- - -5y pulm == pule)])
andD' is
(case35 ... cpy vz :=v(e)]).

Now if z is H, thenu[z := p(e)]~,v[z = v(e)].
And if z is L, thenby rule (ASSIGN) e : L. Hence
u(e) = v(e) by SimpleSecurity soagain

plz = p(e)l~avlz = vie)].
ThereforeC'~, D'.

Caseskip. In this caseC’ is (¢2;¢s; - -
((32; c35...;Ck, I/). SOC'N,YDI.

.;¢k,) and D' is

Caseif e then ¢q; elsecys. If e : L, thenby Simple Secu-
rity u(e) = v(e). HenceC' and D’ both choosethe
samebranch.Thatis, either

C' = (c11;5¢25C3; -+ .5 Chy 1)
and

D' = (c11;¢25¢3;. -5 ¢y V),
orelse

C" = (c1a;¢2; €35+ - -5 Chy 1)
and

D' = (c12;¢5€35 .. .5 Cpy V).
SoC'~,D".

If e doesnt havetype L, thenif ¢; is typedby thefirst
rule (IF), thenwe have thatc;; ande;, bothhave type
H cmdn for somen. Therefore,whetheror not C’
andD’ take thesamebranchwe have C'~, D'.

And if ¢; is typedby the secondule (IF), thanit gets
type H cmd H. But, by rule (COMPOSE), this means
thates ; ¢ alsohastype H cmd H. Thisin turnimplies
thatcy ; ¢o; c3 hastype H cmd H, andsoon, until we
getthatc hastype H cmdH. So,sincec = d here,
this casehasalreadybeenhandled.

Casewhile e do ¢11. As in the caseof if, if e : L, then
by Simple Security u(e) = v(e). Hencethe two
computationsstay together That is, either C' =

(co;¢3;...; ¢,) @andD' = (co;c3;...;cp,v), Orelse
C" = (c11;while edo ciq; c; ¢35 - -5y 1)

and
D' = (cy1;while e do ey 05 ¢35 . - -5 e, V).

SoC'~,D'".
If e doesnt havetype L, thenby rule (WHILE) we have
thate; : H cmdH. As in the caseof if, this implies

thate : H cmd H, sothis casehasagainalreadybeen
handled.

Caseprotecte;;. By rule (PROTECT), ¢17 containsno
while loops. Hencethis casefollows from the Mutuall
Terminationlemma.

O

We remarkherethatif ¢ is well typedand p~,v, then
(¢,)~y (c,v). Hence,by applying the SequentialNon-
interferenceTheoremrepeatedly we seethat, for all &,
the configurationreachedrom (¢, u) after k& stepswill be
equialentto the configurationreachedrom (c, v) afterk
steps. Hence,as we claimed above, the two executions
malke exactly the sameassignments$o L variables,at the
sametimes.

Now we changeour focusfrom the executionof anin-
dividual threade, which is deterministic,to the execution
of a pool of threadsO, which is a Markov chain. Our
first thought, given the SequentialNoninterferencerheo-
rem, maybethatif O is well typedandu~.v, then(O, p)
and (O, v) giveriseto the same(i.e. isomorphic)Markov
chains.But thisisn’t quiteright. For example,supposehat
Ois{a:(z:=zx*z), f:(x:=z+1} Ifzis
H, thenmemories{z = 0} and{z = 1} areequvalent.
But running O from {2 = 0} givesa Markov chainwith
4 states:(0,{z = 0}), ({B : (z ==z + 1)}, {z = 0}),
{a: (xz :==2z=*2)},{r = 1}), and({},{z = 1}); and
running O from {z = 1} givesa Markov chainwith 5
states: (O, {z = 1}), ({8 : (z == z + 1)}, {z = 1}),
(fa : (@ = zx2)h{z = 2}), {},{z = 2}), and
({},{= = 4}). Note however that the last two states,
{},{= = 2}) and({},{z = 4}) shouldbe considered
equivalent;thuswe might feel thatthe two Markov chains
arebasicallythe sameafterall.

Formally, whatwe needs to constructaquotientMarkov
chain. Thatis, givena Markov chainwith statesetS and
an equialencerelation~ on S, we'd like to form a new
Markov chainS/~ whosestatesaretheequivalencelasses
of S under~. But whenis this possible? Kemery and
Snell,whoreferto theissueas“lumpability”, identifiedthe
needecconditionlongago[7, p. 124]:

If s1 ~ s9, thenfor eachequivalenceclassA, the
probability of goingfrom s; to astatein A is the
sameastheprobabilityof goingfrom s» to astate

in A:
Zpsuz = Zpsga

a€A a€A

(Hereps, , denotegheprobabilityof goingin onestepfrom
s1 to a in the original Markov chain.) In this casewe can
definethe transitionprobabilitiesfor S/~ asfollows: the
probability of going from equialenceclass A to equia-
lenceclassB, denotedh4 g, is EbeB Pab, Wherea isary el-
ementof A; theaboveconditionsaysexactlythatthechoice
of a makes no difference. Within computerscience,this

idealaterappearedh thework of LarsenandSkou[8], who

(noting the analogyto bisimulation)introducedthe name

probabilistic bisimulationfor suchan equivalencerelation

~. In morerecentwork, Hermanng5] includesa lengthy

discussiorof probabilisticbisimulation,and Sabelfeldand

Sandq9] applyit to probabilisticnoninterference.
Thekey propertyof S/~ is this[5, p. 49]:

Theorem 4.8 Supposédhat ~ is a probabilistic bisimula-
tion. Thenfor ead starting state s, equivalenceclass 4,
and integer k, the probability that .S, starting from s, will
endupin a statein A after k stepsis equalto the probabil-
ity that .S/~, startingfrom|s] (the equivalencelassof s),
will endupin stateA after k steps.

Now, returningto our specificsystem,we wantto de-
fine a probabilisticbisimulation,which we’ll still call ~.,,
onthesetof globalconfigurationg O,). Underthe(more
restrictive) type systemof [13], it would suffice to define
(01, p)~(02,v) iff Oy = Oz and u~,v. But herewe
needa loosernation, since (as discussedabove) the exe-
cutionsof a well-typed commandc undertwo equivalent
memories: andv canbequitedifferent. Roughly we want
to have (01, u)~, (02, v) if p~,v andO; (a)~,O02(a) for
all a. ButactuallyO; andO- couldhave differentdomains,
sincechanginghevaluesof H variablescanaffecttherun-
ningtime of well-typedcommandsSowe’d like to saythat
0; canhave extra threadsin it, solong asthey have type
H cmdr, (andsimilarly for O;). Unfortunately this won't
work within our framework of probabilistic bisimulation,
becauseghe transitionprobabilitieswill not be the samein
this case.For example,if 01 = {a : (y := 1), B : skip}
andO; = {a: (y := 1)}, wherey is L, then(O,, {y = 0})
goesto ({}, {y = 1}) with probability1, but (O, {y = 0})
goesto the equivalentconfiguration({8 : skip},{y = 1})
with probabilityonly 1/2.4

Soto getaprobabilistichisimulation,we needastronger
definitionthatrequiresequalityof domains:

Definition 4.3 (O1, p)~~(02,v) if dom(O1) = dom0,),
O1(a)~,02(a) forall a € dom(O;), and i~ v.

And, regrettably we have to changeour rule (GLOBAL) to
preventthethreadpool domainfrom ever changing:

Ola) =c

(¢, w)—p

p=1/|0|

(0, 4)==(Ola := skip], 1)

Oa) =c
(¢, p)— (', 1)
p=1/]0]
(0,)= (Ola := ¢],)
4Note thatintuitively thereis no information leakagehere;it’s just a

questionof oneprogramrunningmoreslowly thanthe other whichis not
obserableinternally

(GLoBAL)

10

The new semanticsays,in effect, thata completecthread
remainsalive, wastingprocessotime > With this change,
we cannow prove whatwe want:

Theorem4.9 ~, is a probabilistic bisimulationon the set
of global configumtions.

Proof. Supposethat (O, u)~,(0',v) and supposethat
domO) anddom(O') are{as, as,...,a,}. Then(O,u)
and (O',v) can eachgo to n (not necessarilydistinct)
global configurations,(O1, p1), (O2,p2), .., (On, fin),
and (O1,v1), (04, v2), ..., (O.,v,), eachwith proba-
bility 1/n, where(O;, ;) and (O}, v;) denotethe global
configurationgeachedvy choosingthreada;. Now, since
O(a;)~,0'(c;), we have by the SequentialNoninterfer
enceTheoremthat (O;, u;)~~ (0}, v;) for all i. Thisim-
pliesthattheprobabilitiesof reachingany equivalenceclass
from (O, u) or from (O, v) arethesame. [

Finally we can argue that well-typed programssatisfy
probabilisticnoninterferenceif O is well typedandu~., v,
then (O, u)~~(0,v). Hence,by Theorem4.8, the proba-
bility thatthe L variableshave certainvaluesafterk stepss
the samewhenstartingfrom (O, u) aswhenstartingfrom
(O,v).

5 Conclusion

The new type systemallows probabilistic noninterfer
enceto be guaranteedor a muchlarger classof programs
thanpreviously permitted. In particular thereseemso be
hopethatthe systemmight notbetoo hardto accommodate
in practice sinceary threadshatinvolve only H variables
or only L variablesareautomaticallywell typed.

As in previouswork, we have assumedhat programex-
ecutionis obsenable only internally; with external obser
vationsof runningtime, timing leaksare certainly possi-
ble, becauserotected commandsvon’t really executein
onetime step. However, if a programis well typed with-
outtheuseof protect, thenit seemgossiblen principleto
allow external obsenations,exceptthat our simpletiming
modelis unrealistic. For example,our semanticspecifies
thatz := z*x andskip eachexecuten 1 step,whichseems
to requireanimplementatiorthatwastesalot of time. Agat
[2] hasrecentlyattemptedo tackleexternaltiming leaksin
the realisticsettingof Java byte-codeprogramswhich re-
quiresthe consideratiorof a hostof delicatetiming issues,
suchascaching.

On the otherhand,if we areconcernednly with inter-
nal timing leaks, then we don't really needsuch precise

5Also notethatwe actually have to do somesummingin our =L re-
lation, sincenow it may be possiblefor (O, u) to reach(O’, u') in more
thanoneway; se€[9, p. 202].

timings. In particular if doesnt matterto us how much
time z x x x and skip actually take, so long asrule
(cLoBAL) is implementedfaithfully, which meanssimply
thatthe schedulerandomlypicks a new threadafter each
computationstep. Of course,doing schedulingwith such
fine granularitywould appearto involve high overhead;it
remainsto be seenwhetheracceptablgperformancecould
be achiezedwith sucha schedulerThis needanorestudy

In other future work, it would be desirableto find a
wealer notion of probabilisticbisimulationthat would al-
low our original rule (GLOBAL) to be used. Also, it would
be usefulto investigatetype inferencefor the new system,
presumablyusing the approachof [12]. Finally, it would
be valuableto integrate cryptographyinto the framework
of this paperby using a wealer notion of noninterference
basedncomputationatomplexity; somepreliminarysteps
in this directionhave beenmade[14, 11].

6 Acknowledgments

This work was partially supportecby the National Sci-
enceFoundationundergrant CCR-9900951.1 am grate-
ful to Andrei Sabelfeld David SandsDennisVolpano,and
theanorymousreviewersfor their usefulcommentsn this
work.

References

[1] J. Agat. Transformingout timing leaks. In Proceedings
27th Symposiunen Principlesof ProgrammingLanguayes
pagesA0-53,Boston,MA, Jan.2000.

J. Agat. TypeBasedTedniquesfor Covert ChannelElimi-
nationand Register Allocation PhD thesis,ChalmersJni-
versity of Technology Gotebog, SwedenDec.2000.

D. DenningandP. Denning. Certificationof programsfor
secureinformation flow. Commun.ACM, 20(7):504-513,
1977.

W. Feller AnlIntroductionto Probability Theoryandlts Ap-
plications volumel. JohnWiley & Sons,Inc., third edition,
1968.

H. HermannsInteractiveMarkov Chains PhDthesis,Uni-
versity of Erlangen-Nirnbeg, July 1998.

K. Honda,V. VasconcelosandN. Yoshida.Securanforma-
tion flow astypedprocesdehaiour. In Proceeding®thEu-
ropeanSymposiunon Programming volume 1782 of Lec-
ture Notesin ComputerSciencepagesl80-199 Apr. 2000.
J.Kemely andJ. L. Snell. Finite Markov Chains D. Van
Nostrand,1960.

K. G.LarsenandA. Skou. Bisimulationthroughprobabilis-
tic testing.Informationand Computation94(1):1-28,1991.
A. Sabelfeldand D. Sands. Probabilisticnoninterference
for multi-threadedprograms. In Proceedingsl3th IEEE
ComputerSecurityFoundationsorkshop pages200-214,
Cambridge UK, July 2000.

(2]

(3]

(4]

(5]

(6]

(7]
(8]
9]

11

[10] G. Smith and D. Volpano. Secureinformation flow in
a multi-threadedimperatve language. In Proceedings
25th Symposiunon Principlesof ProgrammingLanguaes
pages355-364,SanDiego, CA, Jan.1998.

D. Volpano. Secureintroduction of one-way functions.
In Proceedingsl3th IEEE ComputerSecurityFoundations
Workshop pages246—254 Cambridge UK, June2000.

D. Volpanoand G. Smith. A type-basedpproachto pro-
gramsecurity In Proc. Theoryand Practice of Softwae
Developmentvolume 1214 of Lecture Notesin Computer
Sciencepagess07-621 Apr. 1997.

D. Volpanoand G. Smith. Probabilistic noninterference
in a concurrentlanguage. Journal of ComputerSecurity
7(2,3):231-2531999.

D. Volpanoand G. Smith. Verifying secretsand relative
secreg. In Proceeding®27th Symposiunon Principles of
ProgrammingLanguaes page68—-276Boston MA, Jan.
2000.

D. Volpano, G. Smith, and C. Irvine. A soundtype sys-
temfor secureflow analysis.Journal of ComputerSecurity
4(2,3):167-1871996.

[11]

[12]

[13]

[14]

[15]

