Introduction:
1) What is Security?

a. Prevent bad things from happening (attacks, mistakes, etc.)

2) Terms:
a. Vulnerability – exploitable weakness

b. Attack – method of exploiting

c. Threat/Threat Model – characterizes possible attacks

d. Trusted Computing Base – Set of system components depended on for security including hardware, operating system, software, etc.

3) Properties:

a. Integrity – No improper modification (e.g. only you can change your password or withdraw money from your account). Enforced by Access Control, Digital Signatures.

b. Confidentiality – Protect private data (SSN, Salary, CC Numbers). Enforced by Access Control, Encryption.
c. Privacy – Related to confidentiality. Prevent misuse of private information.
d. Anonymity - Related to confidentiality. Prevent connection between identity of actor and actions. Keep identity secret and keep actions secret.

e. Availability – System must respond to requests. Making the system unavailable solves all of the above, but isn’t very useful.

f. Nonrepudiation – Ability to prove that some action took place (e.g. ATM receipt).

4) Security Violations (note that intruder may be an otherwise legitimate user):

a. Unauthorized information release.

b. Unauthorized information modification.

c. Unauthorized denial of use.

5) Mechanisms:

a. Authentication – Principal is who he says he is. Implemented with passwords, certificates, etc.

b. Authorization – Principal can perform requested action. Implemented with Access Control

c. Auditing – Used for enforcement after the fact. Implemented via logging.
6) Design Principles:

a. Economy of mechanism – keep design small and simple

b. Fail-safe defaults – default to lack of access. Bugs are more likely to not allow access when they should. These will be identified for quickly.

c. Complete Mediation – Every access should be checked.
d. Open Design - Mechanism should not depend on an implementation secret.

e. Separation of Privilege – Require two keys rather than one.

f. Least Privilege – Principle should be given only the privileges necessary.

g. Least Common Mechanism – Minimize mechanism shared by multiple users.
h. Psychological Acceptability – Human interface must be easy to use.

7) Capability Systems:

a. Users have a collection of capabilities. Access to an object is based on the possession of a specific capability. This collection of capabilities is much like a set of keys on a key ring. Your ability to enter a locked room depends on having the right key.
b. Capabilities can be copied and given to others. I can make a copy of the key to my house and give it to you. Note that this delegation is unlimited. You can give a copy of my key to anyone else.
c. Knowing who has access at any given time is difficult. Once I’ve given away a key to my house it is difficult to know how many copies have been made and who might have them.

d. Revocation is also difficult. I can ask for my key back, but you may have other copies or you may get a new copy from someone else. On the other hand, if I change the lock then everyone who has a key needs a new key.

8) Access Control Systems:

a. System has a master list of who has access to what. This is like a guest list for a party. In order to enter the party, your name must be on the list (and you have to prove you are who you say you are). If you go to another party, your name will be checked against a different list. You will be allowed to attend some parties but not others.
b. Access cannot be delegated. You cannot go to the party in my place since your name is not on the list.
c. Knowing who has access is simply a matter of checking the list.

d. Revocation is simply a matter of removing a name from the list. This does not affect others whose names are still on the list.

Execution Monitoring (EM):

1) Security Policy – Defines execution that is deemed unacceptable (Schneider, 2000)

a. Access Control: Restrict what operations principals can perform on objects.

b. Information Flow: Restrict what principals can infer about objects from observing system behavior.

c. Availability: Restrict principals from denying others the use of a resource.

2) Example Security Policy – Java’s No Send after Read

3) Any Security policy is only useful if it can be enforced (and at a reasonable cost).

4) Execution Monitoring (EM) is an enforcement mechanism that monitors execution steps and terminates the execution if it is about to violate the security policy.

a. Firewalls

b. Virus Scanners

c. Security Kernels
Note that mechanisms that analyze possible future execution paths (or anything else beyond the current steps of execution) are not included in EM. Additionally, mechanisms which make modifications before executing are also excluded from EM.

5) Notation:
a. Ψ – The set of all possible finite and infinite execution sequences.

b. S – An execution target (program)

c. Σs – a subset of Ψ which includes all possible execution sequences of S.
d. P – A security policy given as a predicate on sets of execution. A target S satisfies P iff P(Σs) is true.

e. Given a policy P and sets of execution X & Y where P(X) is true and Y is a subset of X, it is not necessarily the case that P(Y) is true. For example suppose:

i. X = {return 1, return 2, return 3, return 4}

ii. Y = {return 2; return 4}

iii. P = ‘program must sometimes return an odd number’

6) EM Enforceability:

a. Not all Security Policies are EM enforceable.

b. Since EM works by monitoring execution, it is necessary to be able to verify each execution sequence against the policy independent of other executions.

c. Formally P(X) : (forall σ element of X : P-hat(σ).

d. A policy is called a property when set membership can be determined based on each element independent of other members of the set. In the definition above, P is a property.
e. P = ‘program must sometimes return an odd number’ is not a property and is not EM enforceable.

7) Not all Properties are EM enforceable. Consider:

a. X = {(x=0,x++)}

b. P = ‘x is eventually greater than zero’
c. P is clearly a policy since examination of each sequence is all that is necessary to determine if the sequence satisfies.

d. EM monitoring of the one sequence in X would have to fail at the first step (x=0) since EM is not allowed to look into the future. Further, any sequence starting with (x=0) must fail.

e. Formally: (forall τ’ element of Ψ- : notP-hat(τ’) => (forall σ element of Ψ: not P-hat(τ’ σ))). In other words Properties must be prefix-closed in order to be EM enforceable.
i. Ψ- : The set of all finite prefixes of elements in Ψ.

ii. τ’ : a finite sequence

iii. τ’ σ : execution of τ’ followed by execution of σ

8) EM enforceable properties reject in a finite period.

a. Formally: (forall σ element of Ψ: : notP-hat(σ) => (exists i : not P-hat(σ[..i])))

b. Where σ[..i] denotes the prefix of σ containing the first i steps.

9) Security policies satisfying all three conditions (property, prefix-closed, reject in finite period) are called Safety Properties (i.e. Nothing Bad Happens!).

10) If a policy is not a safety property, it is not EM enforceable.

Security Automata:

1) Security Automata are defined by:
a. Q – a countable set of states

b. Q0 – a countable set of start states where Q0 is a subset of Q.

c. I – a countable set of input symbols

d. δ : (Q x I) -> 2Q – Transition Function.
2) Current state Q’ starts out as Q0 and as each input symbol (s) is read, Q’ is changed to {δ(q,s) where q elementof Q’}. The automata rejects if Q’ ever becomes empty, otherwise it accepts.

3) Java: No send after read.

[image: image1.emf]
4) Java: No send after read (written using guarded commands).

[image: image2.emf]
5) Access Control automaton:

[image: image3.emf]
6) Composition – Consider the following two Security Automata

a. S1 = <{s,t},{s},{0,1},d>
(0*1*)

i. d(s,0) = {s}

ii. d(s,1) = {t}

iii. d(t,0) = {}

iv. d(t,1) = {t}

v. Otherwise {}

[image: image4.wmf]s

t

1

0

1

b. S2 = <{p,q},{p},{0,1},e>
((01*)(0?)

i. e(p,0) = {q}

ii. e(p,1) = {}

iii. e(q,0) = {}

iv. e(q,1) = {p}

v. Otherwise {}

[image: image5.emf]p q

0

1

7) Composition – Union (Satisfy P1 or P2)
a. S-union = <{s,t,p,q},{s,p},{0,1},f>

i. f(x,i) = d(x,i) union e(x,i)

8) Composition – Intersection (Satisfy P1 and P2)
a. S-intersection = <{sp,sq,tp,tq},{sp},{0,1},f>
i. f(sp,0) = {sq}
(s -> s & p -> q)

ii. f(sp,1) = {}
(no transition from p in S2)

iii. f(sq,0) = {}
(no transition from p in S2)
iv. f(sq,1) = {tp}
(s -> t & q -> p)
v. f(tp,0) = {}
(no transition from p in S2)
vi. f(tp,1) = {}
(no transition from p in S2)
vii. f(tq,0) = {}
(no transition from p in S2)
viii. f(tq,1) = {tp}
(t -> t & q -> p)

[image: image6.emf]1

sq sp tp

0

Note that state tq goes away because it has no incoming transitions.

_1199038685.vsd

_1199038723.vsd

