
Programming Languages:
Theory and Practice

(WORKING DRAFT OF APRIL 5, 2006.)

Robert Harper
Carnegie Mellon University

Spring Semester, 2006

[Draft of April 5, 2006.]

Copyright c© 2006. All Rights Reserved.

Preface

This is a collection of lecture notes for Computer Science 15–312 Program-
ming Languages. I am grateful to Andrew Appel and Frank Pfenning for
their advice, suggestions, and numerous examples. I am also grateful
to our students at Carnegie Mellon, Princeton, and University of Mas-
sachusetts whose enthusiasm (and patience!) was instrumental in helping
to create the course and this text.

What follows is a working draft of a planned book that seeks to strike
a careful balance between developing the theoretical foundations of pro-
gramming languages and explaining the pragmatic issues involved in their
design and implementation. Many considerations come into play in the
design of a programming language. I seek here to demonstrate the cen-
tral role of type theory and operational semantics in helping to define a
language and to understand its properties.

Comments and suggestions are most welcome. Enjoy!

Contents

Preface ii

I Preliminaries 1

1 Inductive Definitions 2
1.1 Judgements . 2
1.2 Rules and Derivations . 3
1.3 Rule Induction . 6
1.4 Iterated and Simultaneous Inductive Definitions 7
1.5 Admissible and Derivable Rules 9
1.6 Defining Functions by Rules 10
1.7 Foundations . 12
1.8 Exercises . 13

2 Higher Order Judgement Forms 14
2.1 Hypothetical Judgements . 14
2.2 General Judgements . 18
2.3 Hypothetico-General Judgements 19
2.4 Inductive Definitions, Revisited 20
2.5 Exercises . 22

3 Transition Systems 23
3.1 Transition Systems . 23
3.2 Exercises . 24

iii

CONTENTS iv

II Levels of Syntax 25

4 Concrete Syntax 26
4.1 Strings . 26
4.2 Context-Free Grammars . 27
4.3 Ambiguity . 28
4.4 Resolving Ambiguity . 30
4.5 Exercises . 32

5 Abstract Syntax Trees 33
5.1 Abstract Syntax Trees . 34
5.2 Structural Induction . 35
5.3 Parsing . 36
5.4 Exercises . 38

6 Abstract Binding Trees 39
6.1 Names . 39
6.2 Abstract Syntax With Names 40
6.3 Abstract Binding Trees . 40
6.4 Renaming . 42
6.5 Structural Induction With Binding and Scope 44
6.6 Substitution . 45
6.7 Summary . 46
6.8 Exercises . 47

7 Specifying Syntax 48

III Static and Dynamic Semantics 50

8 The Phase Distinction 51

9 Static Semantics 54
9.1 Static Semantics of Expressions 54
9.2 Properties of the Static Semantics 55
9.3 Exercises . 56

APRIL 5, 2006 WORKING DRAFT

CONTENTS v

10 Dynamic Semantics 57
10.1 Structured Operational Semantics 57
10.2 Evaluation Semantics . 59
10.3 Relating Transition and Evaluation Semantics 61
10.4 Environment Semantics . 62
10.5 Exercises . 63

11 Type Safety 64
11.1 Preservation for Expressions 65
11.2 Progress for Expressions . 65
11.3 Exercises . 66

IV Functions 68

12 A Functional Language 69
12.1 Syntax . 69
12.2 Static Semantics . 70
12.3 Basic Properties of the Static Semantics 71
12.4 Dynamic Semantics . 72
12.5 Basic Properties of the Dynamic Semantics 73
12.6 Iteration and Recursion . 74
12.7 Exercises . 76

13 Type Safety for MinML 78
13.1 Safety for MinML . 78
13.2 Run-Time Errors and Safety 81
13.3 Exercises . 82

14 Environments and Functions 83
14.1 Environment Semantics for MinML 83
14.2 Closures . 85
14.3 Exercises . 87

V Products and Sums 88

15 Product Types 89
15.1 Nullary and Binary Products 89

APRIL 5, 2006 WORKING DRAFT

CONTENTS vi

15.2 General Products . 91
15.3 Labelled Products . 92
15.4 Exercises . 93

16 Sum Types 94
16.1 Binary and Nullary Sums . 94
16.2 Labelled Sums . 97
16.3 Exercises . 98

VI Recursive Types 99

17 Recursive Types 100
17.1 Recursive Types . 101
17.2 Inductive Data Structures . 103
17.3 Recursive Functions . 104
17.4 Un(i)typed Languages . 106
17.5 Exercises . 110

18 Pattern Compilation 111

19 Dynamic Typing 112
19.1 Dynamic Typing . 114
19.2 Implementing Dynamic Typing 115
19.3 Dynamic Typing as Static Typing 117

VII Polymorphism 121

20 Polymorphism 122
20.1 Polymorphic λ-Calculus . 122
20.2 Polymorphic Definability . 125
20.3 Restricted Forms of Polymorphism 128
20.4 Exercises . 130

21 Data Abstraction 131
21.1 Existential Types . 132

21.1.1 Static Semantics . 133
21.1.2 Dynamic Semantics . 133

APRIL 5, 2006 WORKING DRAFT

CONTENTS vii

21.1.3 Safety . 134
21.2 Data Abstraction Via Existentials 134
21.3 Definability of Existentials . 136
21.4 Exercises . 137

22 Dot Notation for Abstract Types 138
22.1 Dot Notation . 138

22.1.1 Determinacy . 140
22.1.2 Static Semantics . 141
22.1.3 Substitution . 142
22.1.4 Dynamic Semantics . 143

22.2 Relating Existentials to Signatures 143
22.3 Exercises . 144

VIII Control Flow 145

23 Abstract Machines 146
23.1 The C Machine . 147
23.2 Correctness of the C Machine 150

23.2.1 Proof of Completeness 152
23.2.2 Proof of Soundness . 153

23.3 The E Machine . 154
23.4 Exercises . 157

24 Exceptions 158
24.1 Failures . 158
24.2 Exceptions . 164
24.3 Exercises . 165

25 Continuations 167
25.1 Informal Overview . 168
25.2 Semantics of Continuations 171
25.3 Failures from Continuations 173
25.4 Exercises . 174

26 Coroutines 176
26.1 Coroutines from Continuations 177
26.2 Excercises . 178

APRIL 5, 2006 WORKING DRAFT

CONTENTS viii

IX Propositions and Types 179

27 Curry-Howard Isomorphism 180
27.1 Constructive Logic . 181

27.1.1 Constructive Semantics 181
27.1.2 Propositional Logic . 183
27.1.3 Explicit Proofs . 185

27.2 Propositions as Types . 186
27.3 Exercises . 188

28 Classical Logic 189
28.1 Classical Propositional Logic 190

28.1.1 Dynamics . 192

X State 194

29 Storage Effects 195
29.1 References . 195
29.2 Exercises . 199

30 Monadic Storage Effects 200
30.1 A Monadic Language . 201
30.2 Exercises . 204

31 Extensible Sums 205

XI Lazy Evaluation 206

32 Laziness 207
32.1 Call-By-Need . 209
32.2 General Recursion . 211
32.3 Speculative Execution . 213
32.4 Suspension Types . 213
32.5 Excercises . 215

APRIL 5, 2006 WORKING DRAFT

CONTENTS ix

XII Cost Semantics and Parallelism 216

33 Cost Semantics 217
33.1 Evaluation Semantics . 217
33.2 Relating Evaluation Semantics to Transition Semantics . . . 218
33.3 Cost Semantics . 219
33.4 Relating Cost Semantics to Transition Semantics 220
33.5 Exercises . 221

34 Implicit Parallelism 222
34.1 Tuple Parallelism . 222
34.2 Work and Depth . 225
34.3 Vector Parallelism . 227

35 A Parallel Abstract Machine 231
35.1 A Simple Parallel Language 231
35.2 A Parallel Abstract Machine 233
35.3 Cost Semantics, Revisited . 235
35.4 Provable Implementations (Summary) 236

XIII Subtyping 239

36 Subtyping 240
36.1 Subsumption . 240
36.2 Varieties of Subtyping . 242

36.2.1 Arithmetic Subtyping 242
36.2.2 Function Subtyping 243
36.2.3 Product and Record Subtyping 245
36.2.4 Reference Subtyping 247

37 Implementing Subtyping 249
37.1 Type Checking With Subtyping 249
37.2 Implementation of Subtyping 251

37.2.1 Coercions . 251

APRIL 5, 2006 WORKING DRAFT

CONTENTS x

XIV Inheritance 256

38 Featherweight Java 257
38.1 Abstract Syntax . 257
38.2 Static Semantics . 260
38.3 Dynamic Semantics . 262
38.4 Type Safety . 264
38.5 Acknowledgement . 265

39 Inheritance and Subtyping in Java 266
39.1 Inheritance Mechanisms in Java 266

39.1.1 Classes and Instances 266
39.1.2 Subclasses . 268
39.1.3 Abstract Classes and Interfaces 270

39.2 Subtyping in Java . 271
39.2.1 Subtyping . 272
39.2.2 Subsumption . 273
39.2.3 Dynamic Dispatch . 274
39.2.4 Casting . 275

39.3 Methodology . 276

XV Program Equivalence 278

40 Functional Equivalence 279
40.1 Expression Equivalence . 280
40.2 Some Laws of Equivalence . 282

40.2.1 General Laws . 282
40.2.2 Symbolic Evaluation 283
40.2.3 Extensionality . 284
40.2.4 Strictness Properties 285
40.2.5 Arithmetic Laws . 285
40.2.6 Products . 286
40.2.7 Lists . 287

41 Parametricity 289
41.1 Informal Overview . 290
41.2 Relational Parametricity . 293

APRIL 5, 2006 WORKING DRAFT

CONTENTS xi

42 Representation Independence 298

XVI Concurrency 302

43 Process Calculus 303

44 Cooperative Threads 304
44.1 Exercises . 307

45 Concurrent ML 308

XVII Storage Management 309

46 Storage Management 310
46.1 The A Machine . 310
46.2 Garbage Collection . 314

APRIL 5, 2006 WORKING DRAFT

Part I

Preliminaries

1

Chapter 1

Inductive Definitions

Inductive definitions are an indispensable tool in the study of program-
ming languages. In this chapter we will develop the basic framework of
inductive definitions, and give some examples of their use.

1.1 Judgements

We start with the notion of a judgement, or assertion, about one or more
objects of study. In general a judgement is a statement of knowledge, in-
cluding assertions such as “it is raining outside”, “every natural number
may be written as a product of primes”, or “the sum of 2 and 2 is 4.” In
the study of programming languages we shall make use of many forms of
judgement, including the following (informal) examples:

a ast a is an abstract syntax tree
τ type τ is a type
e : τ expression e has type τ
e ⇓ v expression e has value v

Each of these forms of judgement makes an assertion about one or more
objects.1

The notation for writing judgements varies according to the situation,
but when discussing the general case we use postfix notation, writing x1, . . . , xn J,

1For the time being we do not specify what sort of objects may be the subject of a
judgement, but see Section 1.7 for more on this.

2

1.2 Rules and Derivations 3

or, briefly, ~x J, to assert that J holds of the objects ~x = x1, . . . , xn. The
judgement ~x J is sometimes called an instance of the judgement form J.

1.2 Rules and Derivations

In the study of programming languages we make frequent use of inductive
definitions of judgement forms. An inductive definition of an n-ary judge-
ment form, J, consists of a set of inference rules of the form

~x1 J · · · ~xk J
~x J

where ~x and each ~x1 . . . ,~xk are n-tuples of objects, and J is the judgement
being defined. The judgements above the horizontal line are called the
premises of the rule, and the judgement below is called the conclusion of
the rule. If a rule has no premises (i.e., n = 0), the rule is called an axiom;
otherwise it is a proper rule.

An inference rule may be read as an implication stating that if ~x1 J and
. . . and ~xk J are all valid, then ~x J is valid as well. Thus each inference rule
specifies that the premises are a sufficient condition for the conclusion: to
show~x J, it suffices to show that~x1 J, . . . ,~xk J hold. Notice that when k = 0
(i.e., when the rule is an axiom), nothing is required for the conclusion to
hold — it must hold under all circumstances.

A set of rules may be regarded as an inductive definition of the judge-
ment form, J, by insisting that the rules are necessary, as well as sufficient,
conditions for the validity of instances of J. This is to say that ~x J is valid
only if there is some rule with that conclusion all of whose premises are
also valid. The judgement, J, inductively defined by the given set of rules is
the strongest, or most restrictive, judgements form satisfying the given rules.

An example will help clarify these ideas. The following set,N , of rules
constitute an inductive definition of the judgement form nat.

zero nat
x nat

succ(x) nat

According to these rules the judgement x nat is defined to hold exactly
when either x is zero, or x is succ(y) for some y such that y nat. In other
words, x nat holds iff x is (the unary form of) a natural number.

APRIL 5, 2006 WORKING DRAFT

1.2 Rules and Derivations 4

Similarly, the following set, T , of rules constitute an inductive defini-
tion of the judgement form tree:

empty tree

x tree y tree

node(x, y) tree

According to these rules the judgement x tree holds exactly when x is a
binary tree, either the empty tree, empty, or a node, node(x1, x2), with chil-
dren x1 and x2 such that x1 tree and x2 tree.

It is worth noting that the inductive definitions of natural numbers and
trees each have infinitely many rules, not just two. In each case the variables
x and y range over the universe of objects over which the definition takes
place. What we have specified is a rule scheme with metavariables x and y. A
rule scheme stands for infinitely many rules, one for each choice of object
for each of the metavariables involved. This raises the question of what is
the universe of objects over which we are working — just which objects
are permissible in an inductive definition? For now we rely on informal
intuition, but see Section 1.7 for further discussion.

To show that an instance of an inductively defined judgement form is
valid, it is enough to exhibit a derivation (tree) of it consisting of a com-
position of rules, starting from axioms and ending with that judgement.
Derivations have a natural tree structure arising from stacking rules on
top of the another. If

~x1 J · · · ~xk J
~x J

is an inference rule and D1, . . . ,Dk are derivations of its premises, then

D1 · · · Dk
~x J

is a derivation of its conclusion.
For example, here is a derivation of succ(succ(succ(zero))) nat ac-

cording to the set of rules, N :

zero nat
succ(zero) nat

succ(succ(zero)) nat

succ(succ(succ(zero))) nat

APRIL 5, 2006 WORKING DRAFT

1.2 Rules and Derivations 5

Similarly, here is a derivation that node(node(empty, empty), empty) tree
according to the set of rules T :

empty tree empty tree

node(empty, empty) tree empty tree

node(node(empty, empty), empty) tree

In general, to show that a judgement is derivable we need only find
a derivation for it. There are two main methods for finding a derivation,
called forward chaining, or bottom-up construction, and backward chaining,
or top-down construction. Forward chaining starts with the axioms and
works forward towards the desired judgement, whereas backward chain-
ing starts with the desired judgement and works backwards towards the
axioms.

More precisely, forward chaining search maintains a set of derivable
judgements, and continually extends this set by adding to it the conclu-
sion of any rule all of whose premises are in that set. Initially, the set is
empty; the process terminates when the desired judgement occurs in the
set. Assuming that all rules are considered at every stage, forward chain-
ing will eventually find a derivation of any derivable judgement, but it is
impossible (in general) to decide algorithmically when to stop extending
the set and conclude that the desired judgement is not derivable. We may
go on and on adding more judgements to the derivable set without ever
achieving the intended goal. It is a matter of understanding the global
properties of the rules to determine that a given judgement is not deriv-
able.

Forward chaining is undirected in the sense that it does not take ac-
count of the end goal when deciding how to proceed at each step. In
contrast, backward chaining is goal-directed. Backward chaining search
maintains a set of current goals, judgements whose derivations are to be
sought. Initially, this set consists solely of the judgement we wish to de-
rive. At each stage, we remove a judgement from the goal set, and consider
all rules whose conclusion is that judgement. For each such rule, we add
to the goal set the premises of that rule. The process terminates when the
goal set is empty, all goals having been achieved. As with forward chain-
ing, backward chaining will eventually find a derivation of any derivable
judgement, but there is no algorithmic method for determining in general
whether the current goal is derivable. Thus we may futilely add more and

APRIL 5, 2006 WORKING DRAFT

1.3 Rule Induction 6

more judgements to the goal set, never reaching a point at which all goals
have been satisfied.

1.3 Rule Induction

Suppose that the judgement form, J, is inductively defined by a rule set
S . Since J is, by definition, the strongest (most restrictive) judgement for
which the rules in S are valid, we may employ the important principle of
rule induction to derive properties of those objects ~x such that ~x J is valid.
Specifically, if we wish to show P ~x, it is enough to show that the property
P is closed under, or respects, the rules in S . More precisely, for every rule
in S of the form

~x1 J · · · ~xk J
~x J

we must show that P ~x is valid, under the assumptions that P ~x1, . . . , P ~xk
are all valid. These assumptions are called the inductive assumptions of the
inference, and the conclusion establishes the inductive step corresponding
to that rule. Remember that we must consider all rules in the definition of
J in order to establish the desired conclusion!

Another way to justify the principle of rule induction is by analysis of
the possible derivations of ~x J according to the rules. This amounts to a
case-by-case analysis on the root of the derivation tree. For each rule that
could occur at the root, we may inductively assume the result for each of
the sub-derivations, and derive from these the result for the whole deriva-
tion. This process is sometimes known as induction on derivations; it is en-
tirely equivalent to rule induction over the rules defining the judgement
form under consideration.

The principle of rule induction associated with the rule set, N , states
that to show P x whenever x nat, it is enough to show

1. P zero.

2. P succ(x), assuming P x.

This is just the familiar principle of mathematical induction. Similarly, the
principle of rule induction associated with the rule set T states that to
show that x tree implies P x, it is enough to show

APRIL 5, 2006 WORKING DRAFT

1.4 Iterated and Simultaneous Inductive Definitions 7

1. P empty.

2. P node(x1, x2), assuming P x1 and P x2.

This is sometimes called the principle of tree induction.
As a simple example, let us show that every natural number is ei-

ther zero, one, or two more than some other natural number. More pre-
cisely, the judgement P x in this case states that either x = zero, or
x = succ(zero), or x = succ(succ(y)) for some y nat. We prove by rule
induction on the rule set N that if x nat, then P x, as follows:

1. Show that P zero. This is immediate.

2. Assume that P x, and show that P succ(x). We have by the inductive
assumption that x = zero, or x = succ(zero), or x = succ(succ(y))
for some y nat. We are to show that either succ(x) = zero, or
succ(x) = succ(zero), or there exists z nat such that succ(x) =
succ(succ(z)). In the first case, observe that succ(x) = succ(zero);
in the second, observe that succ(x) = succ(succ(zero)), so we may
take z = zero; in the third, observe that succ(x) = succ(succ(succ(y))),
so we may take z = succ(y).

This completes the proof.

1.4 Iterated and Simultaneous Inductive Defini-
tions

Inductive definitions are often iterated, meaning that one inductive defini-
tion builds on top of another. For example, the following set of rules, L,
defines the judgement form list, which expresses that an object is a list of
natural numbers:

nil list

x nat y list

cons(x, y) list

Notice that the second rule uses the judgement form nat defined earlier.
It is also common to give a simultaneous inductive definition of several

judgements, J1, . . . , Jn, by a collection of rules, each of which may use as

APRIL 5, 2006 WORKING DRAFT

1.4 Iterated and Simultaneous Inductive Definitions 8

premises any of the n judgement forms being defined. Thus each rule has
the form

~x1 Ji1 · · · ~xm Jim
~x Ji

where 1 ≤ ij ≤ n for each 1 ≤ j ≤ m. As before, we may have m = 0
premises, in which case the rule is an axiom.

The difference between simultaneous and iterated inductive definitions
is simply that in the iterated case we finish one inductive definition and
then use it in a subsequent one, whereas in the simultaneous case two or
more judgements are being defined in a mutually recursive manner, so
that neither can be considered “finished” before the other.

The meaning of a simultaneous inductive definition is a generalization
of that for a single inductive definition. It defines the strongest judgements
J1, . . . , Jn closed under the rules. This gives rise to the principle of rule in-
duction for simultaneous inductive definitions, which permits us to prove
properties about such inductively defined families of judgements. If we
wish to show P1 ~x1, . . . , Pn ~xn whenever ~x1 J1, . . . , ~xn Jn, it is enough to
show for each rule

~x1 Ji1 · · · ~xm Jim
~x Ji ,

that if ~x1 Pi1 , . . . , ~xm Pim , then ~x Pi.
For example, consider the following rule set, which constitutes a simul-

taneous inductive definition of the judgement forms x even, stating that x
is an even natural number, and x odd, stating that x is an odd natural
number:

zero even
x odd

succ(x) even
x even

succ(x) odd

The associated principle of rule induction states that if we wish to show
P x, whenever x even, and Q x, whenever x odd, it is enough to show

1. P zero;

2. if Q x, then P succ(x);

3. if P x, then Q succ(x).

These proof obligations are derived by considering the rules defining the
even and odd judgement forms.

APRIL 5, 2006 WORKING DRAFT

1.5 Admissible and Derivable Rules 9

1.5 Admissible and Derivable Rules

Let S be an inductive definition of the judgement J. There are two senses
in which a rule

~x1 J · · · ~xk J
~x J

may be thought of as being “valid” for S : it can be either derivable or ad-
missible.

A rule is said to be derivable iff there is a derivation of its conclusion
from its premises. This means that there is a composition of rules start-
ing with the premises and ending with the conclusion. For example, the
following rule is derivable in N :

x nat
succ(succ(succ(x))) nat

Its derivation is as follows:

x nat
succ(x) nat

succ(succ(x)) nat

succ(succ(succ(x))) nat

A rule is said to be admissible iff its conclusion is derivable from no
premises whenever its premises are derivable from no premises. For ex-
ample, the following rule is admissible in N :

succ(x) nat
x nat

First, note that this rule is not derivable for any choice of x. For if x is
zero, then the only rule that applies has no premises, and if x is succ(y)
for some y, then the only rule that applies has as premise y nat, rather than
x nat. However, this rule is admissible! We may prove this by induction
on the derivation of the premise of the rule. For if succ(x) nat is derivable
from no premises, it can only be by second rule, which means that x nat is
also derivable, as required. (This example shows that not every admissible
rule is derivable.)

If a rule is derivable in a rule set S , then it remains derivable in any
rule set S ′ ⊇ S . This is because the derivation of that rule depends only on

APRIL 5, 2006 WORKING DRAFT

1.6 Defining Functions by Rules 10

what rules are available, and is not sensitive to whether any other rules are
also available. In contrast a rule can be admissible in S , but inadmissible
in some extension S ′ ⊇ S ! For example, suppose that we add to N the
rule

succ(junk) nat

Now it is no longer the case that the rule

succ(x) nat
x nat

is admissible, for if the premise were derived using the additional rule,
there is no derivation of junk nat, as would be required for this rule to be
admissible.

Since admissibility is sensitive to which rules are absent, as well as to
which are present, a proof of admissibility of a non-derivable rule must, at
bottom, involve a use of rule induction. A proof by rule induction con-
tains a case for each rule in the given set, and so it is immediately obvious
that the argument is not stable under an expansion of this set with an ad-
ditional rule. The proof must be reconsidered, taking account of the ad-
ditional rule, and there is no guarantee that the proof can be extended to
cover the new case (as the preceding example illustrates).

1.6 Defining Functions by Rules

A common use of inductive definitions is to define inductively its graph,
a judgement, which we then prove is a function. For example, one way to
define the addition function on natural numbers is to define inductively
the judgement A (m, n, p), with the intended meaning that p is the sum of
m and n, as follows:

m nat
A (m, zero, m)

A (m, n, p)
A (m, succ(n), succ(p))

We then must show that p is uniquely determined as a function of m and
n. That is, we show that if m nat and n nat, then there exists a unique p
such that A (m, n, p) by rule induction on the rules defining the natural
numbers.

APRIL 5, 2006 WORKING DRAFT

1.6 Defining Functions by Rules 11

1. From m nat and zero nat, show that there exists a unique p such that
A (m, n, p). Taking p to be m, it is easy to see that A (m, n, p).

2. From m nat and succ(n) nat and the assumption that there exists a
unique p such that A (m, n, p), we are to show that there exists a
unique q such that A (m, succ(n), q). Taking q = succ(p) does the
job.

This fact may be summarized by saying that the mode of this judgement
is (∀, ∀, ∃!), which means that the first two arguments may be thought of
as inputs, and the third as a uniquely determined output. (It is implicit that
the inputs and outputs are objects x such that x nat.) This mode specifi-
cation states that A (m, n, p) determines a total function in which each pair
m nat and n nat determines a unique p nat such that A (m, n, p). Other
modes for this judgement are (∀, ∀, ∃), which merely asserts that to every
pair of inputs there is a (not necessarily unique) output, and (∀, ∀, ∃≤1),
which asserts that to every pair of inputs there is at most one output. The
former states that the judgement is a total relation, the latter that it is a par-
tial function. Of course the property of being a total function is stronger
than either of these, but situations will arise in which only the weaker
modes are available.

As another example, the following rules define the height of a binary
tree, making use of an auxiliary “maximum” function on natural numbers
that you may readily define yourself:

H (empty, zero)
H (t1, n1) H (t2, n2) M (n1, n2, n)

H (node(t1, t2), succ(n))

One may readily show by tree induction that the mode of this judgement
is (∀, ∃) over inputs and outputs x such that x tree.

Whenever we are defining a judgement that is intended to be a function
(i.e., one argument is determined as a function of the others), we often
write the definition using equations. For example, we may re-state the
inductive definition of addition above using equations as follows:

m nat
m + zero = m nat

m + n = p nat

m + succ(n) = succ(p) nat

When using this notation we tacitly incur the obligation to prove that the
mode of the judgement is such that the object on the right-hand side of the

APRIL 5, 2006 WORKING DRAFT

1.7 Foundations 12

equations is determined as a function of those on the left. Having done so,
we abuse the notation by using the relation as function, writing just m + n
for the unique p such that m + n = p nat.

1.7 Foundations

So far we have been vague about what sorts of “objects” may be the sub-
jects of judgements. For example, the inductive definition of binary trees
makes use of objects empty and node(x, y), where x and y are themselves
objects, without saying precisely just what are these objects. More gener-
ally, we may ask, what sort of objects may we make judgements about?
This is a delicate matter of foundations that we will only touch on briefly
here.

One point of view is to simply take as given that the constructions we
have mentioned so far are intuitively acceptable, and require no further
justification or explanation. Roughly speaking, we admit as sensible any
form of “finitary” construction in which finite entities are built up from
other such finite entities by a finitely computable processes. Obviously
this leaves quite a lot of room for interpretation, but in practice we never
get into serious trouble and hence may safely adopt this rough-and-ready
rule as a guide in the sequel.

If we’re really worried about nailing down what sorts of objects are
admissible, then we must work within some presumed well-understood
framework, such as set theory, in which to carry out our work.2 While this
leads to an account that may be considered mathematically satisfactory,
it ignores the very real question of whether and how our constructions
can be justified on computational grounds. After all, the study of pro-
gramming languages is all about things we can implement on a machine!
Conventional set theory makes it difficult to discuss such matters, since it
provides no computational interpretation of sets.

A more reasonable choice for our purposes is to work within the uni-
verse of hereditarily finite sets, which are finite sets whose elements are fi-
nite sets, whose elements are finite sets, and so on. Any construction that
can be carried out in this universe may be taken as computationally and

2In effect we relegate all foundational questions to questions about the existence of
appropriate sets.

APRIL 5, 2006 WORKING DRAFT

1.8 Exercises 13

foundationally meaningful. A more concrete, but technically awkward,
approach is to admit only the natural numbers as objects — any other ob-
ject of interest must be encoded as a natural number using the technique of
Gödel numbering, which establishes a bijection between a set X of finitary
objects and the set N of natural numbers.3

A natural universe of objects for programming purposes is provided
by well-founded, finitely branching trees, or algebraic terms, which we will in-
troduce in Chapter 5. These are quite convenient to use as a representation
for a wide array of commonly occurring objects. Indeed, trees are easily
represented in ML using data types and pattern matching.

1.8 Exercises

1. Let J be inductively defined by a rule set S . Give an inductive defi-
nition of the judgement “D is a derivation of ~x J” relative to the rule
set S .

2. Give an inductive definition of the forward-chaining and backward-
chaining search strategies.

3. Introduce and discuss the internal and external consequence rela-
tions as two forms of hypothetical judgement

3One may then ask where the natural numbers come from. The answer is that they
are taken as a primitive notion, rather than as being inductively defined. One has to start
somewhere.

APRIL 5, 2006 WORKING DRAFT

Chapter 2

Higher Order Judgement Forms

In Chapter 1 we introduced the concept of an inductively defined judge-
ment expressing a relationship among a collection of objects. Such judge-
ments are sometimes called categorical because they are unconditional as-
sertions, such as the assertion that an object x is a binary tree. In this chap-
ter we extend the framework of inductive definitions to permit two addi-
tional forms of judgement, the hypothetical and the general, which we com-
bine to form the hypothetico-general judgement. These higher-order judge-
ments play an important role in the theory of programming languages.

Note to the reader: Extending the framework of inductive definitions
with hypothetical judgements requires no additional machinery beyond
what was introduced in Chapter 1. However, the notion of a general
judgement relies on material that we shall only present in Chapter 6. This
chapter may be safely skipped, or lightly skimmed, on first reading; the
concepts introduced here will not be needed until Chapter 9.

2.1 Hypothetical Judgements

The hypothetical judgement has the form

J1, . . . , Jn ` J,

where each Ji (for 1 ≤ i ≤ n) and J are inductively defined categorical
judgements. Informally, the hypothetical judgement expresses that J holds
under the assumption that J1, . . . , Jn all hold. The judgements J1, . . . , Jn are
called the hypotheses of the judgement, and J is called its conclusion. (The

14

2.1 Hypothetical Judgements 15

punctuation mark separating them is called a turnstile.) The hypothetical
judgement form is also called an entailment relation, or a consequence rela-
tion.

For example, the hypothetical judgement

x nat ` succ(succ(x)) nat

expresses the conditional judgement that, for any object x, if x is a natural
number, then so is its double successor. Intuitively, this is, of course, a
valid judgement. Let us now make this intuition precise.

Recall from Chapter 1 that the evidence for an inductively defined cat-
egorical judgement is a derivation consisting of a composition of inference
rules starting with axioms and ending that judgement. Evidence for a hy-
pothetical judgement is defined similarly, except that the derivation of the
conclusion may start with any or all of the hypotheses and end with the
conclusion of the judgement. Put in other terms, evidence for a hypothet-
ical judgement of the above form consists of evidence for J with respect to
the extension of the rules defining the judgement form of J with J1, . . . , Jn
as new axioms (rules without premise).

The crucial point is that the evidence for a hypothetical judgement con-
sists of a uniform way to transform presumed evidence for the hypotheses
into evidence for the conclusion, without regard to what that presumed
evidence may actually be. The derivation may be specialized by “plugging
in” whatever evidence for J1, . . . , Jn may arise, resulting in a derivation of
J that does not make use of these new axioms. Of course, the evidence for
the Ji’s may itself be hypothetical, say in hypotheses J′1, . . . , J′m, resulting
in evidence for J′1, . . . , J′m ` J.

This interpretation leads to the following structural rules for the hy-
pothetical judgement. Let Γ stand for any sequence J1, . . . , Jn of judge-
ments under consideration. The structural rules governing the hypotheti-
cal judgement are as follows:

Reflexivity Every judgement is a consequence of itself: J ` J.

Weakening If Γ ` J, then Γ, J′ ` J for any judgement J′.

Permutation If Γ, J1, J2, Γ′ ` J, then Γ, J2, J1, Γ′ ` J.

Contraction If Γ, J, J ` J′, then Γ, J ` J′.

APRIL 5, 2006 WORKING DRAFT

2.1 Hypothetical Judgements 16

Transitivity If Γ, J′ ` J and Γ′ ` J′, then Γ, Γ′ ` J.

These properties follow directly from the meaning of the hypothetical judge-
ment:

Reflexivity The additional “axiom” J counts as a derivation of J.

Weakening The derivation of J may make use of presumed derivations
for the hypotheses, but need not do so.

Permutation The order of hypotheses does not matter in the given inter-
pretation.

Contraction Since we may use the same hypothesis more than once, it
does not matter if we repeat it.

Transitivity If we plug in actual evidence for a hypothesis, then the ev-
idence for the conclusion may be specialized to use it, leaving as
hypotheses those used as evidence for it.

There is a close connection between the notion of a hypothetical judge-
ment and the notion of a derived rule. Specifically, the inference rule

J1 · · · Jn
J

is derivable iff the hypothetical judgement

J1, . . . , Jn ` J

is valid, for in both cases the meaning is that there exists a derivation of J
from J1, . . . , Jn.

There is another form of hypothetical judgement corresponding to ad-
missible rules, written

J1, . . . , Jn |= J.

This means that J is valid with respect to the original set of inference rules
whenever J1, . . . , Jn are also valid in the original set of rules. For example,
with respect to the rule set defining natural numbers, given in Chapter 1,
we have

succ(x) nat |= x nat.

APRIL 5, 2006 WORKING DRAFT

2.1 Hypothetical Judgements 17

This may be proved by rule induction, for if succ(x) nat, then this can only
be by virtue of the rule

x nat
succ(x) nat,

and hence the desired conclusion must hold (it is the premise of this infer-
ence). This is precisely the same as saying that the rule

succ(x) nat
x nat

is admissible.
Note that succ(x) nat 6` x nat — there is no composition of rules that

starts with the hypothesis and leads to the conclusion. Thus, the two forms
of hypothetical judgement do not coincide, even though they satisfy the
same structural properties. Here is a brief summary of why they are true
for the second form:

Reflexivity If J is derivable from the original rules, then J is derivable
from the original rules.

Weakening If J is derivable from the original rules assuming that J1, . . . , Jn
are, then so it must also be derivable from an additional assumption.

Permutation Obviously the order of our assumptions does not matter.

Contraction Assuming the same thing twice is the same as assuming it
once.

Substitution The assumption of J′ used, in addition to Γ, to derive J may
be discharged by simply using the derivation of J′ from Γ′. This
means that J is valid with respect to the original rule set, under the
assumptions Γ and Γ′.

When discussing the two forms of hypothetical judgement, we refer to
the former as the internal form, and the latter as the external form. It should
be immediately clear that the internal form is stronger than the external
form (if Γ ` J, then Γ |= J), but, as we have just seen, the converse does
not hold. This is just a re-statement of the observation that every derivable
rule is admissible, but the converse does not, in general, hold. Both forms
of hypothetical judgement arise in the study of programming languages,
but the internal form is far and away the more important — it arises in the
definition of nearly every language we shall study.

APRIL 5, 2006 WORKING DRAFT

2.2 General Judgements 18

2.2 General Judgements

The general judgement expresses a “parameterized assertion,” one that in-
volves variables ranging over objects in the universe of discourse. The
general judgement has the form

|x1,...,xn J,

where x1, . . . , xn are variables that may occur in J. Informally, the general
judgement means that every instance of J obtained by choosing objects for
the variables is valid.

But what is a variable? And what is an instance? For these concepts
to make sense, we restrict attention to inductively defined judgements
over the universe of abstract binding trees (abt’s), which are introduced
in Chapter 6. The reason for this restriction is that abt’s provide a notion
of variable and substitution, which we now use to explain the meaning of
the general judgement.

The general judgement
|x1,...,xn J

is valid iff
[x1, . . . , xn←a1, . . . , an]J

is valid for every choice of abt’s ai. Evidence for the validity of the general
judgement |x1,...,xn J consists of a derivation scheme, D, a derivation with
parameters, such that

[x1, . . . , xn←a1, . . . , an]D

is a derivation of
[x1, . . . , xn←a1, . . . , an]J.

Like the hypothetical judgement, the general judgement also obeys a
collection of structural rules. For the sake of concision in stating these
rules, let ∆ range over finite sets of variables, x1, . . . , xn.

Weakening If |∆ J, then |∆,x J.

Permutation If |∆,x1,x2,∆′ J, then |∆,x2,x1,∆′ J.

Contraction If |∆,x,x J, then |∆,x J.

APRIL 5, 2006 WORKING DRAFT

2.3 Hypothetico-General Judgements 19

Instantiation If |∆,x J, then |∆ [x←a]J, provided that the free variables of
a are among those in ∆.

Note the strong similarity to the structural rules governing the hypotheti-
cal judgement.

2.3 Hypothetico-General Judgements

The general judgement is most often used in conjunction with the hy-
pothetical judgement. For example, the following general, hypothetical
judgement is valid:

|x (x nat ` succ(succ(x)) nat).

The parentheses are written here for emphasis, but we usually omit them
by treating the hypothetical judgement as binding more tightly than the
general. The hypothesis x nat has the effect of constraining the parameter
x to range over natural numbers, excluding “garbage” not of interest for
the inference.

Note that this is a single judgement form expressing a family of hypo-
thetical judgements

a nat ` succ(succ(a)) nat.

In this way the general judgement permits us to capture the informal idea
of a rule scheme as a single concept.

Since the general judgement occurs so often in conjunction with the
hypothetical, we often combine the notation, writing Γ `∆ J for |∆ Γ ` J.
This combined form is called a hypothetico-general judgement for obvious
reasons. For example, the hypothetico-general judgement

x nat `x succ(succ(x)) nat

is a short-hand for the general, hypothetical judgement given above.
Somewhat confusingly, the subscript on the turnstile is often omitted,

writing just Γ ` J for Γ `∆ J, where ∆ is the set of free variables occurring
in Γ and J. For example, we may write just

x nat ` succ(succ(x)) nat

for the preceding hypothetico-general judgement, it being understood that
x is a parameter of the hypothetical judgement.

APRIL 5, 2006 WORKING DRAFT

2.4 Inductive Definitions, Revisited 20

2.4 Inductive Definitions, Revisited

Hypothetical and general judgements permit a particularly elegant form
of inductive definition that may be illustrated by the following example.
The idea is to give an inductive definition of a function to compute the
“depth” of a closed abt over some (unspecified) signature. Roughly speak-
ing, the depth of a closed abt is defined to be the maximum nesting depth
of abstractors within it. We will give a simultaneous inductive definition
of two judgements, d(a abt) = n, specifying that the abt a has depth n, and
d(β abs) = n, specifying that the abstractor β has depth n. Because ab-
stractors bind variables, it is impossible to define the depth only for closed
abt’s, but instead we must consider open ones as well. The main “trick” is
to use a hypothetico-general judgement in the rules to handle the variables
that are introduced during the recursion. Here are the rules:

d(β1 abs) = n1 · · · d(βk abs) = nk

d(o(β1, . . . , βk) abt) = max(n1, · · · , nk)

d(a abt) = n
d(a abs) = n

d(x abt) = 0 `x d(β abs) = n
d(x.β abs) = n + 1

Observe that the premise of the third rule is a hypothetico-general judge-
ment, which expresses the idea that the depth of an abstractor is one more
than the depth of its body, assuming that the bound variable has depth 0.
This assumption is used to provide a definition for the depth of a vari-
able whenever they are encountered, using the reflexivity property of the
hypothetical judgement.

This example illustrates an important convention, called the freshness
convention, that we shall use tacitly throughout the book. Whenever a rule,
such as the last one above, introduces a name using a hypothetico-general
judgement, it is assumed that this name is chosen so as not to otherwise oc-
cur in the parameter set. This requirement may always be met by suitably
renaming the bound variable of the abstractor before applying the rule.
This is one important benefit of always working “up to α-conversion,”
which frees us from having to worry about the complications of name re-
use within a given scope.

The use of (the internal form of) a hypothetical judgement in the premise
of an inference rule goes beyond what we considered in Chapter 1, wherein

APRIL 5, 2006 WORKING DRAFT

2.4 Inductive Definitions, Revisited 21

only categorical judgements were permitted. This is a significant exten-
sion, and some justification is required to ensure that what we’re doing is
sensible. The key is to regard the rules as a simultaneous inductive defini-
tion of an infinite family of judgements of the form

d(x1 abt) = 0, . . . , d(xk abt) = 0 `x1,...,xk d(a abt) = n

and
d(x1 abt) = 0, . . . , d(xk abt) = 0 `x1,...,xk d(β abs) = n.

The idea is that for each choice of parameters set x1, . . . , xk and each set of
corresponding assumptions d(x1 abt) = 0, . . . , d(xk abt) = 0, we have two
judgements defining the depth of an abt or abstractor with free variables
among those parameters. The rule for abstractors augments the parameter
and hypothesis sets, and thereby refers to another member of the same
family of judgements in its definition.

To clarify the situation, let us re-write the inductive definition of the
depth judgements in a form that makes the parameter and hypothesis sets
explicit. Let ∆ range over finite sets of variables x1, . . . , xk, and, for each
choice of parameter set ∆, let Γ range over sets of assumptions of the form
d(x1 abt) = 0, . . . , d(xk abt) = 0. Here are the same rules, written in a more
explicit form:

Γ `∆ d(β1 abs) = n1 · · · d(βk abs) = nk

Γ `∆ d(o(β1, . . . , βk) abt) = max(n1, · · · , nk)

Γ `∆ d(a abt) = n
Γ `∆ d(a abs) = n

Γ, d(x abt) = 0 `∆,x d(β abs) = n
Γ `∆ d(x.β abs) = n + 1

This presentation makes clear the augmentation of the current parame-
ter and hypothesis set in the inference. When we do so, we “switch” to
another judgement in the same family, with the extended parameter and
hypothesis sets.

What is the principle of rule induction associated with rules whose
premises involve hypothetical and general judgements? An example will
illustrate the general case. Suppose we wish to prove that the mode of
the depth judgements is (∀, ∃!), expressing that they really do define func-
tions.

APRIL 5, 2006 WORKING DRAFT

2.5 Exercises 22

Theorem 2.1
1. If d(x1 abt) = 0, . . . , d(xk abt) = 0 `x1,...,xk d(a abt) = n, then for ev-

ery family a1, . . . , ak of abt’s such that d(a1 abt) = 0, . . . , d(ak abt) = 0,
there exists a unique n such that d([x1, . . . , xk←a1, . . . , ak]a abt) = n.

2. If d(x1 abt) = 0, . . . , d(xk abt) = 0 `x1,...,xk d(β abs) = n, then for ev-
ery family a1, . . . , ak of abt’s such that d(a1 abt) = 0, . . . , d(ak abt) = 0,
there exists a unique n such that d([x1, . . . , xk←a1, . . . , ak]β abt) = n.

Proof: We may prove these facts simultaneously by rule induction. The
most interesting case, of course, is the last. The inductive hypothesis states
that if d(b abt) = 0, then there exists a unique n such that

d([x1, . . . , xk, x←a1, . . . , ak, b]a abt) = n.

We are to show that there exists a unique n′ such that

d(x.[x1, . . . , xk←a1, . . . , ak]b abs) = n′.

The result follows immediately by taking, in the inductive hypothesis,
b = x, and taking, in the conclusion, n′ = n + 1. �

Finally, let us note that it is not permissible to use the external form of hy-
pothetical judgement in an inference rule! The justification we have given
for using the internal form in premises does not extend to the external
form, precisely because its meaning is not defined by extending the rule
set with new axioms. Indeed, admitting the external form in the premise
of a rule destroys the mathematical underpinnings of the theory of induc-
tive definitions, invalidating their use as a definitional tool.

2.5 Exercises

1. Investigate why the premise of an inference rule may not be taken
to be the external form of hypothetical judgement. Show that there
exists an “inductive definition” using the external form of hypotheti-
cal for which there is no strongest judgement closed under the given
rules.

APRIL 5, 2006 WORKING DRAFT

Chapter 3

Transition Systems

Transition systems are used to describe the execution behavior of programs
by defining an abstract computing device with a set, S, of states that are
related by a transition judgement, 7−→. The transition judgement describes
how the state of the machine evolves during execution.

3.1 Transition Systems

A transition system is specified by the following judgements:

1. s state, asserting that s is a state of the transition system.

2. s final, asserting that s is a final state.

3. s init, asserting that s is an initial state.

4. s 7−→ s′, where s state and s′ state, asserting that state s may transi-
tion to state s′.

We require that if s final, then for no s′ do we have s 7−→ s′. In general, a
state s for which there is no s′ ∈ S such that s 7−→ s′ is said to be stuck. All
final states are stuck, but not all stuck states need be final!

A transition sequence is a sequence of states s0, . . . , sn such that s0 init,
and si 7−→ si+1 for every 0 ≤ i < n. A transition sequence is maximal iff
sn 6 7−→; it is complete iff it is maximal and, in addition, sn final. Thus every
complete transition sequence is maximal, but maximal sequences are not
necessarily complete.

23

3.2 Exercises 24

A transition system is deterministic iff for every state s there exists at
most one state s′ such that s 7−→ s′. Most of the transition systems we will
consider in this book are deterministic, the notable exceptions being those
used to model concurrency.

The judgement s ∗7−→ s′ is the reflexive, transitive closure of the transition
judgement. It is inductively defined by the following rules:

s ∗7−→ s
s 7−→ s′ s′ ∗7−→ s′′

s ∗7−→ s′′

It is easy to prove by rule induction that ∗7−→ is indeed reflexive and tran-
sitive.

Since the multistep transition is inductively defined, we may prove
that P(s, s′) holds whenever s 7−→∗ s′ by showing

1. P(s, s).

2. if s 7−→ s′ and P(s′, s′′), then P(s, s′′).

The first requirement is to show that P is reflexive. The second is often
described as showing that P is closed under head expansion, or closed under
reverse evaluation.

The n-times iterated transition judgement, s n7−→ s′, where n nat, is in-
ductively defined by the following rules:

s 07−→ s

s 7−→ s′ s′ n7−→ s′′

s n+17−→ s′′

It is easy to show that s ∗7−→ s′ iff s n7−→ s′ for some n nat.

Finally, the complete transition judgement, s !7−→ s′ is the restriction to

s ∗7−→ s′ so that s′ final. That is, s !7−→ s′ iff s ∗7−→ s′ and s′ final.

3.2 Exercises

1. Prove that s ∗7−→ s′ iff there exists n nat such that s n7−→ s′.

APRIL 5, 2006 WORKING DRAFT

Part II

Levels of Syntax

25

Chapter 4

Concrete Syntax

The concrete syntax of a language is a means of representing expressions
as strings, linear sequences of characters (or symbols) that may be written
on a page or entered using a keyboard. The concrete syntax usually is de-
signed to enhance readability and to eliminate ambiguity. While there are
good methods (grounded in the theory of formal languages) for eliminat-
ing ambiguity, improving readability is, of course, a matter of taste about
which reasonable people may disagree. Techniques for eliminating am-
biguity include precedence conventions for binary operators and various
forms of parentheses for grouping sub-expressions. Techniques for en-
hancing readability include the use of suggestive key words and phrases,
and establishment of punctuation and layout conventions.

4.1 Strings

To begin with we must define what we mean by characters and strings.
An alphabet, Σ, is a set of characters, or symbols. Often Σ is taken implicitly
to be the set of ASCII or UniCode characters, but we shall need to make
use of other character sets as well. The judgement form char is inductively
defined by the following rules (one per choice of c ∈ Σ):

(c ∈ Σ)
c char

The judgment form stringΣ states that s is a string of characters from Σ.

26

4.2 Context-Free Grammars 27

It is inductively defined by the following rules:

ε stringΣ

c char s stringΣ
c · s stringΣ

In most cases we omit explicit mention of the alphabet, Σ, and just write
s string to indicate that s is a string over an implied choice of alphabet.

In practice strings are written in the usual manner, abcd instead of the
more proper a · (b · (c · (d · ε))). The function s1 ˆ s2 stands for string con-
catenation; it may be defined by induction on s1. We usually just juxtapose
two strings to indicate their concatentation, writing s1 s2, rather than s1 ˆ s2.

4.2 Context-Free Grammars

The standard method for defining concrete syntax is by giving a context-
free grammar (CFG) for the language. A grammar consists of three things:

1. An alphabet Σ of terminals.

2. A finite set N of non-terminals that stand for the syntactic categories.

3. A set P of productions of the form A : : = α, where A is a non-
terminal and α is a string of terminals and non-terminals.

Whenever there is a set of productions

A : : = α1
...

A : : = αn.

all with the same left-hand side, we often abbreviate it as follows:

A : : = α1 | · · · | αn.

A context-free grammar is essentially a simultaneous inductive defini-
tion of its syntactic categories. Specifically, we may associate a rule set R
with a grammar according to the following procedure. First, we treat each
non-terminal as a label of its syntactic category. Second, for each produc-
tion

A : : = s1 A1 s2 . . . sn An sn+1

APRIL 5, 2006 WORKING DRAFT

4.3 Ambiguity 28

of the grammar, where A1, . . . , An are all of the non-terminals on the right-
hand side of that production, and s1, . . . , sn+1 are strings of terminals, add
a rule

s′1 A1 . . . s′n An

s1 s′1 s2 . . . sn s′n sn+1 A

to the rule set R. For each non-terminal A, we say that s is a string of syn-
tactic category A iff s A is derivable according to the rule set R so obtained.

An example will make these ideas clear. Let us give a grammar defin-
ing the syntax of a simple language of arithmetic expressions.

Digits D : : = 0 | 1 | · · · | 9
Numbers N : : = D | N D
Expressions E : : = N | E+E | E*E

Here is this grammar presented as a simultaneous inductive definition:

0 dig · · · 9 dig (4.1)

s dig
s num

s1 num s2 dig
s1 s2 num (4.2)

s num
s exp (4.3)

s1 exp s2 exp
s1+s2 exp (4.4)

s1 exp s2 exp
s1*s2 exp (4.5)

Each syntactic category of the grammar determines a judgement form.
For example, the category of expressions corresponds to the judgement
form exp, and so forth.

4.3 Ambiguity

Apart from subjective matters of readability, a principal goal of concrete
syntax design is to eliminate ambiguity. The grammar of arithmetic ex-
pressions given above is ambiguous in the sense that some strings may

APRIL 5, 2006 WORKING DRAFT

4.3 Ambiguity 29

be thought of as arising in several different ways. For example, the string
1+2*3 may be thought of as arising by applying the rule for multiplication
first, then the rule for addition, or vice versa. The former interpretation
corresponds to the expression (1+2)*3; the latter corresponds to the ex-
pression 1+(2*3).

The trouble is that we cannot tell from the generated string which read-
ing is intended. This causes numerous problems, an example of which
arises from an attempt to define the value, a natural number, of an arith-
metic expression, e, represented as a string.

We will give an inductive definition of the following three forms of
judgement:

s exp ⇓ k nat expression s has value k
s num ⇓ k nat numeral s has value k
s dig ⇓ k nat digit s has value k

The rules defining these judgements are as follows:

0 dig ⇓ zero nat 1 dig ⇓ succ(zero) nat · · · (4.6)

s dig ⇓ k nat

s num ⇓ k nat

s1 num ⇓ k1 nat s2 dig ⇓ k2 nat k = 10× k1 + k2
s1 s2 num ⇓ k nat

(4.7)

s num ⇓ k nat

s exp ⇓ k nat

s1 exp ⇓ k1 nat s2 exp ⇓ k2 nat k = k1 + k2
s1+s2 exp ⇓ k nat

s1 exp ⇓ k1 nat s2 exp ⇓ k2 nat k = k1 × k2
s1*s2 exp ⇓ k nat

(4.8)

(We have taken the liberty of assuming that rules for computing with nat-
ural numbers have already been defined.)

Given the intended interpretation of these judgements, it is natural to
consider whether they have the mode (∀, ∃!), over the domain of expres-
sions/numbers/digits (strings formed according to the grammar given

APRIL 5, 2006 WORKING DRAFT

4.4 Resolving Ambiguity 30

earlier) as input and natural numbers as output. The all-important ques-
tion is whether this is a valid mode for these judgements — do they deter-
mine a partial function from input to output, as might be expected?

Perhaps surprisingly, the answer is no! Informally, the reason is that
a string such as 1+2*3 arises in two different ways, using either the rule
for addition expressions, thereby reading it as 1+(2*3), or the rule for mul-
tiplication, thereby reading it as (1+2)*3. Since these have different val-
ues, there does not exist a unique value for every string of the appropriate
grammatical class.

It is instructive to see how an attempt to prove that the evaluation
judgements have the specified mode breaks down. First, let us be pre-
cise about what we need to prove. We must show that for every s, if s exp,
there is a unique k such that k nat and s exp ⇓ k nat, and similarly for the
other two judgement forms. It is natural to proceed by rule induction on
the rules defining the judgement s exp. We consider each rule in turn. The
crucial cases are when s = s1+s2 and when s = s1*s2, and we have by
induction that s1 exp ⇓ k1 nat and s2 exp ⇓ k2 nat for some uniquely deter-
mined k1 and k2 such that k1 nat and k2 nat. And in that case we may take
k as the sum and product, respectively, of k1 and k2. Since the sum and
product of k1 and k2 are uniquely determined, we seem to have completed
the proof (the other cases being handled similarly).

But have we? The problem is that a given string s can be both of the
form s1 + s2 and s1 × s2 at the same time, and we have no way to know
which interpretation is intended! The preceding argument, which pro-
ceeds by rule induction on the rules defining s exp, tells us that the value
of s is uniquely determined if we are given the rule used to form s — that is,
we are told how to interpret it (as a sum or as a product). If we are given
s alone, with no information about how it was generated by the grammar,
then the result is ambiguous — one string can have many values according
to these rules.

4.4 Resolving Ambiguity

What do we do about ambiguity? The most common methods to eliminate
this kind of ambiguity are these:

1. Introduce parenthesization into the grammar so that the person writ-
ing the expression can choose the intended intepretation.

APRIL 5, 2006 WORKING DRAFT

4.4 Resolving Ambiguity 31

2. Introduce precedence relationships that resolve ambiguities between
distinct operations (e.g., by stipulating that multiplication takes prece-
dence over addition).

3. Introduce associativity conventions that determine how to resolve
ambiguities between operators of the same precedence (e.g., by stip-
ulating that addition is right-associative).

Using these techniques, we arrive at the following revised grammar for
arithmetic expressions.

Digits D : : = 0 | 1 | · · · | 9
Numbers N : : = D | N D
Factors F : : = N | (E)
Terms T : : = F | F*T
Expressions E : : = T | T+E

We have made two significant changes. The grammar has been “layered”
to express the precedence of multiplication over addition and to express
right-associativity of each, and an additional form of expression, paren-
thesization, has been introduced.

Re-writing this as an inductive definition, we obtain the following rules:

0 dig · · · 9 dig (4.9)

s dig
s num

s1 num s2 dig
s1 s2 num (4.10)

s num
s fct

s exp
(s) fct (4.11)

s fct
s trm

s1 fct s2 trm
s1*s2 trm (4.12)

s trm
s exp

s1 trm s2 exp
s1+s2 exp (4.13)

Using these rules, it is then possible to prove that the evaluation judge-
ments have mode (∀, ∃!) over grammatically correct strings as inputs and
natural numbers as outputs. The crucial difference from our first attempt

APRIL 5, 2006 WORKING DRAFT

4.5 Exercises 32

is that each string admits at most one decomposition consistent with the
rules of the grammar. For example, the string s = 1+2*3 may be derived
as s exp only by decomposing e as s1+s2, where s1 = 1 and s2 = 2*3; no
other decomposition is possible (be sure you understand why). If we con-
sider the input to be any strings at all, not just those that are grammatical
according to the specified rules, then the best mode possible is (∀, ∃≤1),
since an ungrammatical string has no value, but the value is uniquely de-
termined for every grammatical string.

4.5 Exercises

APRIL 5, 2006 WORKING DRAFT

Chapter 5

Abstract Syntax Trees

The concrete syntax of a language consists of a linear presentation of it
as a set of strings — sequences of characters that reflect the conventional
modes of reading and writing programs. The main job of concrete syntax
design is to ensure the convenient readability and writability of the lan-
guage, based on subjective criteria such as similarity to other languages,
ease of editing, and so forth.

But languages are also the subject of analysis, for example to define
what it means to evaluate an arithmetic expression we must analyze the
structure of expressions. For this purpose the concrete syntax introduces
a level of bureaucracy that we would like to avoid. For example, we
must ensure that the syntax is presented in unambiguous form, and we
are forced to deal with details of presentation that have no effect on its
meaning, but rather are conveniences for reading and writing phrases in
the language.

To avoid this clutter it is conventional to define an abstract syntax of a
language that abstracts away from the concrete presentation of a phrase
as a string, and instead focuses on the essential structure of the phrase in
a manner amenable to analysis. Parsing is the process of translating the
concrete to the abstract syntax; once parsed, we need never worry about
the concrete presentation of a phrase again.

The abstract syntax of a language consists of an inductively-defined set
of abstract syntax trees, or ast’s. An ast is a tree structure whose nodes are
labeled with operators of a specified arity, the number of children of a node
labeled with that operator. The tree structure makes evident the overall
form of a piece of abstract syntax, avoiding the need for any machinery to

33

5.1 Abstract Syntax Trees 34

disambiguate.

5.1 Abstract Syntax Trees

Abstract syntax trees are constructed from other abstract syntax trees by
combining them with a constructor, or operator, of a specified arity. The
arity of an operator, o, is the number of arguments, or sub-trees, required
by o to form an ast. A signature is a mapping assigning to each o ∈ dom(Ω)
its arity Ω(o). The judgement form astΩ is inductively defined by the
following rules:

a1 astΩ · · · an astΩ (Ω(o) = n)
o(a1, . . . , an) astΩ

Note that we need only one rule, since the arity of o might well be zero, in
which case the above rule has no premises.

For example, the following signature, Ωexpr, specifies an abstract syntax
for the language of arithmetic expressions:

Operator Arity
num[n] 0
plus 2
times 2

Here n ranges over the natural numbers; the operator num[n] is the nth
numeral, which takes no arguments. The operators plus and times take
two arguments each, as might be expected. The abstract syntax of our
language consists of those a such that a astΩexpr .

Specializing the rules for abstract syntax trees to the signature Ωexpr
(and suppressing explicit mention of it), we obtain the following inductive
definition:

(n ∈N)
num[n] ast (5.1)

a1 ast a2 ast

plus(a1, a2) ast (5.2)

a1 ast a2 ast

times(a1, a2) ast (5.3)

APRIL 5, 2006 WORKING DRAFT

5.2 Structural Induction 35

In practice we do not explicitly declare the operators and their arities
in advance of giving an inductive definition of the abstract syntax of a
language. Instead we leave it to the reader to infer the set of operators and
their arities required for the definition to make sense.

5.2 Structural Induction

The principal of rule induction for abstract syntax is called structural induc-
tion. We say that a proposition is proved “by induction on the structure of
. . . ” or “by structural induction on . . . ” to indicate that we are applying
the general principle of rule induction to the rules defining the abstract
syntax. In the general case to show that P a holds whenever a astΩ, it is
enough to show that for each operator o such that Ω(o) = n, if P a1, . . . ,
P an, then P o(a1, . . . , an).

In the special case of arithmetic expressions the principal of structural
induction state that to show P a whenever a ast, it is enough to show the
following three facts:

1. P num[n] for every n ∈N.

2. if P a1 and P a2, then P plus(a1, a2).

3. if P a1 and P a2, then P times(a1, a2).

To illustrate the use of structural induction let us inductively define the
evaluation judgement a ast ⇓ k nat by the following rules:

num[n] ast ⇓ n nat (5.4)

a1 ast ⇓ k1 nat a2 ast ⇓ k2 nat k = k1 + k2 nat

plus(a1, a2) ast ⇓ k nat (5.5)

a1 ast ⇓ k1 nat a2 ast ⇓ k2 nat k = k1 × k2 nat

times(a1, a2) ast ⇓ k nat (5.6)

APRIL 5, 2006 WORKING DRAFT

5.3 Parsing 36

The evaluation judgement has mode (∀, ∃!), which is to say that for every
a ast there exists a unique k nat such that a ast ⇓ k nat. This is easily proved
by structural induction on a, showing that in each case there is a uniquely
determined k such that a ast ⇓ k nat.

In the above presentation of the evaluation judgement we chose the
output domain to be the natural numbers. But it would be equally easy
and natural to choose the output domain to be the same as the input do-
main, so that the output is also an ast, albeit one in fully evaluated form.
Here are the revised rules written in this style.

num[n] ast ⇓ num[n] ast (5.7)

a1 ast ⇓ num[k1] ast a2 ast ⇓ num[k2] ast k = k1 + k2 nat

plus(a1, a2) ast ⇓ num[k] ast (5.8)

a1 ast ⇓ num[k1] ast a2 ast ⇓ num[k2] ast k = k1 × k2 nat

times(a1, a2) ast ⇓ num[k] ast (5.9)

Note that this sort of presentation is quite impractical when working
over the strings of the concrete syntax, for then the results would have
to be formatted as strings on output and parsed on input to extract their
meaning. In contrast this is very easily done using pattern matching over
ast’s.

5.3 Parsing

The process of translation from concrete to abstract syntax is called pars-
ing. Typically the concrete syntax is specified by an inductive definition
defining the grammatical strings of the language, and the abstract syntax
is given by an inductive definition of the abstract syntax trees that con-
stitute the language. In this case it is natural to formulate parsing as an
inductively defined function mapping concrete the abstract syntax. Since

APRIL 5, 2006 WORKING DRAFT

5.3 Parsing 37

parsing is to be a function, there is exactly one abstract syntax tree corre-
sponding to a well-formed (grammatical) piece of concrete syntax. Strings
that are not derivable according to the rules of the concrete syntax are not
grammatical, and can be rejected as ill-formed.

As an example, consider the following inductive definition of several
mutually recursive parsing judgements that relate the concrete to the ab-
stract syntax.

0 dig←→ num[0] ast · · · 9 dig←→ num[9] ast (5.10)

s dig←→ a ast
s num←→ a ast

s1 num←→ num[k1] ast s2 dig←→ num[k2] ast

s1 s2 num←→ num[10× k1 + k2] ast
(5.11)

s num←→ a ast
s fct←→ a ast

s exp←→ a ast
(s) fct←→ a ast (5.12)

s fct←→ a ast
s trm←→ a ast

s1 fct←→ a1 ast s2 trm←→ a2 ast

s1*s2 trm←→ times(a1, a2) ast
(5.13)

s trm←→ a ast
s exp←→ a ast

s1 trm←→ a1 ast s2 exp←→ a2 ast

s1+s2 exp←→ plus(a1, a2) ast
(5.14)

Observe, first of all, that a successful parse implies that the string must
have been derived according to the unambiguous grammar and that the
result is a valid ast.

Theorem 5.1
1. If s dig←→ a ast, then s dig and a ast.

2. If s num←→ a ast, then s num and a ast.

3. If s fct←→ a ast, then s fct and a ast.

4. If s trm←→ a ast, then s trm and a ast.

5. If s exp←→ a ast, then s exp and a ast.

These may be proved by induction on the rules defining the parser.
If a string is generated according to the rules of the grammar, then it

has a parse as an ast.

APRIL 5, 2006 WORKING DRAFT

5.4 Exercises 38

Theorem 5.2
1. If s dig, then there is a unique a such that s dig←→ a ast.

2. If s num, then there is a unique a such that s num←→ a ast.

3. If s fct, then there is a unique a such that s fct←→ a ast.

4. If s trm, then there is a unique a such that s trm←→ a ast.

5. If s exp, then there is a unique a such that s exp←→ a ast.

These are proved simultaneously by induction on the rules defining the
unambiguous grammar.

5.4 Exercises

1. Give a right-recursive grammar for numbers, and show how to parse
it. Discuss the relevance of this variation to writing a recursive de-
scent parser.

2. Show that the parser may be “run backwards” to obtain an unparser,
or pretty printer. Introduce judgements that characterize those ast’s
that unparse to a string of each grammatical class. Then show that
the unparser also has mode (∀, ∃!) over appropriate domains.

APRIL 5, 2006 WORKING DRAFT

Chapter 6

Abstract Binding Trees

Abstract syntax trees make explicit the hierarchical relationships among
the components of a phrase by abstracting out from irrelevant surface de-
tails such as parenthesization. Abstract binding trees, or abt’s, go one step
further and make explicit the binding and scope of identifiers in a phrase,
abstracting from the “spelling” of bound names so as to focus attention on
their fundamental role as designators.

6.1 Names

Names are widely used in programming languages: names of variables,
names of fields in structures, names of types, names of communication
channels, names of locations in the heap, and so forth. Names have no
structure beyond their identity. In particular, the “spelling” of a name is
of no intrinsic significance, but serves only to distinguish one name from
another. Consequently, we shall treat names as atoms, and abstract away
their internal structure. We shall assume that we have a judgement x name
expressing that x is a name, and a judgement x # y name stating that x and
y are distinct names. We shall also assume that there are infinitely many x
such that x name. The judgement [x↔y]z = z′ name is inductively defined
by the following rules:

[x↔y]x = y name [x↔y]y = x name

x # z name y # z name

[x↔y]z = z name

39

6.2 Abstract Syntax With Names 40

6.2 Abstract Syntax With Names

Suppose that we enrich the language of arithmetic expressions given in
Chapter 5 with a means of binding the value of an arithmetic expression
to an identifier for use within another arithmetic expression. To support
this we extend the abstract syntax with two additional constructs:1

x name
id(x) astΩ

x name a1 astΩ a2 astΩ

let(x, a1, a2) astΩ

The ast id(x) represents a use of a name, x, as a variable, and the ast
let(x, a1, a2) introduces a name, x, that is to be bound to (the value of)
a1 for use within a2.

The difficulty with abstract syntax trees is that they make no provision
for specifying the binding and scope of names. For example, in the ast
let(x, a1, a2), the name x is available for use within a2, but not within a1.
That is, the name x is bound by the let construct for use within its scope,
the sub-tree a2. But there is nothing intrinsic to the ast that makes this clear.
Rather, it is a condition imposed on the ast “from the outside”, rather than
an intrinsic property of the abstract syntax. Worse, the informal specifi-
cation is vague in certain respects. For example, what does it mean if we
nest bindings for the same identifier, as in the following example?

let(x, a1, let(x, id(x), id(x)))

Which occurrences of x refer to which bindings, and why?

6.3 Abstract Binding Trees

Abstract binding trees are a generalization of abstract syntax trees that
provide intrinsic support for binding and scope of names. Just as with
ast’s, operators may be used to combine several (possibly none) abt’s to
form another. In addition there are two other forms of abt: a name, and an
abstractor. An abstractor binds a name within a specified abt. That name
may be used within that abt to refer to the binding site represented by the

1One may also devise a concrete syntax, for example writing let x be e1 in e2 for the
binding construct, and a parser to translate from the concrete to the abstract syntax.

APRIL 5, 2006 WORKING DRAFT

6.3 Abstract Binding Trees 41

abstractor. Since various operators may bind various names in various ar-
gument positions, we must generalize the arity of an operator to be a finite
sequence of natural numbers specifying the valence of each constituent abt
of the operator. The valence of an abt is simply the number of abstractors
at the root of that abt, specifying how many variables are bound within it.
This notion of arity generalizes that in Chapter 5 by taking the arity k in
that chapter to mean the arity (0, 0, . . . , 0) of length k in this chapter.

This informal description can be made precise by giving an inductive
definition of the judgement a abtk

Ω stating that a is a well-formed abt of
valence k with respect to the signature Ω assigning an arity to each of a
finite set of operators.

x name

x abt0
Ω

a1 abtn1
Ω · · · ak abt

nk
Ω

o(a1, . . . , ak) abt0
Ω

(∗)
x name a abtn

Ω

x.a abtn+1
Ω

The condition marked (∗) states that Ω(o) = (n1, . . . , nk).
An abt of valence n has the form x1.x2.. . . xn.a, which we often write

as x1, . . . , xn.a. We tacitly assume that no name is repeated in such a se-
quence, since doing so serves no useful purpose. We usually omit explicit
mention of the signature Ω when it is clear from context, and we often
write just a abt to mean a abt0.

The language of arithmetic expressions consists of the abstract binding
trees over the following signature.

Operator Arity
num[n] ()
plus (0, 0)
times (0, 0)
let (0, 1)

The arity of the “let” operator indicates that no name is bound in the first
position, but that one name is bound in the second.

This class of abt’s over this signature may be explicitly defined by the

APRIL 5, 2006 WORKING DRAFT

6.4 Renaming 42

following rules:

x name
x abt

n nat
num[n] abt

a1 abt a2 abt

plus(a1, a2) abt

a1 abt a2 abt

times(a1, a2) abt

a1 abt x name a2 abt

let(a1, x.a2) abt

By specializing the definition to a particular signature we avoid explicit
mention of abt’s of non-zero valence, these being only of auxiliary interest.

6.4 Renaming

A fundamental concept is the notion of a name, x, lying apart from an abt, a.
This is expressed by the judgement x # a abtn, which is inductively defined
by the following rules:2

x # y name

x # y abt0
x # a1 abtn1 · · · x # ak abtnk

x # o(a1, . . . , ak) abt0 (∗)

x # x.a abtn+1

x # y name x # a abtn

x # y.a abtn+1

We say that a name, x, lies within, or is free in, an abt, a, written x ∈ a abt,
iff it is not the case that x # a abt. We leave as an exercise to give a direct
inductive definition of this judgement.

The result, a′, of swapping one name, x, for another, y, within an abt, a,
written [x↔y]a = a′ abt is inductively defined by the following rules:

[x↔y]z = z′ name

[x↔y]z = z′ abt0

2Here and elsewhere in this chapter, the side condition marked (∗) on rules is as de-
scribed in the preceding section.

APRIL 5, 2006 WORKING DRAFT

6.4 Renaming 43

[x↔y]a1 = a′1 abtn1 · · · [x↔y]ak = a′k abtnk

[x↔y]o(a1, . . . , ak) = o(a′1, . . . , a′k) abt0 (∗)

[x↔y]z = z′ name [x↔y]a = a′ abtn

[x↔y]z.a = z′.a′ abtn+1

It is easy to check that the swapping judgement has mode (∀, ∀, ∀, ∃!), and
so we will henceforth use it as a function. Note that name-swapping is
self-inverse in that applying it twice leaves the term invariant.

A chief characteristic of a binding operator is that the choice of bound
names does not matter. This is captured by treating as equivalent any
two abt’s that differ only in the choice of bound names, but are otherwise
identical. This relation is called, for historical reasons, α-equivalence. It is
inductively defined by the following rules:

x =α x abt0
a1 =α b1 abtn1 · · · ak =α bk abtnk

o(a1, . . . , ak) =α o(b1, . . . , bk) abt0

a =α b abtn

x.a =α x.b abtn+1

x # y name y # a abt [x↔y]a =α b abtn

x.a =α y.b abtn+1

In practice we abbreviate these relations to a =α b and β =α γ, respec-
tively.

As an exercise, check the following α-equivalences and inequivalences
using the preceding definitions specialized to the signature given earlier.

let(x, x.x) =α let(x, y.y)
let(y, x.x) =α let(y, y.y)
let(x, x.x) 6=α let(y, y.y)

let(x, x.plus(x, y)) =α let(x, z.plus(z, y))
let(x, x.plus(x, y)) 6=α let(x, y.plus(y, y))

The following rule of α-equivalence, which is often stated as a basic
axiom, is derivable from the preceding rules:

x # y name y # a abtn

x.a =α y.[x↔y]a abtn+1

APRIL 5, 2006 WORKING DRAFT

6.5 Structural Induction With Binding and Scope 44

The following variation on the rule of α-equivalence for abstractors is also
derivable, and, moreover, includes the rule we have given as a special case:

x # y name z # a abt z # b abt [x↔z]a =α [y↔z]b abtn

x.a =α y.b abtn+1

Apartness respects α-equivalence:

Lemma 6.1
If a =α b abt and x # b abt, then x # a abt.

It may be shown by rule induction that α-equivalence is, in fact, an
equivalence relation (i.e., it is reflexive, symmetric, and transitive).

Theorem 6.2
The α-equivalence relation is reflexive, symmetric, and transitive.

From this point onwards we identify any two abt’s a and b such that
a =α b abt. This means that an abt implicitly stands for its α-equivalence
class, and that we tacitly assert that all operations and relations on abt’s
respect α-equivalence. Put the other way around, any operation or relation
on abt’s that fails to respect α-equivalence is illegitimate, and therefore
ruled out of consideration. One consequence of this policy on abt’s is that
whenever we encounter an abstractor x.a, we may assume that x is fresh
in the sense that it is distinct from any given finite set of names.

6.5 Structural Induction With Binding and Scope

The principle of structural induction for ast’s generalizes to abt’s, subject
to freshness conditions that ensure bound names are not confused. To
show simultaneously (for all n ≥ 0) that a abtn implies Pn a holds, it is
enough to show the following:

1. For any name x, the judgement P0 x holds.

2. For each operator, o, of arity (m1, . . . , mk), if Pm1 a1 and . . . and Pmk ak,
then P0 o(a1, . . . , ak).

3. For some and any “fresh” name x, if Pn a, then Pn+1 x.a.

APRIL 5, 2006 WORKING DRAFT

6.6 Substitution 45

In the last clause the choice of x is immaterial: some choice of fresh names
is sufficient iff all choices of fresh names are sufficient.

Specializing this to arithmetic expressions as defined earlier, the prin-
ciple of structural induction states that to show P a for every a abt, it is
enough to show the following facts:

1. If x name, then P x.

2. If n nat, then P num[n].

3. If P a1 and P a2, then P plus(a1, a2).

4. If P a1 and P a2, then P times(a1, a2).

5. If P a1 and, for some/every x name, P a2, then P let(a1, x.a2).

Here again the choice of bound variable name is irrelevant, provided that
it is “fresh” in the sense of not clashing with any other name in P.

6.6 Substitution

Substitution is the process of replacing free occurrences of a name with a
specified abt (of valence 0). The judgement [x←a]b = b′ abt states that b′ is
the result of substituting a for all free occurrences of x in b. It is inductively
defined by the following rules:

[x←a]x = a abt0

x # y name

[x←a]y = y abt0

[x←a]b1 = b′1 abtn1 · · · [x←a]bk = b′k abtnk

[x←a]o(b1, . . . , bk) = o(b′1, . . . , b′k) abt0 (∗)

x # y name y # a abt0 [x←a]b = c abtn

[x←a]y.b = y.c abtn+1

The apartness conditions on the last rule imply no loss of generality, be-
cause they can always be satisfied by appropriate choice of bound variable
name, y, in the target of the substitution.

Substitution defines a function up to α-equivalence.

APRIL 5, 2006 WORKING DRAFT

6.7 Summary 46

Theorem 6.3
1. If a abt0, x name, and b abtn, there exists b′ abtn such that b =α b′ abtn

and [x←a]b′ = c abtn for some c abtn.

2. If a abt0, x name, b =α b′ abtn, [x←a]b = c abtn and [x←a]b′ = c′ abtn,
then c =α c′ abtn.

6.7 Summary

Let us now take stock of what we have accomplished. The definition of
α-equivalence for abt’s makes clear the nature of bound names. Briefly, a
bound name is merely a reference to a binding site; bound names have no
intrinsic identity. This is enforced by treating abt’s modulo α-equivalence,
which is to say that we do not distinguish two abt’s a and b such that
a =α b. The significance of this identification may be briefly summarized
in several equivalent ways.

1. A bound variable name may always be chosen to be different from
any given finite set of names. This is because one representative, a,
of an α-equivalence class is as good as any other, b.

2. It is illegitimate to rely upon the choice of a bound variable name,
since it “changes under one’s feet” without explicit mention. This
is just to say that a property of an α-equivalence class is only well-
defined if it respects α-equivalence — that is, if its meaning is inde-
pendent of the choice of representative.

3. One choice of bound variable name is as good as any other; if we do
not like the one we have, we may rename it at will without changing
the abt in any material way. That is, we may always replace an abt
by an α-equivalent one; they designate the same α-equivalence class.

4. Bound variable names “automatically” evade confusion with any
other variable name in a given context. This is because we may
always choose another representative in the case that one choice is
inconvenient in a given context.

We will freely make use of these and similar conveniences afforded by
α-equivalence throughout this book.

APRIL 5, 2006 WORKING DRAFT

6.8 Exercises 47

6.8 Exercises

1. Give a direct inductive definition of the judgements x ∈ a abt.

2. Give a proof that substitution defines a function up to α-equivalence.

3. Give an inductive definition of simultaneous substitution,

[x1, . . . , xk←a1, . . . , ak]b = c abt,

which states that c is the result of replacing all free occurrences of xi
by ai in b (for each 1 ≤ i ≤ k).

APRIL 5, 2006 WORKING DRAFT

Chapter 7

Specifying Syntax

Having defined the three levels of syntax, we may now summarize how
we shall make use of them in the rest of this book. The focus of our work
will be on the abstract syntax and binding structure of languages. We
will not concern ourselves with the concrete syntax of the languages we
consider. However, it will be necessary for us to write down examples, so
we must establish conventions for defining the syntax of a language in a
concise form. While the inference rule format always suffices, it is often
more concise to use a modified form of grammar notation to define the
abstract syntax and binding structure of a language.

This notation is best illustrated by example. Here is a presentation of
the abstract syntax and binding structure of a language of expressions us-
ing grammar notation.

Types τ : : = num | str
Expr’s e : : = x | num[n] | str[s] | plus(e1, e2) | cat(e1, e2) |

let(e1, x.e2)

The important point about this form of specification is that it specifies two
categories of abstract binding trees, the types and the terms. The speci-
fication is given “by example”, using meta-variables that range over the
syntactic categories to illustrate the pattern. In this case the meta-variable
τ ranges over the category of types, and the meta-variable e ranges over
the category of expressions. In addition, the meta-variable x ranges over
names of variables, and n ranges over natural numbers. (This convention
is often used without explicit mention.)

48

49

The notation used in the grammar makes clear the intended binding
and scope of variables. For example, it is clear from the notation used that
let is an operator with arity (0, 1), specifying that it binds one variable in
the second position. We take all such conventions to be tacitly understood
without explicit mention, and treat all abt’s module α-equivalence, which
ensures that the names of bound variables may be chosen at will.

For the sake of writing examples, we will sometimes take liberties with
the syntax for the sake of readability, relying on conventions of concrete
syntax that are familiar to the reader from other contexts. For example,
we may introduce parentheses to emphasize grouping, or use infix or
other standard forms of notation that enhance the readability of the ex-
amples without being explicit about the intended meaning. For example,
we might write e1+e2 for plus(e1, e2), or let x be e1 in e2 for let(e1, x.e2),
leaving it to the reader to interpret these in the evident manner.

APRIL 5, 2006 WORKING DRAFT

Part III

Static and Dynamic Semantics

50

Chapter 8

The Phase Distinction

We will distinguish two phases of processing, the static phase and the dy-
namic phase. Roughly speaking, the static phase consists of ensuring that
the program is well-formed, and the dynamic phase consists of executing
well-formed programs. Depending on the level of detail one wishes to
consider, one may make finer distinctions, considering, for example, pars-
ing to be a separate phase from code generation, or linking to be separate
from execution.

We will, in fact, find it useful to draw such fine distinctions later in the
development, but before we can do that we must first answer these two
fundamental questions:

1. Which are the well-formed programs?

2. What is the execution behavior of a well-formed programs?

The first question is answered by the static semantics of a language, and the
second is answered by its dynamic semantics.

The central organizing principle for static semantics is the concept of a
type. A type is characterized by two, closely related notions:

1. The primitive operations that create, or introduce, values of that type.

2. The primitive operations that compute with, or eliminate, values of that
type.

The terminology of introduction and elimination is rooted in history, and
over time the words have sometime acquired other meanings. In partic-
ular, please note that the “elimination” operations having nothing to do
with storage reclamation!

51

52

As an illustrative example, the type of natural numbers may be char-
acterized by the following primitive notions:

1. The primitives zero and succ(−) for introducing natural numbers.

2. Operations such as addition and multiplication for computing with
natural numbers, or, more generally, the ability to define a function
by induction on the natural numbers.

Anything we wish to do with natural numbers can be accomplished using
these operations alone. So, in particular, we never need to know what the
natural numbers “really are” — they are an abstraction characterized by
the introduction and elimination operations on them.

The dynamic semantics of a language determines how to execute the
programs given by the static semantics. The key to the dynamic seman-
tics is the inverse principle, which states that the elimination operations are
inverse to the introduction operations. (Here again the terminology cannot
be taken too seriously, but is only suggestive of the general idea.) The
elimination operations compute with the values created by the introduc-
tion operations, taking apart what was introduced in order to obtain their
result. Since the elimination operations take apart what the introduction
operations put together, they may be seen as a kind of inverse relationship
between them.

An example will help make this clear. The addition operation takes as
input two natural numbers and computes their sum. Looking at, say, the
first of the two numbers, it can have been created in only one of two ways.
Either it is zero, in which case the sum is the second of the two numbers.
Otherwise, it is succ(x), in which case the sum is the successor of the sum
of x and the second number. Thus we see that addition “takes apart” what
the introduction operations created in order to compute its result.

Interesting languages have more than one type. For example, we might
also have a type string of strings of characters whose introduction oper-
ations include character strings enclosed in quotation marks, and whose
elimination operations might include string concatenation and a length
calculation. Once we have more than one type, we then have the potential
for a type error, a combination of operations that violates the type struc-
ture. For example, it makes no sense to add a number to a string, or to
concatenate two numbers. The role of a static semantics is to ensure that

APRIL 5, 2006 WORKING DRAFT

53

such erroneous programs are ruled out of consideration so that the dy-
namic semantics may concern itself only with well-formed combinations
such as additions of two numbers or concatenations of two strings, and
never have to be concerned with giving meaning to ill-typed phrases.

This leads to the central concept of type safety, which ensures that the
static semantics and the dynamic semantics “fit together” properly. More
precisely, we may think of the static semantics as imposing strictures that
are tacitly assumed to hold by the dynamic semantics. But what if they
don’t? How do we know that the assumptions of the dynamic semantics
match the strictures imposed by the static semantics? The answer is that
we do not know this until we prove it. That is, we must prove a theo-
rem, called the type safety theorem, that states that the static and dynamic
semantics cohere. In practical terms this ensures that a whole class of run-
time faults, which manifest themselves as “bus errors” or “core dumps”
in familiar languages, cannot arise. One theorem about a language implies
infinitely many theorems, one for each program written in it.

This establishes the pattern for the remainder of this book. Program-
ming languages are organized as a collection of types — the “features” of
the language emerge as the operations associated with a particular type.
These types are given meaning by the static and dynamic semantics, and
we ensure that the whole is well-defined by proving type safety. This sim-
ple methodology is surprisingly powerful, both as a tool for language de-
sign and as a tool for language implementation — for the theory and prac-
tice of programming languages.

APRIL 5, 2006 WORKING DRAFT

Chapter 9

Static Semantics

In this chapter we will illustrate the specification of a static semantics for
a simple language of expressions defined as follows:

Types τ : : = num | str
Expr’s e : : = x | num[n] | str[s] | plus(e1, e2) | cat(e1, e2) | let(e1, x.e2)

The introduction forms for num are the numerals, num[n], and the elimi-
nation form is plus(e1, e2). The introduction forms for str are the string
literals, str[s], and the elimination form is cat(e1, e2). Finally, we have a
variable binding construct, let(e1, x.e2).

9.1 Static Semantics of Expressions

The static semantics is defined by the typing judgement e : τ, where τ is a
type (either num or str), and e is an expression, which is an abstract binding
tree over the preceding signature. The typing judgement is defined using
higher-order judgement forms of the kind considered in Chapter 2, with
an explicit representation of the typing hypotheses. We write Γ ` e : τ,
where Γ is of the form x1 : τ1, . . . , xn : τn with no two xi’s being equal, and
the free names occurring in e are among the set x1, . . . , xn.1

The static semantics of expressions is inductively defined by the fol-

1Officially, the turnstile is indexed by this set of variables, but we omit explicit mention
of this in our notation for typing judgements.

54

9.2 Properties of the Static Semantics 55

lowing collection of typing rules:

Γ ` str[s] : str
(s ∈ Σ∗)

Γ ` num[n] : num
(n ∈N)

Γ ` e1 : num Γ ` e2 : num
Γ ` plus(e1, e2) : num

Γ ` e1 : str Γ ` e2 : str
Γ ` cat(e1, e2) : str

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2
Γ ` let(e1, x.e2) : τ2

The rule for variables is implicit in the meaning of the hypothetical judge-
ment:

Γ, x : τ ` x : τ

We often state this rule explicitly for the sake of emphasis.
In the rule for let’s we tacitly assume that x is not otherwise declared

in Γ; this may always be achieved by suitable renaming of bound vari-
ables. Also, if x : τ occurs anywhere in Γ, we may tacitly regard Γ as hav-
ing the form Γ′, x : τ, in which the designated declaration occurs “last”.
This is justified by the admissibility of permutation for the hypothetical
judgement form, as discussed in Chapter 2.

9.2 Properties of the Static Semantics

The structural rules governing the hypothetical judgement ensure that the
typing judgement obeys the following weakening and substitution prop-
erties:

Theorem 9.1 (Structural Properties of Typing)
1. If Γ ` e′ : τ′, then Γ, x : τ ` e′ : τ′, provided that x is not already

declared in Γ.

2. If Γ, x : τ ` e′ : τ′ and Γ ` e : τ, then Γ ` [x←e]e′ : τ′.

Proof:

1. By induction on the derivation of Γ ` e′ : τ′.

2. By induction on the derivation of Γ, x : τ ` e′ : τ′.

�

APRIL 5, 2006 WORKING DRAFT

9.3 Exercises 56

The typing rules are syntax-directed in the sense that there is exactly one
rule for each form of expression. Consequently, we obtain the following
inversion principles for typing.

Theorem 9.2 (Inversion for Typing)
If Γ ` e : τ, then

1. if e = x for some variable x, then Γ = Γ′, x : τ.

2. if e = plus(e1, e2), then τ = num, e1 : num, and e2 : num.

3. if e = cat(e1, e2), then τ = str, e1 : str, and e2 : str.

4. if e = let(e1, x.e2), then for some τ1, e1 : τ1, and Γ, x : τ1 ` e2 : τ.

Proof: By induction on the derivation of Γ ` e : τ. �

A value, v, is either num[n] for some n nat or str[s] for some s string. We
may characterize the closed values of a type as follows.

Theorem 9.3 (Canonical Forms)
If v : τ, where v is a value, then

1. If τ = num, then v = num[n] for some natural number n.

2. If τ = str, then v = str[s] for some string s.

Proof: By induction on the derivation of v : τ, taking account of the fact
that v is a value. �

9.3 Exercises

1. Show that the expression e = plus(num[7], str[abc]) is ill-typed in
that there is no τ such that e : τ.

2. Show that if Γ ` e : τ and x ∈ e, then Γ = Γ′, x : τ for some τ.

APRIL 5, 2006 WORKING DRAFT

Chapter 10

Dynamic Semantics

The dynamic semantics of a language specifies how programs are to be ex-
ecuted. There are two popular methods for specifying dynamic seman-
tics. One method, called structured operational semantics (SOS), or transition
semantics, presents the dynamic semantics of a language as a transition
system specifying the step-by-step execution of programs. Another, called
evaluation semantics, or ES, presents the dynamic semantics as a relation be-
tween a phrase and its value, without detailing how it is to be determined
in a step-by-step manner. Each presentation has its uses, so we discuss
both forms of dynamic semantics, as well as their relation to one another.

10.1 Structured Operational Semantics

A structured operational semantics for a language consists of an induc-
tively defined transition system whose states are closed, well-formed ex-
pressions. Every state is an initial state, and the final states are the values,
defined by the following rules:

num[n] value str[s] value

The transition judgement e 7−→ e′ is inductively defined by the follow-

57

10.1 Structured Operational Semantics 58

ing rules:

(p = m + n)
plus(num[m], num[n]) 7−→ num[p]

(u = s ˆ t)
cat(str[s], str[t]) 7−→ str[u]

e1 value

let(e1, x.e2) 7−→ [x←e1]e2

e1 7−→ e′1
plus(e1, e2) 7−→ plus(e′1, e2)

e1 value e2 7−→ e′2
plus(e1, e2) 7−→ plus(e1, e′2)

e1 7−→ e′1
cat(e1, e2) 7−→ cat(e′1, e2)

e1 value e2 7−→ e′2
cat(e1, e2) 7−→ cat(e1, e′2)

e1 7−→ e′1
let(e1, x.e2) 7−→ let(e′1, x.e2)

The first three rules defining the transition judgement are sometimes
called instructions, since they correspond to the primitive execution steps
of the machine. Addition is evaluated by adding and concatenation by
appending; let bindings are evaluated by substituting the definition for
the variable in the body. In all three cases the principal arguments of the
constructor are required to be numbers. Both arguments of an addition
or concatenation are principal, but only the binding of the variable in a
let expression is principal. We say that these primitives are evaluated by
value, because the instructions apply only when the principal arguments
have been fully evaluated.

What if the principal arguments have not (yet) been fully evaluated?
Then we must evaluate them! In the case of expressions we arbitrarily
choose a left-to-right evaluation order. First we evaluate the first argu-
ment, then the second. Once both have been evaluated, the instruction
rule applies. In the case of let expressions we first evaluate the binding,
after which the instruction step applies. Note that evaluation of an argu-
ment can take multiple steps. The transition judgement is defined so that
one step of evaluation is made at a time, reconstructing the entire expres-
sion as necessary.

APRIL 5, 2006 WORKING DRAFT

10.2 Evaluation Semantics 59

For example, consider the following evaluation sequence.

let(plus(num[1], num[2]), x.plus(plus(x, num[3]), num[4]))
7−→ let(num[3], x.plus(plus(x, num[3]), num[4]))
7−→ plus(plus(num[3], num[3]), num[4])
7−→ plus(num[6], num[4])
7−→ num[10]

Each step is justified by a rule defining the transition judgement. Instruc-
tion rules are axioms, and hence have no premises, but all other rules are
justified by a subsidiary deduction of another transition. For example, the
first transition is justified by a subsidiary deduction of

plus(num[1], num[2]) 7−→ num[3],

which is justified by the first instruction rule definining the transition judge-
ment. Each of the subsequent steps is justified similarly.

Observe that the expression e = cat(num[3], str[abc]) is not a final
state, but there is no e′ such that e 7−→ e′ — it is a stuck state. Fortunately
it is also ill-typed! We shall prove in the next chapter that no well-typed
expression is stuck.

Since the transition judgement in SOS is inductively defined, we may
reason about it using rule induction. Specifically, to show that P (e, e′)
holds whenever e 7−→ e′, it is sufficient to show that P is closed under the
rules defining the transition judgement. For example, it is a simple matter
to show by rule induction that the transition judgement for evaluation of
expressions is deterministic: if e 7−→ e′ and e 7−→ e′′, then e′ = e′′. This
may be proved by simultaneous rule induction over the rules defining the
transition judgement.

10.2 Evaluation Semantics

Another method for defining the dynamic semantics of a language, called
evaluation semantics, consists of an inductive definition of the evaluation
judgement, e ⇓ v, specifying the value, v, of a closed expression, e. This

APRIL 5, 2006 WORKING DRAFT

10.2 Evaluation Semantics 60

judgement is inductively defined by the following rules:

num[n] ⇓ num[n]

str[s] ⇓ str[s]

e1 ⇓ num[n1] e2 ⇓ num[n2] (n = n1 + n2)
plus(e1, e2) ⇓ num[n]

e1 ⇓ str[s1] e2 ⇓ str[s2] (s = s1 ˆ s2)
cat(e1, e2) ⇓ str[s]

e1 ⇓ v1 [x←v1]e2 ⇓ v2

let(e1, x.e2) ⇓ v2

The value of a let expression is determined by the value of its binding,
and the value of the corresponding substitution instance of its body. Since
the substitution instance is not a sub-expression of the let, the rules are
not syntax-directed.

Since the evaluation judgement is inductively defined, it has associated
with it a principle of proof by rule induction. Specifically, to show that the
property P (e, v) holds, it is enough to show that P is closed under the rules
defining the evaluation judgement. Specifically, our proof obligations are:

1. Show that P (num[n], num[n]).

2. Show that P (str[s], str[s]).

3. Show that P (plus(e1, e2), num[n]), assuming n = n1 + n2, P (e1, num[n1])
and P (e2, num[n2]).

4. Show that P (cat(e1, e2), str[s]), assuming s = s1 ˆ s2, P (e1, str[s1])
and P (e2, str[s2]).

5. Show that P (let(e1, x.e2), v2), assuming P (e1, v1) and P ([x←v1]e2, v2).

This induction principle is not the same as structural induction on e, be-
cause the evaluation rules are not syntax-directed.

APRIL 5, 2006 WORKING DRAFT

10.3 Relating Transition and Evaluation Semantics 61

10.3 Relating Transition and Evaluation Seman-
tics

We have given two different forms of dynamic semantics for the same lan-
guage. It is natural to ask whether they are equivalent, but to do so first re-
quires that we consider carefully what we mean by equivalence. The tran-
sition semantics describes a step-by-step process of execution, whereas the
evaluation semantics suppresses the intermediate states, focussing atten-
tion on the initial and final states alone. This suggests that the appropriate
correspondence is between complete execution sequences in the transition
semantics and the evaluation judgement in the evaluation semantics.

Theorem 10.1
For all closed expressions e and natural numbers n, e !7−→ num[n] iff e ⇓
num[n].

How might we prove such a theorem? We will consider each direction
separately. We consider the easier case first.

Lemma 10.2
If e ⇓ num[n], then e !7−→ num[n].

Proof: By induction on the definition of the evaluation judgement. For
example, suppose that plus(e1, e2) ⇓ num[n] by the rule for evaluating

additions. By induction we know that e1
!7−→ num[n1] and e2

!7−→ num[n2].
We reason as follows:

plus(e1, e2)
∗7−→ plus(num[n1], e2)
∗7−→ plus(num[n1], num[n2])
7−→ num[n1 + n2]

Therefore plus(e1, e2)
!7−→ num[n1 + n2], as required. The other cases are

handled similarly. �

For the converse, recall from Chapter 3 the definitions of multi-step
evaluation and complete evaluation. Since num[n] ⇓ num[n], it suffices to
show that evaluation is closed under head expansion.

Lemma 10.3
If e 7−→ e′ and e′ ⇓ num[n], then e ⇓ num[n].

APRIL 5, 2006 WORKING DRAFT

10.4 Environment Semantics 62

Proof: By induction on the definition of the transition judgement. For
example, suppose that plus(e1, e2) 7−→ plus(e′1, e2), where e1 7−→ e′1.
Suppose further that plus(e′1, e2) ⇓ num[n], so that e′1 ⇓ num[n1], and
e2 ⇓ num[n2] and n = n1 + n2. By induction e1 ⇓ num[n1], and hence
plus(e1, e2) ⇓ num[n], as required. �

10.4 Environment Semantics

Both the transition semantics and the evaluation semantics given earlier
rely on substitution to replace let-bound variables by their bindings dur-
ing evaluation. This approach maintains the invariant that only closed
expressions are ever considered, and, as we shall see in the next chapter,
facilitates proving properties of the language. However, in practice, we
do not perform substitution, but rather record the bindings of variables
in some sort of data structure. In this section we show how this can be
elegantly modeled using hypothetical judgements.

The basic idea is to consider hypotheses of the form x ⇓ v, where x is
a variable and v is a value, such that no two hypotheses govern the same
variable. Let η range over finite sets of such hypotheses, which we call an
environment. We will consider judgements of the form η `X e ⇓ v, where
X is the finite set of variables appearing on the left of a hypothesis in η.
As usual, we will suppress explicit mention of the parameter set X, and
simply write η ` e ⇓ v. The rules defining this judgement are as follows:

η, x ⇓ v ` x ⇓ v

η ` e1 ⇓ num[n1] η ` e2 ⇓ num[n2]

η ` plus(e1, e2) ⇓ num[n1 + n2]

η ` e1 ⇓ str[s1] η ` e2 ⇓ str[s2]
η ` cat(e1, e2) ⇓ num[s1 ˆ s2]

η ` e1 ⇓ v1 η, x ⇓ v1 ` e2 ⇓ v2

η ` let(e1, x.e2) ⇓ v2

The variable rule is an instance of the reflexivity rule for hypothetical
judgements, and therefore need not be explicitly stated. We nevertheless
include it here for clarity. The let rule augments the environment with a
new assumption governing the bound variable (which, by α-conversion,

APRIL 5, 2006 WORKING DRAFT

10.5 Exercises 63

may be chosen to be distinct from any other variable currently in η to pre-
serve the invariant that no two assumptions govern the same variable).

The environment semantics is related to the evaluation semantics by
the following theorem:

Theorem 10.4
x1 ⇓ v1, . . . , xn ⇓ vn ` e ⇓ v iff [x1, . . . , xn←v1, . . . , vn]e ⇓ v.

Proof: The left to right direction is proved by induction on the rules defin-
ing the evaluation semantics, making use of the definition of substitution
and the definition of the evaluation semantics for closed expressions. The
converse is proved by induction on the structure of e, again making use of
the definition of substitution. Note that we must induct on e in order to
detect occurrences of variables xi in e, which are governed by a hypothesis
in the environment semantics. �

10.5 Exercises

1. Prove that if e 7−→ e1 and e 7−→ e2, then e1 ≡ e2.

2. Prove that if e ⇓ v, then v value.

3. Prove that if e ⇓ v1 and e ⇓ v2, then v1 ≡ v2.

4. Complete the proof of equivalence of evaluation and transition se-
mantics.

5. Is it possible to use environments in a structured operational seman-
tics? What difficulties do you encounter?

APRIL 5, 2006 WORKING DRAFT

Chapter 11

Type Safety

Many programming languages, including ML and Java, are said to be
“safe” (or, “type safe”, or “strongly typed”). Informally, this means that
certain kinds of mismatches cannot arise during execution. For example,
it will never arise that an integer is to be applied to an argument, nor that
two functions could be added to each other. What is remarkable is that we
will be able to clarify the idea of type safety without making reference to
an implementation. Consequently, the notion of type safety is extremely
robust — it is shared by all correct implementations of the language.

Type safety states that the static and dynamic semantics of a language
cohere in that the strictures of the type system ensure that execution is well-
behaved. Simply put, the type system ensures that evaluation cannot “go
off into the weeds” into an ill-defined state for which no definite result
can be obtained. This is proved by showing that a transition from a well-
defined state leads only to well-defined states, and that if a state is well-
defined then it is either in a valid final state, or is capable of making a
transition. The static semantics specifies what we mean by well-defined,
and the dynamic semantics specifies what it means to make a transition.
This leads to the following formal statements that, together, express the
safety of the language:

1. Preservation: If e : τ and e 7−→ e′, then e′ : τ.

2. Progress: If e : τ, then either e value, or there exists e′ such that
e 7−→ e′.

The first says that the steps of evaluation preserve well-typedness (indeed,

64

11.1 Preservation for Expressions 65

preserves typing), and the second says that well-typedness ensures that
either we are done or we can make progress towards completion.

11.1 Preservation for Expressions

The preservation theorem for the language of expressions defined in Chap-
ters 9 and 10 is proved by rule induction on the definition of the transition
system for evaluating expressions (as given in Chapter 10).

Theorem 11.1 (Preservation)
If e : τ and e 7−→ e′, then e′ : τ.

Proof: Consider the rule

e1 7−→ e′1
plus(e1, e2) 7−→ plus(e′1, e2).

Assume that plus(e1, e2) : τ. By inversion for typing, we have that τ =
num, e1 : num, and e2 : num. By induction we have that e′1 : num, and hence
plus(e′1, e2) : num. The case for concatenation is handled similarly.

Now consider the rule

let(e1, x.e2) 7−→ [x←e1]e2.

Assume that let(e1, x.e2) : τ2. By inversion for typing, e1 : τ1 for some τ1
such that x : τ1 ` e2 : τ2. By substitution [x←e1]e2 : τ2, as desired.

We leave the remaining cases to the reader. �

The proof of preservation must proceed by rule induction on the rules
defining the transition judgement. It cannot, for example, proceed by in-
duction on the structure of e, for in most cases there is more than one tran-
sition rule for each expression form. Nor can it be proved by induction on
the typing rules, for in the case of the let rule, the context is enriched to
consider an open term, to which no dynamic semantics is assigned.

11.2 Progress for Expressions

The progress theorem captures the idea that well-typed programs cannot
“get stuck”.

APRIL 5, 2006 WORKING DRAFT

11.3 Exercises 66

Theorem 11.2 (Progress)
If e : τ, then either e value, or there exists e′ such that e 7−→ e′.

Proof: The proof is by induction on the typing derivation. The rule for
variables cannot arise, because we are only considering closed typing judge-
ments. Consider the typing rule

Γ ` e1 : num Γ ` e2 : num
Γ ` plus(e1, e2) : num

where Γ is empty. By induction we have that either e1 value, or there exists
e′1 such that e1 7−→ e′1. In the latter case it follows that plus(e1, e2) 7−→
plus(e′1, e2), as required. In the former we also have by induction that
either e2 value, or there exists e′2 such that e2 7−→ e′2. In the latter case we
have that plus(e1, e2) 7−→ plus(e1, e′2), which is enough. In the former
case we have, by canonical forms, that e1 = num[n1] and e2 = num[n2],
and hence plus(num[n1], num[n2]) 7−→ num[n1 + n2].

The other cases are handled similarly, and are left to the reader. �

Since the typing rules for expressions are syntax-directed, the progress
theorem could equally well be proved by induction on the structure of e,
appealing to the inversion theorem at each step to characterize the types
of the parts of e. But this approach breaks down when the typing rules are
no longer syntax-directed, that is, when there may be more than one rule
for a given expression form. In such cases it becomes clear that the most
direct approach is to consider the typing rules one-by-one.

Summing up, the combination of preservation and progress together
constitute a proof of safety. The progress theorem ensures that well-typed
expressions do not “get stuck” in an ill-defined state, and the preservation
theorem ensures that if a step is taken, the result remains well-typed (with
the same type). Thus the two parts work hand-in-hand to ensure that the
static and dynamic semantics are coherent, and that no ill-defined states
can ever be encountered while evaluating a well-typed expression.

11.3 Exercises

1. Complete the proof of preservation.

2. Complete the proof of progress.

APRIL 5, 2006 WORKING DRAFT

11.3 Exercises 67

3. Do something similar, in detail.

APRIL 5, 2006 WORKING DRAFT

Part IV

Functions

68

Chapter 12

A Functional Language

The λ-calculus is a fundamental building block in the study of program-
ming language concepts. In contrast to machine models, such as Turing
machines or random-access machines, the λ-calculus is a linguistic foun-
dation for computation that takes as primitive the notion of a function. In
its barest form the entire language consists of nothing but functions —
even data structures arise as functions in the λ-calculus!

Although elegant in its spartan simplicity, the λ-calculus is remarkably
subtle and is best approached gradually as the culmination of the develop-
ment of several key ideas. We will therefore begin our study with a simple
functional language that, like the λ-calculus, takes the notion of function
as a starting point, but which, unlike the λ-calculus, is not the only con-
cept in the language. Later on we will see how the pure λ-calculus may
be reconstructed on this foundation once we have developed a few more
ideas.

12.1 Syntax

The syntax of MinML is given as follows:

Types τ : : = nat | arrow(τ1, τ2)

Expr’s e : : = x | num[n] | plus(e1, e2) | times(e1, e2)
ifz(e, e1, e2) | lambda(τ, x.e) | app(e1, e2)

let(τ, e1, x.e2)

69

12.2 Static Semantics 70

As discussed in Chapter 7, this grammar implicitly specifies a signature
that determines the set of abt’s described by the above grammar.

The constructs of the language may be classified by type. Associated
with the type nat are the numerals, num[n], the arithmetic operations,
plus(e1, e2) and times(e1, e2), and the zero-test, ifz(e, e1, e2). Associated
with the function type arrow(τ1, τ2) are the λ-abstractions, lambda(τ, x.e),
and the applications, app(e1, e2). Finally, we have a generic construct for
binding expressions to names, let(τ, e1, x.e2).

The following chart summarizes the concrete syntax corresponding to
each form of abstract syntax in MinML:

Abstract Syntax Concrete Syntax
num[n] n
plus(e1, e2) e1+e2
times(e1, e2) e1*e2
ifz(e0, e1, e2) ifz e0 then e1 else e2
lambda(τ, x.e) λ(x:τ. e)
app(e1, e2) e1(e2)

let(τ, e1, x.e2) let x:τ be e1 in e2

12.2 Static Semantics

The typing judgement, e : τ, states that expression e has type τ. More gen-
erally, we will consider hypothetical judgements of the form

x1 : τ1, . . . , xn : τn ` e : τ,

stating that e is of type τ under the assumptions that each variable xi is of
type τi. We let Γ stand for any such sequence of typing assumptions.

The typing judgement is inductively defined by the following rules:

Γ, x : τ ` x : τ (12.1)

Γ ` num[n] : nat (12.2)

Γ ` e1 : nat Γ ` e2 : nat
Γ ` plus(e1, e2) : nat (12.3)

APRIL 5, 2006 WORKING DRAFT

12.3 Basic Properties of the Static Semantics 71

Γ ` e1 : nat Γ ` e2 : nat
Γ ` times(e1, e2) : nat (12.4)

Γ ` e : nat Γ ` e1 : τ Γ ` e2 : τ

Γ ` ifz(e, e1, e2) : τ (12.5)

Γ, x : τ1 ` e : τ2
Γ ` lambda(τ1, x.e) : arrow(τ1, τ2) (12.6)

Γ ` e1 : arrow(τ2, τ) Γ ` e2 : τ2
Γ ` app(e1, e2) : τ (12.7)

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2
Γ ` let(τ1, e1, x.e2) : τ2 (12.8)

As usual, when introducing a new typing assumption we tacitly assume
that the variable being introduced is not otherwise declared; this may al-
ways be achieved by α-conversion prior to application of the typing rule.

12.3 Basic Properties of the Static Semantics

A key observation about the typing rules is that there is exactly one rule
for each form of expression — that is, there is one rule for the each of the
numeric constants and numeric primitives, one rule for the conditional,
and so forth. The typing rules are therefore said to be syntax-directed in
that the form of the expression determines the only possible typing rule
that may apply to it. This observation leads to a useful lemma, called the
inversion lemma, which states that the typing rules are necessary, as well as
sufficient.

Theorem 12.1 (Inversion)
Suppose that Γ ` e : τ.

1. If e = x, then Γ = Γ′, x : τ.

2. If e = num[n], then τ = nat.

APRIL 5, 2006 WORKING DRAFT

12.4 Dynamic Semantics 72

3. If e = plus(e1, e2) or e = times(e1, e2), then τ = nat and Γ ` e1 : nat
and Γ ` e2 : nat.

4. If e = ifz(e0, e1, e2), then Γ ` e0 : nat, Γ ` e1 : τ and Γ ` e2 : τ.

5. If e = lambda(τ1, x.e), then τ = arrow(τ1, τ2) and Γ, x : τ1 ` e : τ2.

6. If e = app(e1, e2), then there exists τ2 such that Γ ` e1 : arrow(τ2, τ)
and Γ ` e2 : τ2.

7. If e = let(τ1, e1, x.e2), then Γ ` e1 : τ1, Γ, x : τ1 ` e2 : τ2, and τ = τ2.

Proof: The proof proceeds by rule induction on the typing rules. Observe
that for each rule, exactly one case applies, and that the premises of the
rule in question provide the required result. �

The following substitution property for typing follows immediately
from the meaning of the hypothetical judgement.

Lemma 12.2
1. If Γ, x : τ ` e′ : τ′, and Γ ` e : τ, then Γ ` [x←e]e′ : τ′.

12.4 Dynamic Semantics

The dynamic semantics of MinML is given by a transition system whose
states are closed expressions. All states are initial, and the final states are
the values, inductively defined by the following axioms:

num[n] value lambda(τ, x.e) value

We often use the meta-variable v in situations where we expect v to be an
expression such that v value.

The transition judgement is inductively defined by the following rules.

e1 7−→ e′1
plus(e1, e2) 7−→ plus(e′1, e2)

v1 value e2 7−→ e′2
plus(v1, e2) 7−→ plus(v1, e′2)

(n = n1 + n2)
plus(num[n1], num[n2]) 7−→ num[n]

APRIL 5, 2006 WORKING DRAFT

12.5 Basic Properties of the Dynamic Semantics 73

e0 7−→ e′0
ifz(e0, e1, e2) 7−→ ifz(e′0, e1, e2)

ifz(num[0], e1, e2) 7−→ e1

(n 6= 0)
ifz(num[n], e1, e2) 7−→ e2

e1 7−→ e′1
app(e1, e2) 7−→ app(e′1, e2)

v1 value e2 7−→ e′2
app(v1, e2) 7−→ app(v1, e′2)

v value
app(lambda(τ, x.e), v) 7−→ [x←v]e

e1 7−→ e′1
let(τ1, e1, x.e2) 7−→ let(τ1, e′1, x.e2)

v1 value

let(τ1, v1, x.e2) 7−→ [x←v1]e2

(The rules for multiplication are very similar to those for addition, and are
omitted here.)

Observe that the argument of a function must be simplified to a value
before the application can occur. This is called the call-by-value evaluation
strategy for function applications. The alternative, known as call-by-name
for historical reasons, is to pass the argument to the function in unevalu-
ated form, so that it is evaluated only if its value is actually necessary to
compute the value of the call. This can be more efficient, because the argu-
ment is not evaluated unless it is needed, but it can also be less efficient,
because the argument is repeatedly evaluated on each use.

12.5 Basic Properties of the Dynamic Semantics

Let us prove that evaluation is deterministic, which implies that the value
of any expression, if it has one, is uniquely determined by the expression
alone. In other words, the transition judgement has mode (∀, ∃≤1).

Lemma 12.3
For every closed expression e, there exists at most one e′ such that e 7−→ e′.
In other words, the relation 7−→ is a partial function.

APRIL 5, 2006 WORKING DRAFT

12.6 Iteration and Recursion 74

Proof: By induction on the structure of e. For example, if e = app(e1, e2),
then by induction applied to e1, there is at most one e′1 such that e1 7−→ e′1.
If such a transition is possible, then e 7−→ app(e′1, e2), and this is the only
possible transition. Otherwise, if e1 is not a value, there is no transition
from e. If e1 is a value, then there is at most one transition e2 7−→ e′2. If
there is such a transition, then e 7−→ app(e1, e′2), because e1 value. If not,
then e2 may or may not be a value. If not, there is no transition from e.
If so, there is at most one transition, according to whether or not e1 is a
function. The other cases are handled similarly. �

12.6 Iteration and Recursion

So far MinML is extremely weak because it lacks any form of iteration or
recursion, which is necessary even to express the most rudimentary com-
putations on natural numbers. For example, not even the factorial function
is definable without some additional machinery!

One extension, which corresponds to “for” loops in familiar program-
ming languages, is to replace the ifz construct by a more general iteration
construct that allows us to perform an operation n times for any natural
number n. This is achieved using an iterator, whose abstract syntax is

rec(τ, e0, e1, x.e2),

and whose concrete syntax is

rec e0 {0⇒ e1 | x + 1⇒ e2}.

The meaning of this construct is explained informally as follows. Let
n0 be the value of e0, a natural number. If n0 is 0, then the result is the
value of e1. Otherwise, n0 = n′0 + 1, and we recursively evaluate the same
iterator on n′0, then substitute this result for x in e2 to obtain the final result.
Put in other terms, if n ≥ 0, we iterate e2 for n times, starting with e1.

To make this precise, here is the typing rule for the iterator:

Γ ` e0 : nat Γ ` e1 : τ Γ, x : τ ` e2 : τ

Γ ` rec(τ, e0, e1, x.e2) .

As with the conditional, both “branches” must have the same type, τ.

APRIL 5, 2006 WORKING DRAFT

12.6 Iteration and Recursion 75

The dynamic semantics of the iterator is given by the following rules:

e0 7−→ e′0
rec(τ, e0, e1, x.e2) 7−→ rec(τ, e′0, e1, x.e2)

rec(τ, num[0], e1, x.e2) 7−→ e1

rec(τ, num[n + 1], e1, x.e2) 7−→ let(τ, rec(τ, num[n], e1, x.e2), x.e2)

The use of the let in the third rule ensures that the recursive call is evalu-
ated before it is passed to e2.

A significantly more powerful extension is to admit general recursive
functions into the language. These are functions that may “call themselves”
recursively, on any argument we wish to pass. Such functions are not
guaranteed to terminate, but this is the price we pay for generality. In
order for a function to call itself, it must have a name for itself. This can be
arranged by generalizing the abstract syntax of a function to have a name
for “itself”:

fun(τ1, τ2, f.x.e).

The concrete syntax for this form is

fun f(x:τ1):τ2 is e.

The variable f stands for the function itself, and the variable x stands for
its argument. If the function e does not call itself, then the name f is su-
perfluous, and may be omitted by writing “ ” in place of f .

The static semantics for recursive functions is defined so that the func-
tion may call itself under the assumption that it has the type it will turn
out to have, namely arrow(τ1, τ2):

Γ, f : arrow(τ1, τ2), x : τ1 ` e : τ2

Γ ` fun(τ1, τ2, f.x.e) : arrow(τ1, τ2)

Notice that the typing rule is seemingly “circular” in that the assump-
tion governing f states that it has the type of the function itself, which is
checked by asserting that the body has type τ2 under this assumption and
the additional assumption that the argument has type τ1.

APRIL 5, 2006 WORKING DRAFT

12.7 Exercises 76

The dynamic semantics for function applications changes so as to re-
place the name, f , of the function itself by the function itself, thereby “ty-
ing the knot” in the recursion:

v1 value v2 value

app(v1, v2) 7−→ [f , x←v1, v2]e
(v1 = fun(τ1, τ2, f.x.e))

The use of a variable to stand for the function itself is a common “trick” in
programming languages. For example, in Java the identifier this stands
for the object itself in exactly the same sense.

12.7 Exercises

1. Show that the mode of the typing judgement is (∀, ∃≤1) — for every
(closed) expression there is at most one type for it. To prove this
you must generalize the induction hypothesis to account for open
expressions.

2. Formulate the call-by-name evaluation strategy for function applica-
tions in which arguments are passed unevaluated to functions.

3. Show that let(τ1, e1, x.e2) is definable in the sense that there is a
translation of this construct in terms of the other constructs in the
language such that its typing rule is derivable under this translation.

4. Define the evaluation judgement e ⇓ v, where e is a closed expression

and e value, and show that e ⇓ v iff e !7−→ v.

5. Show that the conditional ifz(e0, e1, e2) is definable in terms of the
iterator.

6. Show that addition and multiplication are definable in terms of the
iterator by giving a term e : arrow(nat, arrow(nat, nat)) that imple-
ments these two arithmetic operations.

7. Show that the predecessor is definable in terms of the iterator, pro-
vided that we define the predecessor of 0 to be 0 and the predecessor
of n + 1 to be n.

APRIL 5, 2006 WORKING DRAFT

12.7 Exercises 77

8. Investigate the trade-offs between the call-by-name and call-by-value
evaluation strategies for function applications.

APRIL 5, 2006 WORKING DRAFT

Chapter 13

Type Safety for MinML

We will use the methodology described in Chapter 11 to prove the type
safety of MinML. As discussed there, type safety is the combination of
two key relationships between the static and dynamic semantics of the
language, preservation and progress.

13.1 Safety for MinML

Theorem 13.1 (Preservation)
If e : τ and e 7−→ e′, then e′ : τ.

Proof: Note that we are proving not only that e′ is well-typed, but that it
has the same type as e. The proof is by rule induction on the definition of
one-step evaluation. We will consider each rule in turn.

Consider the rule
e1 7−→ e′1

plus(e1, e2) 7−→ plus(e′1, e2).

Assume that plus(e1, e2) : τ. By inversion τ = nat, e1 : nat, and e2 : nat.
By induction e′1 : nat, and hence plus(e′1, e2) : nat, as was to be shown.

Consider the rule
v1 value e2 7−→ e′2

plus(v1, e2) 7−→ plus(v1, e′2).

Suppose that plus(v1, e2) : τ. Then, by inversion, τ = nat, v1 : nat, and
e2 : nat. By induction e′2 : nat, and hence plus(v1, e′2) : nat, as required.

78

13.1 Safety for MinML 79

Consider the rule

(n = n1 + n2)
plus(num[n1], num[n2]) 7−→ num[n].

Assume that plus(num[n1], num[n2]) : τ. Clearly, num[n] : nat, which is
enough for the result.

The rules governing multiplication are handled similarly.
Consider the rule

e0 7−→ e′0
ifz(e0, e1, e2) 7−→ ifz(e′0, e1, e2).

Suppose that ifz(e0, e1, e2) : τ. By inversion, e0 : nat, e1 : τ, and e2 : τ. By
induction e′0 : nat, and hence ifz(e′0, e1, e2) : τ, as required.

The other rules governing the conditional test are handled similarly.
Consider the rule

v value
app(lambda(τ, x.e), v) 7−→ [x←v]e.

Suppose that app(lambda(τ, x.e), v) : τ′. By inversion v : τ and x : τ ` e :
τ′. By substitution [x←v]e : τ′.

The other two rules governing application are handled similarly to the
rules for the arithetic operations. The rules for the let construct are left to
the reader. �

A critical ingredient in the safety proof is the canonical forms lemma,
which characterizes the form of values of a given type.

Lemma 13.2 (Canonical Forms)
Suppose that v : τ is a closed, well-formed value.

1. If τ = nat, then v = num[n] for some n nat.

2. If τ = arrow(τ1, τ2), then v = lambda(τ1, x.e) for some x and e such
that x : τ1 ` e : τ2.

Proof: By induction on the typing rules, using the assumption v value.
�

APRIL 5, 2006 WORKING DRAFT

13.1 Safety for MinML 80

Theorem 13.3 (Progress)
If e : τ, then either e is a value, or there exists e′ such that e 7−→ e′.

Proof: The proof is by rule induction on the definition of the typing judge-
ment.

Consider the rule
Γ ` num[n] : nat.

By definition num[n] value, which is sufficient for the conclusion.
Consider the rule

Γ ` e1 : nat Γ ` e2 : nat
Γ ` plus(e1, e2) : nat .

By induction either e1 value or there exists e′1 such that e1 7−→ e′1. In the
latter case we have plus(e1, e2) 7−→ plus(e′1, e2). In the former, we have
by induction that either e2 value or there exists e′2 such that e2 7−→ e′2. In
the latter case we have plus(v1, e2) 7−→ plus(v1, e′2). In the former we ap-
peal to the canonical forms lemma (twice) to obtain that v1 = num[n1] for
some n1 nat and v2 = num[n2] for some n2 nat. But then plus(v1, v2) 7−→
num[n], where n = n1 + n2 nat, as required.

Consider the rule
Γ ` e : nat Γ ` e1 : τ Γ ` e2 : τ

Γ ` ifz(e, e1, e2) : τ .

By induction either e value or there exists e′ such that e 7−→ e′. In the
latter case ifz(e, e1, e2) 7−→ ifz(e′, e1, e2). In the former we have by the
canonical forms lemma that e = num[n] for some n nat. If n = zero, then
ifz(e, e1, e2) 7−→ e1, otherwise ifz(e, e1, e2) 7−→ e2.

Consider the rule
Γ ` e1 : arrow(τ2, τ) Γ ` e2 : τ2

Γ ` app(e1, e2) : τ .

By induction either e1 value or e1 7−→ e′1. In the latter case we have
app(e1, e2) 7−→ app(e′1, e2). Otherwise we have by induction either e2 value
or e2 7−→ e′2. In the latter case we have app(e1, e2) 7−→ app(e1, e′2) (bear-
ing in mind e1 value). Otherwise, by the canonical forms lemma e1 =
lambda(τ2, x.e) for some x and e. But then app(e1, e2) 7−→ [x←e2]e, again
bearing in mind that e2 value.

The remaining cases are left to the reader. �

APRIL 5, 2006 WORKING DRAFT

13.2 Run-Time Errors and Safety 81

13.2 Run-Time Errors and Safety

Type safety for MinML ensures that “stuck” states (those from which no
transition is possible, yet are not values) are always ill-typed. But suppose
that we wish to extend MinML with, say, a quotient operation that is un-
defined in some situations. For example, 3/0, being undefined, would be
“stuck”, yet is not a value and is well-typed — provided that we use the
following typing rule for quotient.

Γ ` e1 : nat Γ ` e2 : nat
Γ ` div(e1, e2) : nat .

What are we to make of this? Is the extension of MinML with quotient
unsafe?

To ensure safety of MinML extended with quotients we have two op-
tions:

1. Enhance the type system so that no well-typed program can ever di-
vide by zero.

2. Modify the dynamic semantics so that division by zero is not regarded
as “stuck”, but rather as a checked error.

Either option is, in principle, viable, but the most common approach is the
second. The first requires that the type checker prove that an expression be
non-zero before permitting it to be used in the denominator of a quotient.
It is difficult to do this without ruling out too many programs. For now
we consider the second option, which is widely used.

The general idea is to distinguish checked from unchecked errors. An
unchecked error is one that is ruled out by the type system. No run-time
checking is performed to ensure that such an error does not occur, because
the type system rules out the possibility of it arising. For example, the
dynamic semantics of MinML need not check, when performing an addi-
tion, that its two arguments are, in fact, natural numbers, as opposed to,
say, functions, because the type system ensures that this is the case. On
the other hand the dynamic semantics for quotient must check for a zero
denominator, because the type system does not rule out this possibility.

This may be achieved by adding to the language a new construct, error,
which signals the occurrence of a checked error. The typing rule for a

APRIL 5, 2006 WORKING DRAFT

13.3 Exercises 82

checked error permits it to be regarded as having any type at all:

Γ ` error : τ (13.1)

To ensure that this is safe requires that we augment the dynamic semantics
with rules that propagate errors — once an error arises, it aborts the entire
computation.

Partially defined operations, such as quotient, give rise to errors:

div(v1, num[0]) 7−→ error. (13.2)

Once an error arises, it propagates through all other constructs. For exam-
ple, we add the following rules to the definition of the transition relation
for MinML:

app(error, e2) 7−→ error (13.3)

app(v1, error) 7−→ error (13.4)

Similar rules propagate errors through the other constructs of the lan-
guage.

The preservation theorem remains the same, and is proved similarly,
bearing in mind that error has any type we like. The progress theorem
must be modified as follows:

Theorem 13.4 (Progress With Error)
If e : τ, then either e = error or e value or there exists e′ such that e 7−→ e′.

Proof: The proof is by induction on typing, and proceeds similarly to the
proof given earlier, except that there are now three cases to consider at
each point in the proof. �

13.3 Exercises

1. Complete the proof of preservation and progress for MinML.

2. Complete the proof of progress for MinML extended with checked
errors.

APRIL 5, 2006 WORKING DRAFT

Chapter 14

Environments and Functions

In Chapter 10 we introduced the concept of an environment semantics, in
which substitution is avoided in favor of maintaining a list of hypothe-
ses specifying the bindings of the free variables of an expression. This
corresponds more closely to practical implementations, which associate
bindings to variables during execution, rather than perform substitution.

In this chapter we investigate the extensions of environment semantics
to the functional language MinML. This extension is non-trivial, and is, in
fact, the source of an infamous error in language design!

14.1 Environment Semantics for MinML

The environment semantics for expressions given in Chapter 10 is based
on hypothetical judgements of the form

x1 ⇓ v1, . . . , xn ⇓ vn ` e ⇓ v

stating that the expression e evaluates to the value v, under the assumption
that the variables xi evaluate to vi.

Let us naı̈vely extend this semantics to MinML using the following rules
for functions and applications (the other rules are similar to those for ex-
pressions):

η ` lambda(τ, x.e) ⇓ lambda(τ, x.e)

83

14.1 Environment Semantics for MinML 84

η ` e1 ⇓ lambda(τ, x.e) η ` e2 ⇓ v2 η, x ⇓ v2 ` e ⇓ v
η ` app(e1, e2) ⇓ v

The idea is that when applying a function to an argument, we bind the
parameter of the function to the argument value, and proceed to evaluate
the body of the function under the influence of that binding. The resulting
value is the value of the application.

Superficially this formulation looks fine, but it is, in fact, incorrect!
Consider the following example,

let f be (λ x:nat. λ y:nat.x) 3 in let x be 5 in f x,

which we have written using an informal concrete syntax for the sake of
readability.

According to the environment semantics of MinML, evaluation of this
expression proceeds by evaluating the binding of f, then binding this value
to f for use within the body. The binding of f is an application, which is
evaluated by binding x to 3, and evaluating the body of the function. This
is itself a function, λ y:nat.x, which is yielded as result. Then f is bound
to this function, and evaluation proceeds with the inner let. The variable
x is then bound to 5, and the application f x is evaluated. After obtaining
the bindings for f and x, we proceed by evaluating the body, x, in the ex-
tension of the current environment in which y is bound to 5. The result, 5,
is the overall result of evaluation.

But now let us evaluate this same expression using the substitution se-
mantics. First, we evaluate the binding of f. This is obtained by evaluating
the application of λ x:nat.λ y:nat.x to the argument 3, which obtained
by substituting 3 for x in the body, obtaining λ y:nat.3. This function is
substituted for f in the inner let, which is evaluated by substituting 5 for
x in the application, obtaining (λ y:nat.3) 5, whose value is 3.

What went wrong? The problem is that the environment semantics
confuses the two distinct occurrences of the variable x in the program.
When evaluating the binding for f, the environment semantics binds x

to 3, and evaluates λ y:nat.x, which is returned as a value — with the
variable x occurring freely within it. Later on, the inner let binds the
variable x to 5, and this binding governs the evaluation of the body of f,
inadvertently confusing the two variables.

Another way to see the problem is to consider the following α-equivalent
expression in which we have renamed the inner x to z:

APRIL 5, 2006 WORKING DRAFT

14.2 Closures 85

let f be (λ x:nat. λ y:nat.x) 3 in let z be 5 in f z,

This should not change the meaning of the expression, yet when evalu-
ated using the environment semantics, the evaluation process “gets stuck”
because it lacks a binding for x at the point where the application f z is
evaluated! The substitution semantics encounters no such difficulties, and
properly assigns this expression the value 3, as it should.

The confusion of bindings incurred by the evaluation semantics in this
example is sometimes called dynamic binding. The idea is that the binding
for x used during evaluation of the innermost application is the dynami-
cally most recent binding for x in the environment. However, as we have
just seen, this policy fails to respect α-equivalence (renamng of bound vari-
ables), and does not agree with the substitution semantics. It is therefore
wrong, and must be corrected.1

The correct treatment of variables is, by contrast, called static binding.
Static binding is simply the discipline of assigning binding sites to vari-
ables based on their textual occurrences, independently of any dynamic
execution model, as we have detailed in Chapter 6. The problem, there-
fore, lies not with the concepts of binding and scope, but with the evalua-
tion semantics itself.

14.2 Closures

To avoid these difficulties we must ensure that the free variables of a func-
tion are not detached from their environment. The main idea is to regard
the environment as an explicit substitution, a data structure that records
what is to be substituted for a variable without actually doing it. Only
when the variable is encountered do we replace it by its binding in the en-
vironment, effectively delaying substitution as long as possible. To avoid
the confusions described in the preceding section, we attach the environ-
ment to a λ-abstraction at the point where the abstraction is evaluated,
resulting in a configuration of the form

clos(η, lambda(τ, x.e)),

1Historically, this error was introduced in the very first implementation of Lisp, and
was later diagnosed as a mistake by McCarthy. Coining the phrase dynamic binding is, to
this author’s mind, simply an attempt to turn the bug into a feature by giving it a name!

APRIL 5, 2006 WORKING DRAFT

14.2 Closures 86

which is called a closure. The idea is that the environment “closes” the free
variables of the λ-abstraction by providing bindings for them. These are
the bindings that are used when the function body is evaluated, not those
in the ambient environment at the point of application.

To give a proper environment semantics for MinML we introduce two
new syntactic categories, values and environments.

Values v : : = num[n] | clos(η, lambda(τ, x.e))
Env’s η : : = • | η, x=v

In this setting values are no longer forms of expression, but are instead a
special syntactic category of their own.

The environment semantics for MinML is re-formulated to determine
the value, in the sense of the preceding grammar, for each expression. The
key changes are exemplified by the following two rules:

η ` lambda(τ, x.e) ⇓ clos(η, lambda(τ, x.e))

η ` e1 ⇓ clos(η′, lambda(τ, x.e)) η ` e2 ⇓ v2 η′, x=v2 ` e ⇓ v
η ` app(e1, e2) ⇓ v

Notice that we switch environments from η, the ambient environment, to η′,
the environment of the closure, when evaluating the function body. This
ensures that the free variables of the body are governed by the environ-
ment in effect at the point where the function is created, not at the point
where the function is applied.

To characterize the well-formed values we enrich the static semantics
with rules for (closed) values. The typing rule for closures is as follows:

η : Γ′ Γ′, x : τ1 ` e : τ2

clos(η, lambda(τ1, x.e)) : arrow(τ1, τ2)

Notice that the body of the function may have any number of free vari-
ables, which are governed by the hypotheses Γ′.

The typing rule for closures makes use of the following typing rules for
environments:

• : ∅
v : τ η : Γ′

η, x=v : Γ′, x : τ

APRIL 5, 2006 WORKING DRAFT

14.3 Exercises 87

The judgement η : Γ′ means that the environment η provides bindings for
the variables in Γ′. The bindings are all closed values of appropriate type,
as determined by Γ′.

The environment semantics may be proved equivalent to the substi-
tution semantics using a technical device that “expands out” the delayed
substitutions occurring in closures. This operation is inductively defined
as follows:

num[n]∗=num[n]
[η] e=e′

clos(η, lambda(τ, x.e))∗=lambda(τ, x.e′)

The [η] e stands for the result of the simultaneous substitution aof η into e,
as defined in Chapter 6.

The (corrected) environment and substitution semantics are equiva-
lent.

Theorem 14.1 (Equivalence)
η ` e ⇓ v iff [η] e ⇓ v∗.

14.3 Exercises

1. Complete the definition of the environment semantics for MinML.

2. Prove that if Γ ` e : τ, ∅ ` η : Γ, and η ` e ⇓ v, then ∅ ` v : τ.

3. Prove the equivalence theorem.

4. Re-formulate the transition semantics for MinML in terms of envi-
ronments. What difficulties do you encounter? How might they be
overcome?

APRIL 5, 2006 WORKING DRAFT

Part V

Products and Sums

88

Chapter 15

Product Types

The binary product of two types consists of ordered pairs of values, one from
each type in the order specified. The associated eliminatory forms are pro-
jections, which select the first and second component of a pair. The nullary
product, or unit, type consists solely of the unique “null tuple” of no values,
and has no associated eliminatory form.

More generally, the general, or n-ary, product of n ≥ 0 types consists
of the ordered n-tuples of values, with the eliminatory forms being the ith
projection, where 0 ≤ i < n.

The labelled product, or record, type consists of labelled n-tuples in which
the components are labelled by names. The eliminatory forms access the
field of a specified name.

15.1 Nullary and Binary Products

Let us extend the abstract syntax of MinML with the following constructs:

Types τ : : = unit | prod(τ1, τ2)

Expr’s e : : = unit | pair(e1, e2) | fst(e) | snd(e)

In examples we write τ1× τ2 for prod(τ1, τ2), 〈e1, e2〉 for pair(e1, e2) and
〈〉 for unit.

The type prod(τ1, τ2) is sometimes called the binary product of the types
τ1 and τ2, and the type unit is correspondingly called the nullary product
(of no types). We sometimes speak loosely of product types in such as way
as to cover both the binary and nullary cases.

89

15.1 Nullary and Binary Products 90

The introductory form for the product type is called pairing, and its
eliminatory forms are called projections. For the unit type the introductory
form is called the unit object, or null tuple. There is no eliminatory form,
there being nothing to extract from a null tuple!

The static semantics of product types is given by the following rules:

Γ ` unit : unit
Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` pair(e1, e2) : prod(τ1, τ2)

Γ ` e : prod(τ1, τ2)

Γ ` fst(e) : τ1

Γ ` e : prod(τ1, τ2)

Γ ` snd(e) : τ2

There are two different dynamic semantics for product types, the eager
semantics, and the lazy semantics. The eager semantics is specified by the
following rules.

unit value
e1 value e2 value
pair(e1, e2) value

e1 7−→ e′1
pair(e1, e2) 7−→ pair(e′1, e2)

e1 value e2 7−→ e′2
pair(e1, e2) 7−→ pair(e1, e′2)

e 7−→ e′
fst(e) 7−→ fst(e′)

e 7−→ e′
snd(e) 7−→ snd(e′)

e1 value e2 value
fst(pair(e1, e2)) 7−→ e1

e1 value e2 value
snd(pair(e1, e2)) 7−→ e2

According to these rules a pair pair(e1, e2) is a value only if both e1 and e2
are values. Evaluation of a projection necessarily implies evaluation of its
argument to determine what pair to project from.

The lazy semantics for tuples is specified by the following rules:

unit value pair(e1, e2) value

e 7−→ e′
fst(e) 7−→ fst(e′)

e 7−→ e′
snd(e) 7−→ snd(e′)

fst(pair(e1, e2)) 7−→ e1 snd(pair(e1, e2)) 7−→ e2

APRIL 5, 2006 WORKING DRAFT

15.2 General Products 91

According to these rules any ordered pair is a value, regardless of whether
its components are values. Therefore there are no “search” rules for eval-
uating the components of a projection.

Theorem 15.1 (Safety)
Under either the lazy or the eager semantics of pairing,

1. If e : τ and e 7−→ e′, then e′ : τ.

2. If e : τ then either e value or there exists e′ such that e 7−→ e′.

Proof: The proof is left as an exercise to the reader. �

15.2 General Products

The syntax of general product types is given by the following grammar:

Types τ : : = tpl(τ0, . . . , τn−1)

Expr’s e : : = tpl(e0, . . . , en−1) | prj(i, e)

Formally, this grammar is indexed by the size, n, of the general product
type under consideration. In addition the projections are indexed by a
natural number constant, 0 ≤ i < n, indicating the position to select from
the n-tuple. The re-use of the operator tpl for both a type constructor and
a term constructor should cause no confusion, but formally there are two
operators of arity n, one for forming types, the other for forming expres-
sions.

We may either take these constructs as primitives, treating products as
special cases, or define these constructs in terms of products, as follows:

tpl(τ0, . . . , τn−1) =
{

unit if n = 0
prod(τ0, tpl(τ1, . . . , τn−1)) if n > 0

tpl(e0, . . . , en−1) =
{

unit if n = 0
pair(e0, tpl(e1, . . . , en−1)) if n > 1

prj(j, e) =
{

fst(e) if j = 0
prj(j− 1, snd(e)) if j > 0

APRIL 5, 2006 WORKING DRAFT

15.3 Labelled Products 92

These definitions are a bit tricky. The definitions of the n-ary product type
and the n-tuple expression are defined for n > 0 in terms of their defini-
tion for n − 1. Moreover, the projections are further parameterized by a
constant 0 ≤ i < n indicating the position to project; these are defined for
i > 0 in terms of their definitions for i− 1.

We leave it to the reader to derive the static and dynamic semantics for
general product types implied by these definitions.

15.3 Labelled Products

Labelled product, or record, types are a useful generalization of product
types in which the components are accessed by name, rather than by po-
sition. The benefits of this should be clear: one cannot be expected to
remember the intended meaning of the 7th component of a 13-tuple!

The syntax for records is quite similar to that for n-tuples:

Types τ : : = rcd(l0, τ0, . . . , ln−1, τn−1)

Expr’s e : : = rcd(l0, e0, . . . , ln−1, en−1) | prj(l, e)

We use the meta-variable l to range over labels, an infinite set of names
disjoint from variable names. In concrete syntax one often writes

{l0 : τ0, . . . , ln−1 : τn−1}

for record types,
{l0 = e0, . . . , ln−1 = en−1}

for record expressions, and e · l for field selection.
The components of a record are called fields. Each field has a label,

called the field name, and a type. The components are accessed by field
name. We tacitly assume that no two fields are given the same name, and
that the order of fields in a record type is irrelevant. That is, we treat as
equal any two record types that differ only in the ordering of their fields.
That is, the order of fields is considered to be a matter of presentation,
and not of substance. This makes sense because the fields are accessed by
name, and not by position.

The static semantics of records is given by the following rules:

Γ ` e0 : τ0 · · · Γ ` en−1 : τn−1

Γ ` rcd(l0, e0, . . . , ln−1, en−1) : rcd(l0, τ0, . . . , ln−1, τn−1)

APRIL 5, 2006 WORKING DRAFT

15.4 Exercises 93

Γ ` e : rcd(l0, τ0, . . . , ln−1, τn−1)

Γ ` prj(li, e) : τi

An eager dynamic semantics is specified by these rules:

e0 value · · · ei−1 value ei 7−→ e′i
rcd(l0, e0, . . . , li, ei, . . . , ln−1, en−1) 7−→ rcd(l0, e0, . . . , li, e′i, . . . , ln−1, en−1)

e 7−→ e′
prj(l, e) 7−→ prj(l, e′)

e0 value · · · en−1 value

prj(li, rcd(l0, e0, . . . , ln−1, en−1)) 7−→ ei

Following the pattern for products, we may also formulate a lazy seman-
tics for records.

Theorem 15.2 (Safety for Records)
1. If e : τ and e 7−→ e′, then e : τ′.

2. If e : τ, then either e value or e 7−→ e′ for some e′.

15.4 Exercises

1. State and prove the canonical forms lemma for unit and product
types under the eager and under the lazy semantics.

2. Prove the safety theorem for unit and product types under either the
eager or the lazy semantics.

3. State the static and dynamic semantics for general products implied
by the definitions given in Section 15.1.

4. Functional update, concatenation, restriction, other record operations?

APRIL 5, 2006 WORKING DRAFT

Chapter 16

Sum Types

Most data structures involve alternatives such as the distinction between
a leaf and an interior node in a tree, or a choice in the outermost form of a
piece of abstract syntax. Importantly, the choice determines the structure
of the value. For example, nodes have children, but leaves do not, and so
forth. These concepts are expressed by sum types, specifically the binary
sum, which offers a choice of two things, and the nullary sum, which offers
a choice of no things. These generalize to n-ary sums, a choice among n
things, and to labelled sums, in which the selection is governed by a label.

16.1 Binary and Nullary Sums

Let us consider the extension of MinML with nullary and binary sums ac-
cording to the following grammar:

Types τ : : = void | sum(τ1, τ2)

Expr’s e : : = abort(τ, e) | inl(τ, e) | inr(τ, e) | case(e, τ1, x1.e1, τ2, x2.e2)

The concrete syntax for sum types is τ1 + τ2, and for case expressions is

case e { inl(x1:τ1)⇒ e1 | inr(x2:τ2)⇒ e2 }.

The type void is the nullary sum type, whose values are selected from
a choice of zero alternatives — there are no values of this type, and so no
introductory forms. The eliminatory form, abort(τ, e), aborts the compu-
tation in the event that e evaluates to a value, which it cannot. The type

94

16.1 Binary and Nullary Sums 95

τ = sum(τ1, τ2) is the binary sum. Its introductory forms have the form
inl(τ, e) or inl(τ, e), indicating which of the two possible choices by tag-
ging a value of the left or right summand as being a value of the sum type.
The eliminatory form performs a case analysis on the tag of a value, de-
composing it into its constituent parts.

The static semantics of sum types is given by the following rules:

Γ ` e : void
Γ ` abort(τ, e) : τ

Γ ` e : τ1 τ = sum(τ1, τ2)

Γ ` inl(τ, e) : τ

Γ ` e : τ2 τ = sum(τ1, τ2)

Γ ` inr(τ, e) : τ

Γ ` e : sum(τ1, τ2) Γ, x1 : τ1 ` e1 : τ Γ, x2 : τ2 ` e2 : τ

Γ ` case(e, τ1, x1.e1, τ2, x2.e2) : τ

Just as for the conditional expression considered in Chapter 12, both branches
of the case analysis must have the same type. Since the type expresses a
static “prediction” on the form of the value of an expression, and since a
value of sum type could evaluate to either form at run-time, we must insist
that both branches yield the same type.

Just as with products, there are two forms of dynamic semantics, the
eager form and the lazy. These differ according to whether the argument
to an injection is evaluated at the point the injection is evaluated, or only
when, if ever, that underlying value is used. We will give here the eager
semantics, and leave the lazy semantics to the reader.

e value
inl(τ, e) value

e value
inl(τ, e) value

e 7−→ e′
inl(τ, e) 7−→ inl(τ, e′)

e 7−→ e′
inr(τ, e) 7−→ inr(τ, e′)

e 7−→ e′
case(e, τ1, x1.e1, τ2, x2.e2) 7−→ case(e′, τ1, x1.e1, τ2, x2.e2)

e value
case(inl(τ, e), τ1, x1.e1, τ2, x2.e2) 7−→ [x1←e]e1

e value
case(inr(τ, e), τ1, x1.e1, τ2, x2.e2) 7−→ [x2←e]e2

The coherence of the static and dynamic semantics is stated and proved
as usual.

APRIL 5, 2006 WORKING DRAFT

16.1 Binary and Nullary Sums 96

Theorem 16.1 (Safety)
1. If e : τ and e 7−→ e′, then e′ : τ.

2. If e : τ, then either e value or e 7−→ e′ for some e′.

One use of sum types is to define the Boolean type, which has the fol-
lowing syntax:

Types : : = τ bool

Expr’s : : = e tt | ff | if(e, e1, e2)

This type is definable in the presence of sums and nullary products ac-
cording to the following equations:

bool = sum(unit, unit)
tt = inl(bool, unit)
ff = inr(bool, unit)

if(e, e1, e2) = case(e, unit, x1.e1, unit, x2.e2)

The variables x1 and x2 are dummies, since their type, unit, determines
their value, unit, and, moreover, they do not occur freely in e1 or e2.

Another use of sums is to define the option types, which have the fol-
lowing syntax:

Types τ : : = option(τ)
Expr’s e : : = nothing | just(e) | optcase(τ, e, e1, x.e2)

The type option(τ) represents the type of “optional” values of type τ.
The introductory forms are nothing, corresponding to “no value”, and
just(e), corresponding to a specified value of type τ. The elimination
form discriminates between the two possibilities.

The option type is definable from sums and nullary products according
to the following equations:

option(τ) = sum(unit, τ)
nothing = inl(option(τ), unit)
just(e) = inr(option(τ), e)

optcase(τ, e, e1, x2.e2) = case(e, unit, x1.e1, τ, x2.e2)

We leave it to the reader to examine the static and dynamic semantics im-
plied by these definitions.

APRIL 5, 2006 WORKING DRAFT

16.2 Labelled Sums 97

It is important to understand the difference between the types unit and
void, which are often confused. The type unit has exactly one element,
unit, whereas the type void has no elements at all. Consequently, if e :
unit, then if e evaluates to a value, it must be unit — in other words, e has
no interesting value (but it could diverge). On the other hand, if e : void,
then e must diverge, because if it were to have a value, it would have to be a
value of type void, of which there are none. This shows that the void type
in Java and related languages is really the type unit, because it indicates
that an expression of that type has no interesting result, not that it must
diverge!

16.2 Labelled Sums

Binary and nullary sums are sufficient to define generalized n-ary sums, in
a manner analogous to the definition of n-ary products from nullary and
binary products in Chapter 15. We leave the details of this derivation to
the reader, and concentrate instead on labelled sums, or labelled variants. La-
belled sums are a form of n-ary sum in which the alternatives are labelled
by names, rather than by positions.

The syntax of labelled sums is given by the following grammar:

Types τ : : = sum(l0, τ0, . . . , ln−1, τn−1)

Expr’s e : : = inj(τ, l, e) | case(e, l0, τ0, x0.e0, . . . , ln−1, τn−1, xn−1.en−1)

The syntax is a bit heavy compared to products, so it may help to see the
concrete syntax as well. The concrete syntax of labelled sum types has the
form

[l0 : τ0, . . . , ln−1 : τn−1],

while that of injections has the form [l = e]τ, and that of case analyses have
the form

case e {[l0=x0 : τ0]⇒ e0, . . . , [ln−1=xn−1 : τn−1]⇒ en−1}.

It is an awkwardness of the syntax that injections must be marked with
the sum type into which the injection is being made. This is to ensure that
every expression has a unique type, since we cannot recover the entire sum
type from the type of one of its variants. In Chapter 36 we will consider
ways to relax this requirement by introducing subtyping.

APRIL 5, 2006 WORKING DRAFT

16.3 Exercises 98

The static semantics is given by the following rules:

Γ ` e : τi τ = sum(l0, τ0, . . . , ln−1, τn−1) 0 ≤ i < n
Γ ` inj(τ, li, e) : τ

Γ ` e : sum(l0, τ0, . . . , ln−1, τn−1)

Γ, x0 : τ0 ` e0 : τ · · · Γ, xn−1 : τn−1 ` en−1 : τ

Γ ` case(e, l0, τ0, x0.e0, . . . , ln−1, τn−1, xn−1.en−1) : τ

These rules are a straightforward generalization of those for binary sums
to permit an arbitrary number of labelled variants.

We leave as an exercise to formulate the (eager or lazy) dynamic se-
mantics of labelled sums and to prove this extension sound.

16.3 Exercises

1. Formulate general n-ary sums in terms of nullary and binary sums.

APRIL 5, 2006 WORKING DRAFT

Part VI

Recursive Types

99

Chapter 17

Recursive Types

Many types can be characterized as the solution to a type isomorphisms
equation. For example, the type of natural numbers can be characterized
as a solution to the type isomorphism

nat ∼= unit + nat.

This means a natural number is either zero (inl(〈〉)) or the successor of
another natural number (inr(n)). Similarly, the type of lists of natural
numbers, list, is the solution to the type isomorphism

list ∼= unit + (nat× list),

and the type of “bare” binary trees, tree, is the solution to the type iso-
morphism

tree ∼= unit + (tree× tree).

These examples all fall within the class of inductively defined types, but
other sorts of type isomorphisms are also of interest. For example, the
type, stream, of infinite streams of natural numbers is the solution to the
type isomorphism

stream ∼= nat× stream,

stating that every stream consists of a natural number paired with another
stream. Even more radically, we may consider the type isomorphism

D ∼= D→D

specifies a type that is isomorphic to the type of functions on itself!

100

17.1 Recursive Types 101

The solution to an isomorphism equation is a fixed point of an associated
operator on types, up to isomorphism. For example, the solution to the
type isomorphism

nat ∼= unit + nat

is a fixed point (up to isomorphism) of the type operator

T(t) = unit + t,

which is to say that we seek a type τ such that τ ∼= T(τ). A recursive type
is the solution to such a fixed point equation, written µ(t.T(t)). Thus, nat
may be regarded as standing for the recursive type µ(t.unit + t), and list

may be regarded as the recursive type µ(t.unit + (nat× t)), and so forth.
For the solution to be defined “up to isomorphism” means that there

are operations, unroll and roll, that mediate between a recursive type,
µ(t.τ), and its unrolling, [t←µ(t.τ)]τ. For example, the operation unroll

maps µ(t.unit + t) to unit + µ(t.unit + t), and roll maps in the opposite
direction. In this sense unroll exposes the underlying structure of a natu-
ral number (it is either zero or a successor of another natural number), and
roll is the inverse operation that treats zero, or the successor of another
natural number, as a natural number. Thus this pair of operations, which
constitute an isomorphism between a recursive type and its unrolling, cap-
ture the informal idea that something is a natural number iff it is either
zero or the successor of another natural number — the isomorphism cor-
responds to the “if and only if” part of the informal characterization.

17.1 Recursive Types

The abstract syntax of recursive types is given by the following grammar:

Types τ : : = t | rec(t.τ)
Expr’s e : : = roll(τ, e) | unroll(e)

The meta-variable t ranges over a class of type names, which serve as names
for types. In the recursive type rec(t.τ), the type name, t, refers to the
recursive type itself, in a sense to be made clear in the static semantics
given below. The one-step unrolling of rec(t.τ) is the type [t←rec(t.τ)]τ
obtained by substituting the recursive type for t in τ. When this is the
case, the recursive type is sometimes said to be the one-step rolling of the

APRIL 5, 2006 WORKING DRAFT

17.1 Recursive Types 102

substituted type. Note, however, that the unrolling does not determine
the rolling! That is, given [t←rec(t.τ)]τ, one cannot recover rec(t.τ),
because t may not occur in τ, or may occur multiply.

The introductory form, roll(τ, e), introduces a value of recursive type
in terms of a value of its one-step unrolling, and the eliminatory form,
unroll(e), extracts from a value of recursive type a value of its unrolling.
In implementation terms the operation roll(τ, e) may be thought of as
an abstract “pointer” to a value of the unrolled type, and the operation
unroll(e) “chases” the pointer to obtain that value from a value of the
corresponding rolled type.

The static semantics of this extension of MinML consists of two forms
of judgement, τ type, and e : τ. Whereas the latter is the familiar mem-
bership judgement stating that expression e is of type τ, the former is a
formation judgement stating that τ is a well-formed type expression. This
is required to rule out types that involve type names that do not refer to
any recursive type. We may define this judgement by a set of rules that
involve hypothetical judgements of the form

t1 type, . . . , tn type `t1,...,tn τ type,

where the assumptions govern the type names that may appear in τ. We
write ∆ for a finite set of assumptions of the above form, and drop the
index from the turnstile as usual.

The rules for type formation in the presence of recursive types are as
follows.

∆, t type ` t type

∆, t type ` τ type

∆ ` rec(t.τ) type

In addition the other types must now have formation rules, since they may
involve recursive type variables. For example, here are the formation rules
for sums and products:

∆ ` unit type

∆ ` τ1 type ∆ ` τ2 type

∆ ` prod(τ1, τ2) type

∆ ` void type

∆ ` τ1 type ∆ ` τ2 type

∆ ` sum(τ1, τ2) type

The static semantics of recursive types is defined by the following rules:

τ type τ = rec(t.τ′) Γ ` e : [t←τ]τ′

Γ ` roll(τ, e) : τ

APRIL 5, 2006 WORKING DRAFT

17.2 Inductive Data Structures 103

Γ ` e : rec(t.τ′)
Γ ` unroll(e) : [t←τ]τ′

These rules express an inverse relationship stating that a recursive type is
isomorphic to its unrolling, with the operations roll and unroll being the
witnesses to the isomorphism.

Operationally, this is expressed by the following dynamic semantics
rules:

e value
unroll(roll(τ, e)) 7−→ e

e 7−→ e′
unroll(e) 7−→ unroll(e′)

e 7−→ e′
roll(τ, e) 7−→ roll(τ, e′)

These rules specify an eager semantics for rolling, but it would also be
possible to consider a lazy semantics in which roll(τ, e) is a value, re-
gardless of whether e is a value or not, and in which the last transition rule
is correspondingly suppressed.

It is quite easy to establish the safety of this extension to MinML:

Theorem 17.1 (Safety)
1. If e : τ and e 7−→ e′, then e′ : τ.

2. If e : τ, then either e value, or there exists e′ such that e 7−→ e′.

17.2 Inductive Data Structures

Recursive types may be used to represent inductively defined types, such
as lists or trees. For example, let us consider the representation of the type
of lists of values of type τ, which is written list(τ). Lists have two intro-
ductory forms, the empty list, written nil, and the non-empty list, written
cons(e1, e2), where e1 is of type τ and e2 is of type list(τ). The elimina-
tion form is a case analysis that distinguishes whether a list is empty or
non-empty, and, if non-empty, extracts its head and tail elements. This is
written

listcase(τ, e, e0, x, y.e1),

where e is a list, e0 is the value for the empty list, and e1 is the value for the
non-empty list with head x and tail y.

APRIL 5, 2006 WORKING DRAFT

17.3 Recursive Functions 104

These constructs are all definable using recursive sum and product
types according to the following equations:

list(τ) = rec(t.sum(unit, prod(τ, t)))
nil = roll(list(τ), unit)

cons(e1, e2) = roll(list(τ), pair(e1, e2))

listcase(τ, e, e0, x, y.e1) = case(unroll(e), unit, u.e0, τ′, v.e′1)

where τ′ = prod(τ, list(τ)), u # e0, v # e1, and e′1 = [x, y←fst(v), snd(v)]e1.
Informally, the empty list, nil, is a “pointer” to a null-tuple tagged

with inl, and the non-empty list, cons(e1, e2), is a “pointer” to a pair
tagged with inr, with first component e1 and second component e2. The
listcase construct “chases” the pointer, then cases analyses on the tag,
branching to the appopriate case, passing the appropriate data values.

Of course more efficient representations are possible, but this repre-
sentation makes clear the pattern of lists are represented using recursive
types. Using similar methods we may represent any inductively defined
type such as the type of trees or the type of abstract syntax for a given
language.

17.3 Recursive Functions

In Chapter 12 we considered recursive functions as primitive, generaliz-
ing λ(x:τ. e) to fun f(x:τ1):τ2 is e, where f is a variable standing for “the
function itself”. What makes f stand for the function itself is that the dy-
namic semantics ensures this is so whenever such a function is applied:

(e1 = fun f(x:τ1):τ2 is e)
e1(e2) 7−→ [f , x←e1, e2]e .

In this section we show that recursive functions are definable in the pres-
ence of recursive types, and hence need not be taken as primitive.

To do so we will consider an extension of the core MinML language
in which the function type contains only non-recursive λ-abstractions, but
which, in compensation, has recursive types. Our strategy will be to show
that we can define a special form of function type, τ1→recτ2, whose values
are (possibly recursive) functions mapping arguments of type τ1 to results

APRIL 5, 2006 WORKING DRAFT

17.3 Recursive Functions 105

of type τ2. This means that we will show how to define recursive functions
of this type, and show how to apply them to arguments.

The key to the definition is to use a technique called self-application,
in which we arrange that a function of type τ1→recτ2 implicitly takes an
“extra” argument, which will be the function itself. This means that the
recursive function type must satisfy the isomorphism

τ1→recτ2
∼= (τ1→recτ2)→τ1→τ2.

This may be achieved by defining

τ1→recτ2 = µ(t.t→τ1→τ2),

where t is chosen so that t # τ1 and t # τ2.
Application of recursive functions is then defined to ensure that the

“self” argument really is the function itself:

aprec(e1, e2) := unroll(e1)(e1)(e2),

Since the type of e1 is τ1→recτ2, its unrolling has type (τ1→recτ2)→(τ1→τ2),
so this is indeed type correct.

The recursive function funrec f(x:τ1):τ2 is e is represented by the ex-
pression

roll(λ(f:τ1→recτ2. λ(x:τ1. e))).

The correctness of this interpretation follows by checking that the evalua-
tion steps are properly simulated. Suppose that e1 = funrec f(x:τ1):τ2 is e
and e2 value.

aprec(e1, e2) = unroll(roll(λ(f:τ1→recτ2. λ(x:τ1. e))))(e1)(e2)

7−→ λ(f:τ1→recτ2. λ(x:τ1. e))(e1)(e2)

7−→ [f , x←e1, e2]e,

as required.
Let us examine the preceding development in a bit more detail. The ap-

plication of a recursive function may be decomposed into two steps: first,
convert the recursive function into an ordinary function by self-application,
and, second, apply this function to the argument. Since the only thing we
can do with a recursive function is to apply it, there is no loss of generality
in assuming that the first step of this process is done eagerly, so that all

APRIL 5, 2006 WORKING DRAFT

17.4 Un(i)typed Languages 106

uses of a recursive function e : τ1→recτ2 are of the form unroll(e)(e). In
particular, we may assume that the body of a recursive function has the
form

λ(f:τ1→recτ2. F(unroll(f)(f)))

for some function F : (τ1→τ2)→(τ1→τ2). We then have

unroll(e)(e) ∗7−→ F(unroll(e)(e)),

so that unroll(e)(e) may be seen as a fixed point of the function F, and
hence may be viewed as the recursive function of type τ1→τ2 determined
by F.

17.4 Un(i)typed Languages

It is customary to distinguish between typed and untyped languages, as
if they were alternatives to one another. While it is true that there are
ill-defined languages that might be described as untyped, among the well-
defined, or safe, languages the supposed distinction is fallacious. A popular
form of the this misconception is to distinguish between dynamically typed
and statically typed languages, often placing them in opposition to one an-
other. Terminology notwithstanding, there is no fundamental distinction
or opposition, but rather so-called dynamically typed languages are but a
mode of use of static types!

The classical example is the so-called untyped λ-calculus, which is a very
elegant language devised by Alonzo Church in the 1930’s. It’s chief charac-
teristic is that the entire language consists of nothing but functions! Func-
tions take functions as arguments and yield functions as results, and all
data structures must be represented as functions. Surprisingly, this tiny
language is sufficiently powerful to express any computable function!1

The abstract syntax of the untyped λ-calculus is given by the following
grammar:

λ-terms u : : = x | λ(x.u) | ap(u1, u2)

1Technically, the notion of a computable function is defined over the natural numbers.
So in order for this statement to make sense, the natural numbers must somehow be
encoded as functions. This is achieved using a device called the Church numerals, which
anticipated by several decades the development of the so-called “object-oriented” view
of data.

APRIL 5, 2006 WORKING DRAFT

17.4 Un(i)typed Languages 107

In concrete syntax these two forms are written λx. u and u1 u2. The for-
mer is called a λ-abstraction, and the latter application. The entire language
consists of these two constructs, plus variables that range over untyped
λ-terms.

The basic form of execution in the untyped λ-calculus is defined by the
following transition rules:

ap(λ(x.u1), u2) 7−→ [x←u2]u
u1 7−→ u2

ap(u1, u2) 7−→ ap(u′1, u2)

In the λ-calculus literature this judgement is called head reduction. The first
rule is called β-reduction; it defines the meaning of function application in
terms of substitution. It is also possible to define a call-by-value variant of
head reduction by insisting that the β-reduction step apply only when the
argument is an explicit λ, and adding the following argument-evaluation
rule:

u2 7−→ u′2
ap(λ(x.u1), u2) 7−→ ap(λ(x.u1), u′2)

The untyped λ-calculus may be faithfully embedded in the typed language
MinML, enriched with recursive types. This means that every untyped
λ-term has a representation as an expression in MinML in such a way that
execution of the representation of a λ-term corresponds to execution of the
term itself. If the execution model of the λ-calculus is call-by-name, this
correspondence holds for the call-by-name variant of MinML, and similarly
for call-by-value.

It is important to understand that this form of embedding is not a mat-
ter of writing an interpreter for the λ-calculus in MinML, but rather a direct
representation of λ-terms as certain expressions of MinML. It is for this rea-
son that we say that untyped languages are just a special case of typed lan-
guages, albeit those with recursive types. Thus the supposed “opposition”
between typed and untyped languages is nothing of the kind. Rather, the
issue is simply that recursive types greatly increase the expressive power
of typed languages, permitting styles of programming that are otherwise
impossible.

The main idea is the observation that untyped really means uni-typed.
The untyped λ-calculus does not have zero types, rather it has exactly one
type! This type is the celebrated recursive type

D = rec(t.arrow(t, t)).

APRIL 5, 2006 WORKING DRAFT

17.4 Un(i)typed Languages 108

A value of type D is of the form roll(D, e) where e is a value of type
arrow(D, D) — a function whose domain and range are both D. Any such
function can be regarded as a value of type D by “rolling”, and any value
of type D can be turned into a function by “unrolling”. Put in other terms,
the recursive type D satisfies the isomorphism

D ∼= arrow(D, D)

meaning that it is isomorphic to the function space on itself.
This leads to the following embedding, u†, of u into MinML:

x† = x
λ(x.u)† = roll(D, lambda(D, x.u†))

ap(u1, u2)
† = app(unroll(u†

1), u†
2)

Observe that the embedding of a λ-abstraction is a value, and that the
embedding of an application exposes the function being applied by un-
rolling the recursive type. Consequently,

ap(λ(x.u1), u2)
† = app(unroll(roll(D, lambda(D, x.u†

1))), u†
2)

7−→ app(lambda(D, x.u†
1), u†

2)

7−→ [x←u†
2]u

†
1

= ([x←u2]u1)†.

The last step, stating that the embedding commutes with substitution, is
easily proved by induction on the structure of u1. Thus β-reduction is
faithfully implemented by evaluation of the embedded terms. It is also
easy to show that if u†

1
∗7−→ v†

1, then ap(u1, u2)
† ∗7−→ ap(v1, u2)

†. Con-
sequently, head reduction in the λ-calculus is faithfully implemented by
evaluation in MinML enriched with recursive types.

Interest in the untyped λ-calculus stems from its surprising expressive
power: it is a Turing-complete language in the sense that it has the same
capability to expression computations on the natural numbers as does any
other known programming language. The Church-Turing Thesis states
that any conceivable notion of computable function on the natural num-
bers is equivalent to the λ-calculus. This is certainly true for all known
means of defining computable functions on the natural numbers. The
force of the Church-Turing Thesis is that it postulates that all future no-
tions of computation will be equivalent in expressive power (measured

APRIL 5, 2006 WORKING DRAFT

17.4 Un(i)typed Languages 109

by definability of functions on the natural numbers) to the λ-calculus.
The Church-Turing Thesis is therefore a scientific law in precisely the same
sense as, say, Newton’s Law of Universal Gravitation makes a prediction
about all future measurements of the acceleration due to the gravitational
field of a massive object.

The key to understanding this is to consider how one may program
with the natural numbers in the untyped λ-calculus. The first task is to
represent the natural numbers as certain λ-terms, called the Church numer-
als.

0 := λb. λs. b
n + 1 := λb. λs. s (n b s)

It follows that
n u1 u2

∗7−→ u2 (· · · (u2 u1)) ,

the n-fold application of u2 to u1. That is, n iterates its second argument
(the induction step) n times, starting with its first argument (the basis).

Using this definition it is not difficult to define addition, multiplication,
and a conditional test for zero function. Crucially, the predecessor function
is also definable, using a “trick” involving the representation of ordered
pairs. The idea is to compute, given n, the pair consisting of n− 1 and n,
starting with 0 and 0, so that the inductive step consists of passing from
the pair (n− 1, n) to (n, n + 1), which is easily achieved. The predecessor
is then the first projection of the result of this auxiliary function. This gives
us all the apparatus of MinML, apart from recursion. This, too, is definable
by considering the Y-combinator,

Y = λF. (λ f . F (f f)) (λ f . F (f f)).

Observe that
Y F ≈ F (Y F),

where the equivalence means, informally, that both sides may be “symbol-
ically evaluated” to obtained the same result. More precisely,

Y F ∗7−→ F (u) (u),

where Y F 7−→ u. For this reason, the term Y is called a fixed point combina-
tor. As with the representation of recursive functions in MinML with recur-
sive types, the key to the Y combinator is the possibility of self-application
inherent in a un(i)typed language.

APRIL 5, 2006 WORKING DRAFT

17.5 Exercises 110

17.5 Exercises

1. Derive the static and dynamic semantics of lists induced by the defi-
nitions given in Section 17.2.

2. Give a representation of binary trees decorated with values of type τ
at the leaves using recursive types.

3. Can MinML be faithfully embedded in the untyped λ-calculus?

4. Explore the compilation of Y, and relate this to the representation of
recursive functions.

APRIL 5, 2006 WORKING DRAFT

Chapter 18

Pattern Compilation

111

Chapter 19

Dynamic Typing

The formalization of type safety given in Chapter 11 states that a language
is type safe iff it satisfies both preservation and progress. According to this
account, “stuck” states — non-final states with no transition — must be
rejected by the static type system as ill-typed. Although this requirement
seems natural for relatively simple languages such as MinML, it is not im-
mediately clear that our formalization of type safety scales to larger lan-
guages, nor is it entirely clear that the informal notion of safety is faithfully
captured by the preservation and progress theorems.

One issue that we addressed in Chapter 11 was how to handle expres-
sions such as 3 div 0, which are well-typed, yet stuck, in apparent viola-
tion of the progress theorem. We discussed two possible ways to handle
such a situation. One is to enrich the type system so that such an expres-
sion is ill-typed. However, this takes us considerably beyond the capabili-
ties of current type systems for practical programming languages. The al-
ternative is to ensure that such ill-defined states are not “stuck”, but rather
make a transition to a designated error state. To do so we introduced the
notion of a checked error, which is explicitly detected and signalled during
execution. Checked errors are constrasted with unchecked errors, which
are ruled out by the static semantics.

In this chapter we will concern ourselves with question of why there
should unchecked errors at all. Why aren’t all errors, including type er-
rors, checked at run-time? Then we can dispense with the static semantics
entirely, and, in the process, execute more programs. Such a language is
called dynamically typed, in contrast to MinML, which is statically typed.

One advantage of dynamic typing is that it supports a more flexible

112

113

treatment of conditionals. For example, the expression

(if true then 7 else "7")+1

is statically ill-typed, yet it executes successfully without getting stuck or
incurring a checked error. Why rule it out, simply because the type checker
is unable to “prove” that the else branch cannot be taken? Instead we
may shift the burden to the programmer, who is required to maintain in-
variants that ensure that no run-time type errors can occur, even though
the program may contain conditionals such as this one.

Another advantage of dynamic typing is that it supports heterogeneous
data structures, which may contain elements of many different types. For
example, we may wish to form the “list”

[true, 1, 3.4, fn x=>x]

consisting of four values of distinct type. Languages such as ML preclude
formation of such a list, insisting instead that all elements have the same
type; these are called homogenous lists. The argument for heterogeneity
is that there is nothing inherently “wrong” with such a list, particularly
since its constructors are insensitive to the types of the components — they
simply allocate a new node in the heap, and initialize it appropriately.

Note, however, that the additional flexibility afforded by dynamic typ-
ing comes at a cost. Since we cannot accurately predict the outcome of
a conditional branch, nor the type of a value extracted from a heteroge-
neous data structure, we must program defensively to ensure that nothing
bad happens, even in the case of a type error. This is achieved by turn-
ing type errors into checked errors, thereby ensuring progress and hence
safety, even in the absence of a static type discipline. Thus dynamic typing
catches type errors as late as possible in the development cycle, whereas
static typing catches them as early as possible.

In this chapter we will investigate a dynamically typed variant of MinML
in which type errors are treated as checked errors at execution time. Our
analysis will reveal that, rather than being opposite viewpoints, dynamic
typing is a special case of static typing! In this sense static typing is more
expressive than dynamic typing, despite the superficial impression created
by the examples given above. This viewpoint illustrates the pay-as-you-go
principle of language design, which states that a program should only in-
cur overhead for those language features that it actually uses. By viewing

APRIL 5, 2006 WORKING DRAFT

19.1 Dynamic Typing 114

dynamic typing as a special case of static typing, we may avail ourselves
of the benefits of dynamic typing whenever it is required, but avoid its
costs whenever it is not.

19.1 Dynamic Typing

The fundamental idea of dynamic typing is to regard type clashes as checked,
rather than unchecked, errors. Doing so puts type errors on a par with divi-
sion by zero and other checked errors. This is achieved by augmenting the
dynamic semantics with rules that explicitly check for stuck states. For ex-
ample, the expression true+7 is such an ill-typed, stuck state. By checking
that the arguments of an addition are integers, we can ensure that progress
may be made, namely by making a transition to error.

The idea is easily illustrated by example. Consider the rules for func-
tion application in MinML given in Chapter 12, which we repeat here for
convenience:

v value v1 value (v = fun f (x:τ1):τ2 is e)
apply(v, v1) 7−→ [f , x←v, v1]e

e1 7−→ e′1
apply(e1, e2) 7−→ apply(e′1, e2)

v1 value e2 7−→ e′2
apply(v1, e2) 7−→ apply(v1, e′2)

In addition to these rules, which govern the well-typed case, we add
the following rules governing the ill-typed case:

v value v1 value (v 6= fun f (x:τ1):τ2 is e)
apply(v, v1) 7−→ error

apply(error, e2) 7−→ error

v1 value
apply(v1, error) 7−→ error

The first rule states that a run-time error arises from any attempt to apply
a non-function to an argument. The other two define the propagation of

APRIL 5, 2006 WORKING DRAFT

19.2 Implementing Dynamic Typing 115

such errors through other expressions — once an error occurs, it propa-
gates throughout the entire program.

By entirely analogous means we may augment the rest of the semantics
of MinML with rules to check for type errors at run time. Once we have
done so, it is safe to eliminate the static semantics in its entirety.1 Having
done so, every expression is well-formed, and hence preservation holds
vacuously. More importantly, the progress theorem also holds because
we have augmented the dynamic semantics with transitions from every
ill-typed expression to error, ensuring that there are no “stuck” states.
Thus, the dynamically typed variant of MinML is safe in same sense as the
statically typed variant. The meaning of safety does not change, only the
means by which it is achieved.

19.2 Implementing Dynamic Typing

Since both the statically- and the dynamically typed variants of MinML are
safe, it is natural to ask which is better. The main difference is in how early
errors are detected — at compile time for static languages, at run time for
dynamic languages. Is it better to catch errors early, but rule out some
useful programs, or catch them late, but admit more programs? Rather
than attempt to settle this question, we will sidestep it by showing that
the apparent dichotomy between static and dynamic typing is illusory by
showing that dynamic typing is a mode of use of static typing. From this
point of view static and dynamic typing are matters of design for a par-
ticular program (which to use in a given situation), rather than a doctrinal
debate about the design of a programming language (which to use in all
situations).

To see how this is possible, let us consider what is involved in imple-
menting a dynamically typed language. The dynamically typed variant
of MinML sketched above includes rules for run-time type checking. For
example, the dynamic semantics includes a rule that explicitly checks for
an attempt to apply a non-function to an argument. How might such a
check be implemented? The chief problem is that the natural representa-
tions of data values on a computer do not support such tests. For example,

1We may then simplify the language by omitting type declarations on variables and
functions, since these are no longer of any use.

APRIL 5, 2006 WORKING DRAFT

19.2 Implementing Dynamic Typing 116

a function might be represented as a word representing a pointer to a re-
gion of memory containing a sequence of machine language instructions.
An integer might be represented as a word interpreted as a two’s comple-
ment integer. But given a word, you cannot tell, in general, whether it is
an integer or a code pointer.

To support run-time type checking, we must adulterate our data rep-
resentations to ensure that it is possible to implement the required checks.
We must be able to tell by looking at the value whether it is an integer,
a boolean, or a function. Having done so, we must be able to recover
the underlying value (integer, boolean, or function) for direct calculation.
Whenever a value of a type is created, it must be marked with appropriate
information to identify the sort of value it represents.

There are many schemes for doing this, but at a high level they all
amount to attaching a tag to a “raw” value that identifies the value as
an integer, boolean, or function. Dynamic typing then amounts to check-
ing and stripping tags from data during computation, transitioning to
error whenever data values are tagged inappropriately. From this point
of view, we see that dynamic typing should not be described as “run-time
type checking”, because we are not checking types at run-time, but rather
tags. The difference can be seen in the application rule given above: we
check only that the first argument of an application is some function, not
whether it is well-typed in the sense of the MinML static semantics.

To clarify these points, we will make explicit the manipulation of tags
required to support dynamic typing. To begin with, we revise the gram-
mar of MinML to make a distinction between tagged and untagged values,
as follows:

Expressions e : : = x | v | o(e1, . . . , en) | if e then e1 else e2 |
apply(e1, e2)

TaggedValues v : : = Int (n) | Bool (true) | Bool (false) |
Fun (fun x (y:τ1):τ2 is e)

UntaggedValues u : : = true | false | n | fun x (y:τ1):τ2 is e

Note that only tagged values arise as expressions; untagged values are
used strictly for “internal” purposes in the dynamic semantics. More-
over, we do not admit general tagged expressions such as Int (e), but only
explicitly-tagged values.

Second, we introduce tag checking rules that determine whether or not
a tagged value has a given tag, and, if so, extracts its underlying untagged

APRIL 5, 2006 WORKING DRAFT

19.3 Dynamic Typing as Static Typing 117

value. In the case of functions these are given as rules for deriving judge-
ments of the form v is fun u, which checks that v has the form Fun (u),
and extracts u from it if so, and for judgements of the form v isnt fun, that
checks that v does not have the form Fun (u) for any untagged value u.

Fun (u) is fun u

Int () isnt fun Bool () isnt fun

Similar judgements and rules are used to identify integers and booleans,
and to extract their underlying untagged values.

Finally, the dynamic semantics is re-formulated to make use of these
judgement forms. For example, the rules for application are as follows:

v1 value v is fun fun f (x:τ1):τ2 is e
apply(v, v1) 7−→ [f , x←v, v1]e

v value v isnt fun
apply(v, v1) 7−→ error

Similar rules govern the arithmetic primitives and the conditional ex-
pression. For example, here are the rules for addition:

v1 value v2 value v1 is int n1 v2 is int n2 (n = n1 + n2)
+(v1, v2) 7−→ Int (n)

Note that we must explicitly check that the arguments are tagged as inte-
gers, and that we must apply the integer tag to the result of the addition.

v1 value v2 value v1 isnt int

+(v1, v2) 7−→ error

v1 value v2 value v1 is int n1 v2 isnt int

+(v1, v2) 7−→ error

These rules explicitly check for non-integer arguments to addition.

19.3 Dynamic Typing as Static Typing

Once tag checking is made explicit, it is easier to see its hidden costs in
both time and space — time to check tags, to apply them, and to extract

APRIL 5, 2006 WORKING DRAFT

19.3 Dynamic Typing as Static Typing 118

the underlying untagged values, and space for the tags themselves. This is
a significant overhead. Moreover, this overhead is imposed whether or not
the original program is statically type correct. That is, even if we can prove
that no run-time type error can occur, the dynamic semantics nevertheless
dutifully performs tagging and untagging, just as if there were no type
system at all.

This violates a basic principle of language design, called the pay-as-you-
go principle. This principle states that a language should impose the cost
of a feature only to the extent that it is actually used in a program. With
dynamic typing we pay for the cost of tag checking, even if the program
is statically well-typed! For example, if all of the lists in a program are
homogeneous, we should not have to pay the overhead of supporting het-
erogeneous lists. The choice should be in the hands of the programmer,
not the language designer.

It turns out that we can eat our cake and have it too! The key is a
simple, but powerful, observation: dynamic typing is but a mode of use of
static typing, provided that our static type system includes a type of tagged
data! Dynamic typing emerges as a particular style of programming with
tagged data.

The point is most easily illustrated using ML. The type of tagged data
values for MinML may be introduced as follows:

(* The type of tagged values. *)

datatype tagged =

Int of int |

Bool of bool |

Fun of tagged -> tagged

Values of type tagged are marked with a value constructor indicating their
outermost form. Tags may be manipulated using pattern matching.

Second, we introduce operations on tagged data values, such as addi-
tion or function call, that explicitly check for run-time type errors.

APRIL 5, 2006 WORKING DRAFT

19.3 Dynamic Typing as Static Typing 119

exception TypeError

fun checked add (m:tagged, n:tagged):tagged =

case (m,n) of

(Int a, Int b) => Int (a+b)

| (,) => raise TypeError

fun checked apply (f:tagged, a:tagged):tagged =

case f of

Fun g => g a

| => raise TypeError

Observe that these functions correspond precisely to the instrumented dy-
namic semantics given above.

Using these operations, we can then build heterogeneous lists as values
of type tagged list.

val het list : tagged list =

[Int 1, Bool true, Fun (fn x => x)]

val f : tagged = hd(tl(tl het list))

val x : tagged = checked apply (f, Int 5)

The tags on the elements serve to identify what sort of element it is: an
integer, a boolean, or a function.

It is enlightening to consider a dynamically typed version of the facto-
rial function:

fun dyn fact (n : tagged) =

let fun loop (n, a) =

case n

of Int m =>

(case m

of 0 => a

| m => loop (Int (m-1),

checked mult (m, a)))

| => raise RuntimeTypeError

in loop (n, Int 1)

end

Notice that tags must be manipulated within the loop, even though we
can prove (by static typing) that they are not necessary! Ideally, we would
like to hoist these checks out of the loop:

APRIL 5, 2006 WORKING DRAFT

19.3 Dynamic Typing as Static Typing 120

fun opt dyn fact (n : tagged) =

let fun loop (0, a) = a

| loop (n, a) = loop (n-1, n*a)

in case n

of Int m => Int (loop (m, 1))

| => raise RuntimeTypeError

end

It is very hard for a compiler to do this hoisting reliably. But if you consider
dynamic typing to be a special case of static typing, as we do here, there
is no obstacle to doing this optimization yourself, as we have illustrated
here.

APRIL 5, 2006 WORKING DRAFT

Part VII

Polymorphism

121

Chapter 20

Polymorphism

MinML, and its extensions, are explicitly typed in the sense that every well-
typed expression has a unique type. In particular, a function expression
has specific domain and range types, which must be respected by all uses
of that function. Thus it is impossible to write a fully general composition
function that forms the composition of any two functions of appropriate
type. Instead we must define a separate composition function for each
choice of the three types involved:

λ(f:τ2→τ3. λ(g:τ1→τ2. λ(x:τ1. f(g(x)))))

There is one such function for each choice of types τ1, τ2, and τ3, even
though all such choices “compute the same way”.

This limitation is rather irksome, and quickly gets out of hand. His-
torically, typed languages were strongly criticized for this reason, but the
problem is not inherent in typed languages, rather just an annoying limi-
tation of a particular type system. What is needed is some way to capture
the generic pattern of a computation in a way that is generic, or parametric,
in the types involved. This facility is called polymorphism.

20.1 Polymorphic λ-Calculus

The polymorphic λ-calculus, or Poly, is a minimal functional language that
illustrates the core concepts of polymorphic typing, and permits us to ex-
amine its surprising expressive power in isolation from other language

122

20.1 Polymorphic λ-Calculus 123

features. The abstract syntax of the polymorphic λ-calculus is given as
follows:

Types τ : : = t | arrow(τ1, τ2) | all(t.τ)
Expr’s e : : = x | lambda(τ, x.e) | app(e1, e2) | Lambda(t.e) | App(e, τ)

The meta-variable t ranges over a class of type names (also called type vari-
ables), and x ranges over a class of expression names (also called expres-
sion variables). The type abstraction, Lambda(t.e), defines a generic, or poly-
morphic, function with type parameter t standing for an unpspecified type
within e. The type application, or instantiation, App(e, τ), applies a polymor-
phic function to a specified type, which is then plugged in for the type
parameter to obtain the result. Polymorphic functions are classified by
the universal type, all(t.τ), that determines the type, τ, of the result as a
function of the argument, t.

In examples we use the following mathematical and concrete syntax
for these constructs:

Abstract Concrete
all(t.τ) ∀(t.τ)
Lambda(t.e) Λ(t.e)
App(e, τ) e[τ]

The static semantics of Poly consists of two categorical judgement forms,
τ type, stating that τ is a well-formed type, and e : τ, stating that e is
a well-formed expression of type τ. The definitions of these judgements
make use of hypothetical judgements of the form

t1 type, . . . , tn type `t1,...,tn τ type

and
t1 type, . . . , tn type; x1 : τ1, . . . , xk : τk `t1,...,tn,x1,...,xk e : τ.

As usual we suppress the indices on the turnstile for the sake of clarity.
As a notational convenience we abbreviate a sequence of type variable
formation hypotheses by ∆ and a sequence of expression variable typing
hypotheses by Γ.

The rules for type formation are as follows:

∆, t type ` t type (20.1)

APRIL 5, 2006 WORKING DRAFT

20.1 Polymorphic λ-Calculus 124

∆ ` τ1 type ∆ ` τ2 type

∆ ` arrow(τ1, τ2) type (20.2)

∆, t type ` τ type

∆ ` all(t.τ) type (20.3)

The rules for typing expressions are as follows:

∆, t type; Γ ` e : τ

∆; Γ ` Lambda(t.e) : all(t.τ) (20.4)

∆; Γ ` e : all(t.τ′) ∆ ` τ type

∆; Γ ` App(e, τ) : [t←τ]τ′ (20.5)

As an example, the polymorphic composition function is written as
follows:

Λ(t1.Λ(t2.Λ(t3.λ(f:t2→t3. λ(g:t1→t2. λ(x:t1. f(g(x)))))))).

It has the polymorphic type

∀(t1.∀(t2.∀(t3.(t2→t3)→(t1→t2)→(t1→t3)))).

Typing is closed under substitution of types for type variables and
terms for term variables.

Lemma 20.1 (Substitution)
1. If ∆, t type ` τ′ type and ∆ ` τ type, then ∆ ` [t←τ]τ′ type.

2. If ∆, t type; Γ ` e′ : τ′ and ∆ ` τ type, then ∆; [t←τ]Γ ` [t←τ]e′ :
[t←τ]τ′.

3. If ∆; Γ, x : τ ` e′ : τ′ and ∆; Γ ` e : τ, then ∆; Γ ` [x←e]e′ : τ′.

Notice that the second part of the lemma requires substitution into the
context, Γ, as well as into the term and its type, because the type variable
t may occur freely in any of these positions.

APRIL 5, 2006 WORKING DRAFT

20.2 Polymorphic Definability 125

Dynamic Semantics

The dynamic semantics of Poly
The dynamic semantics of Poly is a simple extension of that of MinML.

We need only add the following two SOS rules:

App(Lambda(t.e), τ) 7−→ [t←τ]e (20.6)

e 7−→ e′
App(e, τ) 7−→ App(e′, τ) (20.7)

It is then a simple matter to prove safety for this language, using the
by-now familiar methods.

Lemma 20.2 (Canonical Forms)
Suppose that e : τ and e value, then

1. If τ = arrow(τ1, τ2), then e = lambda(τ1, x.e2) with x : τ1 ` e2 : τ2.

2. If τ = all(t.τ′), then e = Lambda(t.e′) with t type ` e′ : τ′.

Theorem 20.3 (Preservation)
If e : σ and e 7−→ e′, then e′ : σ.

Theorem 20.4 (Progress)
If e : σ, then either e value or there exists e′ such that e 7−→ e′.

20.2 Polymorphic Definability

Although we will not give a proof here, it is possible to show that every
well-typed expression in Poly evaluates to a value — there is no possibil-
ity of writing an infinite loop. It might seem, at first glance, that this is
obviously the case, because there is, apparently, no form of iteration or
recursion available in the language. After all, the entire language consists
solely of function types and polymorphic types, and nothing else, not even
a base type!

Surprisingly, though, it is possible to define loops in Poly, albeit ones
that always terminate. For example, it is possible to define within Poly a

APRIL 5, 2006 WORKING DRAFT

20.2 Polymorphic Definability 126

type of natural numbers whose elimination form is essentially the iterator
described in Chapter 12. More generally, any inductively defined type
may be represented in Poly in such a way that its associated iterator is
definable as well!

Let us begin by showing that the type, nat, is definable in Poly. This
means that we can fill in the following chart in such a way that the static
and dynamic semantics are preserved:

nat := . . .
zero := . . .

succ(e) := . . .
rec(τ, e0, e1, x.e2) := . . .

The key to understanding how this is achieved is to focus attention on the
iterator.

Recall that the typing rule for the iterator is as follows:

e0 : nat e1 : τ x : τ ` e2 : τ
rec(τ, e0, e1, x.e2) : τ .

Since the type τ is completely arbitrary, this means that if we have an
iterator, then it can be used to define a polymorphic function of type

nat→∀(t.t→(t→t)→t).

This function, when applied to an argument n, yields a polymorphic func-
tion that, for any result type, t, if given the initial result for zero, and if
given a function transforming the result for x into the result for succ(x),
then it returns the result of iterating the transformer n times starting with
the initial result.

Since the only operation we can perform on a natural number is to it-
erate up to it in this manner, we may simply identify a natural number, n,
with the polymorphic iterate-up-to-n function just described! This means
that the chart sketched above may be completed as follows:

nat := ∀(t.t→(t→t)→t)
zero := Λ(t.λ(z:t. λ(s:t→t. z)))

succ(e) := Λ(t.λ(z:t. λ(s:t→t. s(e[t](z)(s)))))
rec(τ, e0, e1, x.e2) := e0[τ](e1)(λ(x:t. e2))

APRIL 5, 2006 WORKING DRAFT

20.2 Polymorphic Definability 127

It is a simple matter to check that the static semantics of these constructs
is correctly derived from these definitions. We turn, then, to the dynamic
semantics.

The number zero iterates a given s zero times starting from z, which
means that it merely returns z. The successor, succ(e), of e iterates s from
z for e iterations, then iterates s one more time, as required. Letting n stand
for the n-fold composition succ(· · · succ(zero) · · ·), and assuming a call-
by-value semantics for function application, we may show by induction
on n that

n[τ]e1e2
∗7−→ e2(· · · e2(e1) · · ·).

That is, n is indeed the polymorphic iterator specialized to the number n!
Since we are identifying natural numbers with their associated itera-

tors, it follows that we should define the iterator from e0 to simply instan-
tiate and apply e0 to the result type, initial result, and result transformer
associated with the iterator. Observe that

zero[τ](e1)(e2)
∗7−→ e1

and that if
n[τ](e1)(e2)

∗7−→ e,
then

succ(n)[τ](e1)(e2)
∗7−→ e2(e).

Thus the dynamic semantics is correctly simulated by these definitions.
As an example, here is the addition function defined in terms of this

representation of natural numbers:

λ(x:nat. λ(y:nat. y[nat](x)(λ(x:nat. succ(x))))).

Given x and y of type nat, this function iterates the successor function
(defined above) y times starting with x — that is, it computes the sum of x
and y.

Following a similar pattern of reasoning, we may define product and
sum types, and other, more general, recursive types. Here is a chart of the
type definitions:

unit := ∀(t.t→t)
τ1× τ2 := ∀(t.(τ1→τ2→t)→t)
void := ∀(t.t)

τ1 + τ2 := ∀(t.(τ1→t)→(τ2→t)→t)
τ list := ∀(t.t→(τ→t→t)→t)

APRIL 5, 2006 WORKING DRAFT

20.3 Restricted Forms of Polymorphism 128

We leave it as an exercise to define the introduction and elimination forms
for these types according to the same pattern as we did for natural num-
bers. Remember that the main idea is to represent each introduction form
as the elimination form applied to that introduction form.

20.3 Restricted Forms of Polymorphism

The remarkable expressive power of the language Poly stems from the abil-
ity to instantiate a polymorphic type with another polymorphic type. For
example, if we let τ be the type ∀(t.t→t), and, assuming that e : τ, we
may apply e to its own type, obtaining the expression e[τ] of type τ→τ.
Written out in full, this is the type

(∀(t.t→t))→(∀(t.t→t)),

which is obviously much “larger” than the type of e itself. In fact, this
type is “large enough” that we can go ahead and apply e[τ] to e again,
obtaining the expression e[τ](e), which is again of type τ — the very
type of e!

Contrast this behavior with the situation in MinML, in which the type
of an application of a function is evidently “smaller” than the type of the
function itself. For if e : τ1→τ2, and e1 : τ1, then we have e(e1) : τ2,
a smaller type than the type of e. For this reason MinML is not powerful
enough to permit types such as the natural numbers to be defined in terms
of function spaces alone — such types have to be built in as primitives.

The source of the expressive power of Poly is that it permits polymor-
phic types to be instantiated with other polymorphic types, so that we
may instantiate τ = ∀(t.t→t) with itself to obtain a “larger” type as result.
This property of Poly is called impredicativity1, and we say that Poly permits
impredicative (type) quantification.

The alternative, called predicative2 quantification, is to restrict the quan-
tifier to range only over un-quantified types. Under this restriction we may,
for example, instantiate the type τ given above with the type u→u to ob-
tain the type (u→u)→(u→u). This type is “larger” than τ in one sense (it

1pronounced im-PRED-ic-a-tiv-it-y
2pronounced PRED-i-ca-tive

APRIL 5, 2006 WORKING DRAFT

20.3 Restricted Forms of Polymorphism 129

has more symbols), but is “smaller” in another sense (it has fewer quan-
tifiers). It turns out that for this reason the predicative fragment of the
language is substantially less expressive than the impredicative part.

Prenex Fragment

An even more restricted form of polymorphism, called the prenex fragment,
further restricts polymorphism to occur only at the outermost level — not
only is quantification predicative, but quantifiers are not permitted to oc-
cur within the arguments to any other type constructors. This restriction,
called prenex quantification, is imposed in ML for the sake of type inference.
Type inference permits the programmer to omit type information entirely
from expressions in the knowledge that the compiler can always recon-
struct the most general, or principal, type of an expression. We will not
discuss type inference here, but we will give a formulation of the prenex
fragment of Poly because it plays such an important role in the design of
ML.

The prenex fragment of Poly is obtained by stratifying types into two
classes, the monotypes and the polytypes. The monotypes are those that do
not involve any quantification, and are thus eligible for instantiation of
polymorphic quantifiers. The polytypes include the monotypes, and also
permit quantification over monotypes to obtain another polytype.

Monotypes τ : : = t | arrow(τ1, τ2)

Polytypes σ : : = τ | all(t.σ)

Base types, such as nat (as a primitive), or other type constructors, such as
sums and products, would be added to the language as monotypes. The
polytypes are always of the form

∀(t1.· · · ∀(tn.τ) · · ·),

were τ is a monotype. We often abbreviate this to just ∀(t1, . . . , tn.τ).
The static semantics of this fragment of Poly is given as follows. Ex-

pressions are, first of all, classified by monotypes. For example, we have
the rule

∆; Γ, x : τ1 ` e2 : τ2
∆; Γ ` lambda(τ1, x.e2) : arrow(τ1, τ2)

APRIL 5, 2006 WORKING DRAFT

20.4 Exercises 130

and so on for any other monotypes in the language. Second, we may gen-
eralize with respect to any free type variable, and instantiate any quantified
polytype as follows:

∆, t type; Γ ` e : σ

∆; Γ ` Lambda(t.e) : all(t.σ)

∆ ` τ type ∆; Γ ` e : all(t.σ)

∆; Γ ` App(e, τ) : [t←τ]σ

Note that since every monotype is also a polytype, these rules “get started”
by assigning a monotype to an expression, then generalizing on its free
type variables.

This type discipline may then be combined with the let construct to
obtain the core of the ML type system:

∆; Γ ` e1 : σ1 ∆; Γ, x : σ1 ` e2 : τ2
∆; Γ ` let(σ1, e1, x.e2) : τ2 .

Note that this rule requires that we consider hypotheses of the form x : σ,
which include those of the form x : τ as a special case. This corresponds
to the policy in ML that only variables can have polymorphic type — if
you wish to use a function polymorphically, you must bind it to a vari-
able so that it can be assigned a polytype. Each use of a variable must
then be instantiated to obtain a monotype so that it can appear in another
expression.

The following expression exemplifies the ML type discipline in action.
The expression

let I:∀(t.t→t) beΛ(t.λ(x:t. x)) in I[u→u](I[u])

has type u→u, where u is a free type variable. The ML type inference
mechanism permits us to suppress mention of types, writing only

let I beλx. x in I(I).

The type inference process fills in the missing type abstractions and type
applications in the most general way possible, with the result being as just
illustrated.

20.4 Exercises

APRIL 5, 2006 WORKING DRAFT

Chapter 21

Data Abstraction

Data abstraction is perhaps the most fundamental technique for structur-
ing programs. The fundamental idea of data abstraction is to separate
a client from the implementor of an abstraction by an interface. The inter-
face forms a “contract” between the client and implementor that specifies
those properties of the abstraction on which the client may rely, and, cor-
respondingly, those properties that the implementor must satisfy. This en-
sures that the client is insulated from the details of the implementation
of an abstraction so that the implementation can be modified, without
changing the client’s behavior, provided only that the interface remains
the same. This property is called representation independence for abstract
types.

Data abstraction may be formalized by extending the language Poly
with existential types. Interfaces are modelled as existential types that pro-
vide a collection of operations acting on an unspecified, or abstract, type.
Implementations are modelled as packages, the introductory form for exis-
tentials, and clients are modelled as uses of the corresponding elimination
form. It is remarkable that the programming concept of data abstraction
is modelled so naturally and directly by the logical concept of existential
type quantification.

Existential types are closely connected with universal types, and hence
are often treated together. The superficial reason is that both are forms
of type quantification, and hence both require the machinery of type vari-
ables. The deeper reason is that existentials are definable from universals
— surprisingly, data abstraction is actually just a form of polymorphism!

131

21.1 Existential Types 132

21.1 Existential Types

The extension of the polymorphic λ-calculus, Poly, with existential types
is described by the following grammar:

Types τ : : = some(t.τ)
Expr′s e : : = pack(τ1, τ2, e) | open(e1, t.x.e2)

The following chart shows the correspondence between concrete and ab-
stract syntax for these constructs.

Abstract Concrete
some(t.τ) ∃(t.τ)
pack(τ1, τ2, e) pack τ2 with e as τ1
open(e1, t.x.e2) open e1 as t with x in e2

The introductory form for the existential type σ = ∃(t.τ) is a package
of the form pack ρ with e as σ, where ρ is a type and e is an expression of
type [t←ρ]τ. The type ρ is called the representation type of the package, and
the expression e is called the implementation of the package. The elimina-
tory form for existentials is the expression open e1 as t with x in e2, which
opens the package e1 for use within the client e2 by binding its representa-
tion type to t and its implementation to x for use within e2. Crucially, the
typing rules ensure that the client is type-correct independently of the ac-
tual representation type used by the implementor, so that it may be varied
without affecting the type correctness of the client.

The abstract syntax of the open construct specifies that the type vari-
able, t, and the expression variable, x, are bound within the client. They
may be renamed at will by α-equivalence without affecting the meaning
of the construct, provided, of course, that the names are chosen so as not
to conflict with any others that may be in scope. In other words the type,
t, may be thought of as a “new” type, one that is distinct from all other
types, when it is introduced. This is sometimes called generativity of ab-
stract types: the use of an abstract type by a client “generates” a “new”
type within that client. This behavior is simply a consequence of identify-
ing terms up to α-equivalence, and is not particularly tied to data abstrac-
tion.

APRIL 5, 2006 WORKING DRAFT

21.1 Existential Types 133

21.1.1 Static Semantics

The static semantics of existential types is specified by rules defining when
an existential is well-formed, and by giving typing rules for the associated
introductory and eliminatory forms.

∆, t type ` σ type

∆ ` some(t.σ) type (21.1)

It is implicit that t is chosen so that it is not already declared in ∆.

∆ ` τ type ∆ ` some(t.σ) type ∆; Γ ` e : [t←τ]σ
∆; Γ ` pack(some(t.σ), ρ, e) : some(t.σ) (21.2)

∆; Γ ` e1 : some(t.σ) ∆, t type; Γ, x : σ ` e2 : τ2 ∆ ` τ2 type

∆; Γ ` open(e1, t.x.e2) : τ2 (21.3)

This is a complex rule, so study it carefully! Two things to note:

1. The type of the client, τ2, must not involve the abstract type t. This
prevents the client from attempting to export a value of the abstract
type outside of the scope of its definition.

2. The body of the client, e2, is type checked without knowledge of the
representation type, t. The client is, in effect, polymorphic in t.

21.1.2 Dynamic Semantics

The dynamic semantics of existential types is specified by the following
rules.

e 7−→ e′
pack(τ, ρ, e) 7−→ pack(τ, ρ, e′) (21.4)

e1 7−→ e′1
open(e1, t.x.e2) 7−→ open(e′1, t.x.e2) (21.5)

e value
open(pack(some(t.τ), ρ, e), t.x.e2) 7−→ [t, x←ρ, e]e2 (21.6)

Observe that there are no abstract types at run time! The representation
type is fully exposed to the client during evaluation. Data abstraction is a
compile-time discipline that imposes no run-time overhead.

APRIL 5, 2006 WORKING DRAFT

21.2 Data Abstraction Via Existentials 134

21.1.3 Safety

The safety of the extension is stated and proved as usual. The argument is
a simple extension of that used for Poly to the new constructs.

Theorem 21.1 (Preservation)
If e : τ and e 7−→ e′, then e′ : τ.

Lemma 21.2 (Canonical Forms)
If e : some(t.τ) and e value, then e = pack(some(t.τ), ρ, e′) for some type
ρ and some e′ value such that e′ : [t←ρ]τ.

Theorem 21.3 (Progress)
If e : τ then either e value or there exists e′ such that e 7−→ e′.

21.2 Data Abstraction Via Existentials

To illustrate the use of existentials for data abstraction, we consider an
abstract type of (persistent) queues supporting three operations:

1. Formation of the empty queue.

2. Inserting an element at the tail of the queue.

3. Remove the head of the queue.

This is clearly a bare-bones interface, but is sufficient to illustrate the main
ideas of data abstraction. Queue elements may be taken to be of any type,
τ, of our choosing; we will not be specific about this choice, since nothing
depends on it.

The crucial property of this description is that nowhere do we specify
what queues actually are, only what we can do with them. This is captured
by the following existential type, σ, which serves as the interface of the
queue abstraction:1

∃(t.{emp : t, ins : τ× t→t, rem : t→τ× t}).

1For the sake of illustration, we assume that type constructors such as products,
records, and lists are also available in the language.

APRIL 5, 2006 WORKING DRAFT

21.2 Data Abstraction Via Existentials 135

The representation type, t, of queues is abstract — all that is specified about
it is that it supports the operations emp, ins, and rem, with the specified
types.

An implementation of queues consists of a package specifying the rep-
resentation type, together with the implementation of the associated op-
erations in terms of that representation. Internally to the implementation,
the representation of queues is known and relied upon by the operations.
Here is a very simple implementation, el, in which queues are represented
as lists:

pack τ list with {emp = nil, ins = ei, rem = er} as σ,

where
ei : τ× τ list→τ list = λ(x:τ× τ list. e′i),

and
er : τ list→τ× τ list = λ(x:τ list. e′r).

Here the expression e′i conses the first component of x, the element, onto
the second component of x, the queue. Correspondingly, the expression
e′r reverses its argument, and returns the head element paired with the
reversal of the tail. These operations “know” that queues are represented
as values of type τ list, and are programmed accordingly.

It is also possible to give another implementation, ep, of the same inter-
face, σ, but in which queues are represented as pairs of lists, consisting of
the “back half” of the queue paired with the reversal of the “front half”.
This representation avoids the need for reversals on each call, and, as a
result, achieves amortized constant-time behavior:

pack τ list× τ list with {emp = 〈nil, nil〉, ins = ei, rem = er} as σ.

In this case ei has type

τ× (τ list× τ list)→(τ list× τ list),

and er has type

(τ list× τ list)→τ× (τ list× τ list).

These operations “know” that queues are represented as values of type

τ list× τ list,

APRIL 5, 2006 WORKING DRAFT

21.3 Definability of Existentials 136

and are implemented accordingly.
Clients of the queue abstraction are shielded from the implementation

details by the open construct. If e is any implementation of σ, then a client
of the abstraction has the form

open e as t with x in e′ : τ′,

where the type, τ′, of e′ does not involve the abstract type t. Within e′ the
variable x has type

{emp : t, ins : τ× t→t, rem : t→τ× t},

in which t is unspecified — or, as is often said, held abstract.
Observe that only the type information specified in σ is propagated to

the client, e′, and nothing more. Consequently, the open expression above
type checks properly regardless of whether e is el (the implementation of σ
in terms of lists) or ep (the implementation in terms of pairs of lists), or, for
that matter, any other implementation of the same interface. This property
is called representation independence, because the client is guaranteed to be
independent of the representation of the abstraction.

21.3 Definability of Existentials

Strictly speaking, it is not necessary to extend Poly with existential types
in order to model data abstraction, because they are definable in terms
of universals! Before giving the details, let us consider why this should
be possible. The key is to observe that the client of an abstract type is
polymorphic in the representation type. The typing rule for

open e as t with x in e′ : τ′,

where e : ∃(t.τ), specifies that e′ : τ′ under the assumptions t type and
x : τ. In essence, the client is a polymorphic function of type

∀(t.τ→τ′),

where t may occur in τ (the type of the operations), but not in τ′ (the type
of the result).

APRIL 5, 2006 WORKING DRAFT

21.4 Exercises 137

This suggests the following encoding of existential types:

∃(t.σ) := ∀(t′.∀(t.σ→t′)→t′)

pack τ with e as ∃(t.σ) := Λ(t′.λ(x:∀(t.σ→t′). x[τ](e)))

open e as t with x in e′ := e[τ′](Λ(t.λ(x:σ. e′)))

An existential is encoded as a polymorphic function taking the overall re-
sult type, t′, as argument, followed by a polymorphic function represent-
ing the client with result type t′, and yielding a value of type t′ as over-
all result. Consequently, the open construct simply packages the client
as such a polymorphic function, instantiates the existential at the result
type, τ′, and applies it to the polymorphic client. (The translation there-
fore depends on knowing the overall result type, τ′, of the open construct.)
Finally, a package consisting of a representation type τ and an implemen-
tation e is a polymorphic function that, when given the result type, t′, and
the client, x, instantiates x with τ and passes to it the implementation e.

It is then a straightforward exercise to show that this translation cor-
rectly reflects the static and dynamic semantics of existential types.

21.4 Exercises

APRIL 5, 2006 WORKING DRAFT

Chapter 22

Dot Notation for Abstract Types

The elimination form for existential types introduced in Chapter 21 is
known as a closed-scope abstraction mechanism, because the elimination
form holds the representation type abstract for use within a particular ex-
pression. This means that all clients of an abstraction must lie within the
same scope, because each open of an existential results in a “fresh” ab-
stract type, different from all others. While this is not an inordinate conve-
nience, it does not integrate smoothly with other forms of binding in the
language, such as λ-abstraction or let-binding, which apply equally well
to values of any type, and are not tied to the use of existential types. In
particular, if we wish to model linking of separately compiled units as a
form of let-binding, then it is natural to treat let as primitive, and avoid
the introduction of a separate binding mechanism for existentials.

This can be achieved through the introduction of dot notation, which
permits direct acccess to the representation type- and operations compo-
nents of a package of existential type. (The terminology stems from the
concrete syntax, in which we write e.rpn for the representation type of e
and e.ops for its associated operations.) The dot notation is the basis for
an open-scope abstraction mechanism, in which the abstractness of abstract
types is managed by the concept of determinacy.

22.1 Dot Notation

A first step towards a more flexible abstraction mechanism is to decom-
pose the machinery of data abstraction into simpler parts. At a high level

138

22.1 Dot Notation 139

this consists of the following decompositions:

1. Existential types are replaced by signatures, which describe the asso-
ciation of a type with operations on it.

2. Packages are separated into two constructs: (1) a structure consisting
of a representation type together with its associated operations, and
(2) sealing a structure with a signature.

3. The open construct is broken into two constructs: (1) binding a struc-
ture to an identifier for use within a scope, and (2) projecting the type
and value components from a structure.

The effect of these modifications is to separate abstraction from binding,
so that abstract types are intrinsically abstract, rather than held abstract
within a specified scope. This is called open-scope abstraction, in contrast
to the closed-scope abstraction provided by existential types.

We will work with an extension of Poly with the following abstract syn-
tax:

Types τ : : = sig(t.τ) | rpn(e)
Expr’s e : : = str(τ, e) | seal(e, sig(t.τ)) | ops(e) | let(e1, x.e2)

The corresponding concrete syntax is given by the following chart:

Abstract Concrete
rpn(e) e.rpn
ops(e) e.ops
str(τ, e) str(τ, e)
seal(e, sig(t.τ)) e :> sig(t.τ)

A type of the form sig(t.τ) is called a signature. The introductory form
for a signature is a structure of the form str(ρ, e). The type ρ is called the
representation type of the structure, and e is called its operations. A struc-
ture is therefore just a “bare” package consisting of a representation type
and associated operations, but without a specified signature. To impose
a signature on an expression we use sealing, written seal(e, sig(t.τ)),
which ascribes the signature sig(t.τ) to the expression e, thereby hiding
the representation type of e. The eliminatory forms for signature types
are rpn(e), which extracts the representation type of the structure e, and
ops(e), which extracts its operations.

APRIL 5, 2006 WORKING DRAFT

22.1 Dot Notation 140

22.1.1 Determinacy

The most important thing to notice about this language is that types of the
form rpn(e) involve expressions. This would appear to violate the phase dis-
tinction (discussed in Chapter 8) by intermixing the dynamic and static as-
pects of the language (expressions and types). In particular, to determine
whether two types are equal would seem now to involve determining
whether two expressions are equal, for rpn(e) should be equal to rpn(e′)
whenever e and e′ are equal. But when are two expressions equal? At the
very least this is a complex issue that is not easily resolved, particularly
for a full-featured language in which expressions might not terminate, or
might raise exceptions, or might perform input or output.

Fortunately, the situation is not as dire as it would appear at first, for
we can impose restrictions on the use of expressions in types that avoids
violating the phase distinction. The key to these restrictions is to consider
carefully what is meant by the type expression rpn(e) when e is a general
expression of signature type. For a type expression of the form rpn(e) to
be sensible, it must be the case that e actually has a single, well-determined
representation type during the static phase of processing. But this need
not be the case in general! For example, if e is an infinitely looping com-
putation, it has no value, and hence has no representation type, so what is
rpn(e) supposed to mean? Worse, in a language with state, the expression
e might change its value each time it is executed (e.g., by flipping a coin),
so that once again it makes no sense to refer to “the” representation type
of e.

But even if e has a dynamically well-determined type component, this is
not enough to ensure that e has a statically well-determined representation
type. The point of sealing a structure with a signature is to obscure the
representation type of the structure from all clients of that structure. That
is, no use of that structure can rely on knowing its representation type, be-
cause that may change over time. Therefore “the” representation type of a
sealed structure is not statically well-determined, even if it is dynamically
well-determined.

This suggests that we limit formation of rpn(e) to expressions e whose
representation type is statically well-determined. We will call such expres-
sions determinate, for short. The class of determinate expressions should in-
clude at least structure values, which give their representation types explic-
itly, and variables, which are bound to structure values (in a call-by-value

APRIL 5, 2006 WORKING DRAFT

22.1 Dot Notation 141

regimen, which we assume here). Since signatures can be nested, it also
makes sense to consider as determinate the projection ops(e) whenever
e is itself determinate. On the other hand, the class of determinate struc-
tures should clearly exclude sealed structures, and any structures whose
representation types may not be dynamically well-determined.

This leads to the following inductive definition of the judgement e det
stating that e is a determinate expression.

x det
e det

ops(e) det
e value

str(ρ, e) det

This requires defining the judgement e value for open expressions e:

x value lambda(τ, x.e) value

Lambda(t.e) value
e value

str(t, e) value

Notice that if e value, then e det.
We will define the static semantics so that rpn(e) is limited to determi-

nate structures. In fact, we will go one step further an insist that e be a path
according to the following rules:

x path
e path

ops(e) path

Paths are determinate, but exclude structure values. The restriction of
rpn(p) to paths ensures that type equality never involves expression equal-
ity, except for variables. In this manner we avoid violating the phase dis-
tinction, since type equality remains syntactic identity.

22.1.2 Static Semantics

The judgements of the static semantics are now of the form ∆; Γ ` τ type
and ∆; Γ ` e : τ, in which we have both type formation and typing as-
sumptions in both cases.

The rules for type formation, which are mutually recursive with the
rules for typing, are as follows:1

∆, t type; Γ ` τ type

∆; Γ ` sig(t.τ) type

p path ∆; Γ ` p : sig(t.τ)

∆; Γ ` rpn(p) type

1We omit repeating the rules for Poly from Chapter 20.

APRIL 5, 2006 WORKING DRAFT

22.1 Dot Notation 142

The rules for typing, which are mutually recursive with the preceding
rules, are as follows:

∆ ` ρ type ∆; Γ ` e : [t←ρ]τ
∆; Γ ` str(ρ, e) : sig(t.τ)

∆; Γ ` e : sig(t.τ)

∆; Γ ` seal(e, sig(t.τ)) : sig(t.τ)

p path ∆; Γ ` p : sig(t.τ)

∆; Γ ` ops(p) : [t←rpn(p)]τ
∆; Γ ` e1 : τ1 ∆; Γ, x : τ1 ` e2 : τ2

∆; Γ ` let(e1, x.e2) : τ2

Structure values do not have unique types, since the only requirement on
the implementation, e, is that it have type [t←ρ]τ, from which we cannot
uniquely determine the signature type sig(t.τ) in the conclusion. Both
elimination forms are restricted to paths. This ensures that type equality
does not involve comparison of expressions other than variables.

22.1.3 Substitution

The dynamic semantics will involve substitution of structure values for
variables. But the class of paths is not closed under such substitutions,
because it can turn the path ops(x) into ops(str(ρ, e)), which is determi-
nate, but not a path. This would turn the valid type, rpn(ops(x)) into the
invalid type rpn(ops(str(ρ, e))), ruining type preservation. The simplest
way around this is to define a notion of substitution that avoids creation
of such illegal type expressions.

First, we define the operation of substitution of a determinate expres-
sion, e, for a variable, x, in a path, p, written {e←x}p, as follows:

{e←x}x = e

{e←x}ops(p) =
{

e′ if {e←x}p = str(ρ, e′)
ops(p′) if {e←x}p = p′

This form of substitution is defined by induction on the structure of paths,
and is well-defined whenever e is a determinate expression.

Second, we define substitution of a determinate expression, e, for a
variable, x, in a type, τ, as follows:

{e←x}t = t

{e←x}rpn(p) =
{

ρ if {e←x}p = str(ρ, e′)
rpn(p′) if {e←x}p = p′

APRIL 5, 2006 WORKING DRAFT

22.2 Relating Existentials to Signatures 143

This definition is justified by induction on the structure of types, and is
well-defined whenever e is determinate.

The other cases of substitution are defined as usual. We shall only have
need of substitution when the substituting expression is determinate.

22.1.4 Dynamic Semantics

The dynamic semantics of structures is defined by the following transition
rules on closed expressions:

e 7−→ e′
ops(e) 7−→ ops(e′)

e value
ops(str(ρ, e)) 7−→ e

e 7−→ e′
str(ρ, e) 7−→ str(ρ, e′)

e1 7−→ e′1
let(e1, x.e2) 7−→ let(e′1, x.e2)

e1 value

let(e1, x.e2) 7−→ {e1←x}e2

Type formation is preserved by substitution of determinate expressions
for free variables.

Lemma 22.1
If ∆; Γ, x : τ ` σ type, ∆; Γ ` e : τ, and e det, then ∆; Γ ` {e←x}σ type.

It is straightforward to prove safety of this language.

Theorem 22.2 (Safety)
1. If e : τ and e 7−→ e′, then e′ : τ.

2. If e : τ, then either e value or there exists e′ such that e 7−→ e′.

22.2 Relating Existentials to Signatures

Existential types are definable from signatures and structures:

some(t.τ) = sig(t.τ)
pack(some(t.τ), ρ, e) = seal(str(ρ, e), sig(t.τ))

open(e1, t.x.e2) = let(e1, y.[t, x←rpn(y), ops(y)]e2) (y # e2)

APRIL 5, 2006 WORKING DRAFT

22.3 Exercises 144

It is straightforward to verify that the static and dynamic semantics are
preserved by these definitions.

It is also possible to prove a converse result, stating that the dot nota-
tion is no stronger than the original existential formalism. Since type and
operation projections are limited to paths, which are rooted at variables,
the binding site for variables of existential type can be used as the site at
which to open the associated package. Within the scope of that binding,
we may replace type- and operation projections from paths rooted at that
variable with a variable introduced by the open. The only complication
is that we must account for nested existentials by a corresponding nesting
of open’s. Thus, whenever we encounter a let- or λ-bound variable, x, of
existential type of the form some(t1.some(t2.. . . some(tn.τ))) (where τ is
not an existential type) and whose scope is the expression e, we replace e
with the following code:

open x as t1 with x1 in · · · open xn as tn with xn+1 in e′,

where, for all paths pi in e of the form ops(ops(· · · ops(x) · · ·)) consisting
of i operation projections from x,

e′ = [ti←rpn(xi)][pi←xi]e.

In essence we “pre-compute” all paths rooted at x used within e by open-
ing the existential package, and then replace uses of the ith projection from
x by the variable xi in e.

22.3 Exercises

APRIL 5, 2006 WORKING DRAFT

Part VIII

Control Flow

145

Chapter 23

Abstract Machines

The technique of specifying the dynamic semantics as a transition system
is very useful for theoretical purposes, such as proving type safety, but is
too high level to be directly usable in an implementation. One reason is
that the use of “search rules” requires the traversal and reconstruction of
an expression in order to simplify one small part of it. In an implementa-
tion we would prefer to use some mechanism to record “where we are” in
the expression so that we may “resume” from that point after a simplifi-
cation. This can be achieved by introducing an explicit mechanism, called
a control stack, that keeps track of the context of an instruction step for
just this purpose. By making the control stack explicit the transition rules
avoid the need for any premises — every rule is an axiom! This is the for-
mal expression of the informal idea that no traversals or reconstructions
are required to implement it.

By making the control stack explicit we move closer to an actual imple-
mentation of the language. As we expose more and more of the mecha-
nisms required in an implementation we get closer and closer to the phys-
ical machine. At each step along the way, starting with the SOS descrip-
tion and continuing down towards an assembly-level description, we are
working with a particular abstract, or virtual, machine. The closer we get
to the physical machine, the less “abstract” and the more “concrete” it
becomes. But there is no clear dividing line between the levels, rather it
is a matter of progressive exposure of implementation details. After all,
even machine instructions are implemented using gates, and gates are im-
plemented using transistors, and so on down to the level of fundamental
physics.

146

23.1 The C Machine 147

Nevertheless, some abstract machines are more concrete than others,
and recently there has been a resurgence of interest in using them to pro-
vide a hardware-independent computing platform. The idea is to de-
fine a low-enough level abstract machine such that (a) it is easily imple-
mentable on typical hardware platforms, and (b) higher-level languages
can be translated (compiled) to it. In this way it is hoped that most soft-
ware can be freed of dependence on specific hardware platforms.1 It is
of paramount importance that the abstract machine be precisely defined,
for otherwise it is not clear how to translate to it, nor is it clear how to
implement it on a given platform.

In this chapter we introduce the C machine, an abstract machine that
makes control flow explicit. Using the tools we have developed in this
book, we give a precise definition of the C machine, and show how to
prove its correctness relative to the semantics of MinML.

23.1 The C Machine

A state, s, of the C machine consists of a control stack, k, and a closed ex-
pression, e. States may take one of two forms:

1. An evaluation state of the form k > e corresponds to the evaluation
of a closed expression, e, relative to a control stack, k.

2. A return state of the form k < e, where e value, corresponds to the
evaluation of a stack, k, relative to a closed value, e.

As an aid to memory, note that the separator “points to” the focal entity
of the state, the expression in an evaluation state and the stack in a return
state.

The control stack represents the context of evaluation. It records the
“current location” of evaluation, the context into which the value of the
current expression is to be returned. Formally, a control stack is a list of
frames:

ε stack

f frame k stack

f ; k stack
(23.1)

1This is much easier said than done; it remains an active area of research and devel-
opment.

APRIL 5, 2006 WORKING DRAFT

23.1 The C Machine 148

The definition of frame depends on the language we are evaluating. For
MinML the frames are inductively defined by the following rules:2

e2 exp

plus(−, e2) frame

v1 value

plus(v1,−) frame

e1 exp e2 exp
ifz(−, e1, e2) frame

e2 exp
app(−, e2) frame

v1 value
app(v1,−) frame

(23.2)

A frame corresponds to an elimination form in which one argument posi-
tion is currently under evaluation.

The transition judgement between states of the C is inductively defined
by a set of inference rules. We begin with the rules for numbers and arith-
metic.

k > num[n] 7−→ k < num[n]

k > plus(e1, e2) 7−→ plus(−, e2); k > e1

e1 value

plus(−, e2); k < e1 7−→ plus(e1,−); k > e2

n1 + n2 = n nat

plus(num[n1],−); k < num[n2] 7−→ k < num[n]

(23.3)

To evaluate a number, we simply return it to the stack. To evaluate an ad-
dition, we push a frame onto the stack recording that we are currently
working on its first argument, and continue evaluating that argument.
When a value is returned to a stack whose top frame records that we are
evaluating the first argument of an addition, we swap that frame with a
frame recording that we have completed that evaluation, and continue by
evaluating the second argument. Finally, when a value is returned to such
a frame, we perform the addition and return the result to the stack.

2We give only the frames for the primitive operation of addition; those for multiplica-
tion and any other primitive operations are defined analogously.

APRIL 5, 2006 WORKING DRAFT

23.1 The C Machine 149

Next, we consider the rules for conditionals.

k > ifz(e, e1, e2) 7−→ ifz(−, e1, e2); k > e

ifz(−, e1, e2); k < num[0] 7−→ k > e1

(n 6= 0)
ifz(−, e1, e2); k < num[n] 7−→ k > e2

(23.4)

These rules follow a similar pattern. First, the test expression is evaluated,
recording the pending conditional branch on the stack. Once the value of
the test has been determined, we branch to the appropriate arm of the
conditional.

Finally, we consider the rules for functions.

k > fun(τ1, τ2, f.x.e) 7−→ k < fun(τ1, τ2, f.x.e)

k > app(e1, e2) 7−→ app(−, e2); k > e1

e1 value

app(−, e2); k < e1 7−→ app(e1,−); k > e2

e2 value e1 = fun(τ1, τ2, f.x.e)
app(e1,−); k < e2 7−→ k > [f , x←e1, e2]e

(23.5)

These rules ensure that the function is evaluated before the argument,
applying the function when both have been evaluated.

The initial and final states of the C are defined by the following rules:

ε > e init
e value

ε < e final (23.6)

The type safety of the C machine may be proved by defining a judge-
ment s ok stating that state s is well-formed, and proving progress and
preservation for this judgement. For a state to be well-formed means that
its control stack is well-formed and is prepared to accept a value of type τ,
and that its expression is of type τ.

k : stack(τ) e : τ
k > e ok

k : stack(τ) e : τ e value
k < e ok

(23.7)

APRIL 5, 2006 WORKING DRAFT

23.2 Correctness of the C Machine 150

For a stack to be well-formed means that it is properly composed from
well-formed frames. Since each frame has a single “hole” in it, the stack
may be seen as accepting a value of type appropriate to that hole. Each
frame fills the hole in the preceding frame, until we reach the end of the
stack. This raises the question of what is the type of the empty stack? We
will fix a type τans of answers, the ultimate result of the evaluation of a
complete program, and use this as the type of the empty stack.

ε : stack(τans)

k : stack(τ′) f : frame(τ, τ′)

f ; k : stack(τ)
(23.8)

Finally, the type frame(τ, τ′) is the type of frames that accept a value
of type τ (for the hole) and yield a value of type τ′ (once the hole is filled
and the frame step is executed).

e2 : nat
plus(−, e2) : frame(nat, nat)

e1 : nat e1 value

plus(e1,−) : frame(nat, nat)

e1 : nat e2 : nat
ifz(−, e1, e2) : frame(nat, nat)

e2 : τ2
app(−, e2) : frame(arrow(τ2, τ), τ)

e1 : arrow(τ2, τ) e1 value
app(e1,−) : frame(τ2, τ)

(23.9)

With these definitions in hand we may state the safety of the C in the
usual manner.

Theorem 23.1 (Safety)
1. If s ok and s 7−→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7−→ s′.

23.2 Correctness of the C Machine

The structured operational semantics for MinML given in Chapter 12 can be
construed as a high-level abstract machine, called the M machine, whose

APRIL 5, 2006 WORKING DRAFT

23.2 Correctness of the C Machine 151

states are closed expressions and whose transitions are as defined there. It
is natural to ask whether the C machine correctly implements the seman-
tics of MinML: if we evaluate a given expression, e, using the C machine,
do we get the same result as would be given by the M machine, and vice
versa?

Answering this question decomposes into two propositions relating
the C and M machines.

Completeness If e ∗7−→ v, where v value, then ε > e ∗7−→ ε < v.

Soundness If ε > e ∗7−→ ε < v, then e ∗7−→ v.

Let us consider, in turn, what is involved in the proof of each part.
For completeness, applying rule induction to the definition of multi-

step transition from Chapter 3, we must show two things:

1. If v value, then ε > v ∗7−→ ε < v.

2. If e 7−→ e′, then, for every v value, if ε > e′ ∗7−→ ε < v, then ε > e ∗7−→
ε < v.

The first follows immediately from the C machine transition rules. The
second, closure under head expansion, requires some work. The obvious
strategy is to proceed by induction on the SOS rules defining the M ma-
chine transition relation. The chief difficulty in the proof is that we cannot
maintain an empty stack during the induction, but we must, instead, con-
sider a general stack, k, in order to complete the argument.

Lemma 23.2
If e 7−→ e′, then for every v value and every k stack, if k > e′ ∗7−→ ε < v,
then k > e ∗7−→ ε < v.

For soundness, observe that it is awkward to reason inductively about
the multistep transition from ε > e ∗7−→ ε < v, because the intervening
steps may involve alternations of evaluation and return states. Instead
we regard each C machine state as encoding an expression, and show that
C machine transitions are simulated by M machine transitions under this
encoding.

Specifically, we define a judgement, s e, stating that state s “unravels
to” expression e. It will turn out that for initial states we have ε > e e

APRIL 5, 2006 WORKING DRAFT

23.2 Correctness of the C Machine 152

and for final states ε < v v. Then we show that if s ∗7−→ s′, where s′ final,
s e, and s′ e′, then e ∗7−→ e′. Applying rule induction to the definition
of multistep transition, it is enough to show the following two facts:

1. If s e, then e ∗7−→ e.

2. If s 7−→ s′′ ∗7−→ s′ with s′ final, then if s e, s′′ e′′, s′ e′, and
e′′ ∗7−→ e′, then e ∗7−→ e′.

The first is trivial; for the second, it is enough to show the following lemma.

Lemma 23.3
If s 7−→ s′, s e, and s′ e′, then e ∗7−→ e′.

The remainder of this section is devoted to the proofs of these lemmas.

23.2.1 Proof of Completeness

Proof: [of Lemma 23.2] The proof is by induction on the transition rules
defining the M machine. We will consider some representative cases here,
leaving the rest for the reader.

Suppose that e = plus(e1, e2), e′ = plus(e′1, e2), and e1 7−→ e′1. Suppose
further that k > e′ ∗7−→ ε < v for some v value. Given the form of e′, the
initial transition must be of the form

k > e′ 7−→ plus(−, e2); k > e′1
∗7−→ ε < v.

By induction we have plus(−, e2); k > e1
∗7−→ ε < v, and hence

k > plus(e1, e2) 7−→ plus(−, e2); k > e1
∗7−→ ε < v.

Note that it is important here that the induction hypothesis be universally
quantified with respect to the stack portion of the state!

Suppose that e = plus(num[n1], num[n2]) and e′ = num[n], where
n1 + n2 = n nat. Suppose further that k > num[n] ∗7−→ ε < v for some
v value. This must have the form k > num[n] 7−→ k < num[n] ∗7−→ ε < v.

APRIL 5, 2006 WORKING DRAFT

23.2 Correctness of the C Machine 153

Then we have
k > plus(num[n1], num[n2]) 7−→ plus(−, num[n2]); k > num[n1]

7−→ plus(−, num[n2]); k < num[n1]

7−→ plus(num[n1],−); k > num[n2]

7−→ plus(num[n1],−); k < num[n2]

7−→ k < num[n]
∗7−→ ε < v

The other cases follow a similar pattern. �

23.2.2 Proof of Soundness

We first define the unravelling translation, k @ e e′, by the following
rules:

ε @ e e

k @ plus(e1, e2) e
plus(−, e2); k @ e1 e

k @ plus(e1, e2) e
plus(e1,−); k @ e2 e

k @ ifz(e1, e2, e3) e
ifz(−, e2, e3); k @ e1 e

k @ app(e1, e2) e
app(−, e2); k @ e1 e

k @ app(e1, e2) e
app(e1,−); k @ e2 e

The notation k @ e is stands ambiguously for either form of state, since the
distinction does not affect the unravelling translation.

Observe that if e 7−→ e′, k @ e d, k @ e′ d′, then d 7−→ d′. In
other words unravelling the stack around a transition does not affect the
transition.

We are now in a position to complete the proof of soundness.
Proof: [of Lemma 23.3]

The proof is by case analysis on the transitions of the C machine. In
each case after unravelling the transition will correspond to zero or one
transitions of the M machine.

Suppose that s = k > plus(e1, e2) and s′ = plus(−, e2) > e1. Note that
k @ plus(e1, e2) e iff plus(−, e2); k @ e1 e, from which the result is
immediate.

APRIL 5, 2006 WORKING DRAFT

23.3 The E Machine 154

Suppose that s = plus(num[n1],−); k < num[n2], s′ = k < num[n],
where n1 + n2 = n nat. Let e be such that s e, and note that

k @ plus(num[n1], num[n2]) e

as well. Let e′ be such that s′ e′, and so e 7−→ e′, as required.
�

23.3 The E Machine

The C machine is still quite “high level” in that function application is
performed by substitution of the function itself and its argument into the
body of the function, a rather complex operation. This is unrealistic for
two reasons. Substitution is a complicated process, not one that we would
ordinarily think of as occurring as a single step of execution of a computer.
More importantly, the use of substitution means that the program itself,
and not just the data it acts upon, changes during evaluation. This is a
departure from more familiar models of computation, which maintain a
separation between programs and data.

In this section we will present another abstract machine, the E machine,
which avoids substitution by maintaining an environment that records the
bindings of variables. This introduces complications to do with confusion
of variables similar to those discussed in Chapter 14, and we use a similar
solution, namely closures, to avoid them.

A significant difference compared to the C machine is that values are
no longer forms of expression, but are rather drawn from a new class of
E machine values, V. Corresponding, E machine environments, η, bind ma-
chine values to variables. Finally, E machine stacks, K, and frames, F, may
involve environments, and hence are not purely syntactic either.

The states of the E have one of two forms:

1. K > e [η], corresponding to evaluating the expression e on the stack
K relative to the environment η.

2. K < V, corresponding to returning the value, V, to the stack, K.

These states are similar to those for the C machine.

APRIL 5, 2006 WORKING DRAFT

23.3 The E Machine 155

The judgements η mvalue, K mstack, F mframe, and V menv are simul-
taneously inductively defined by the following rules. First, an E machine
value is either a number or a closure.

n nat
num[n] mvalue

fun(τ1, τ2, f.x.e) exp η menv

fun(τ1, τ2, f.x.e)[η] mvalue
(23.10)

An E machine stack is a sequence of E machine frames.

ε mstack
F mframe K mstack

F; K mstack (23.11)

An E machine frame is similar to a C frame, except for the attachment of
environments to frames that contain expressions.

e2 exp

plus(−, e2)[η] mframe

V1 mvalue

plus(V1,−) mframe

e1 exp e2 exp

ifz(−, e1, e2)[η] mframe

e2 exp

app(−, e2)[η] mframe
V1 mvalue

app(V1,−) mframe

(23.12)

An E environment is a sequence of bindings of variables to E values such
that no variable is bound more than once.

ε menv

η menv x # η V mvalue

η, x=V menv
(23.13)

The transition rules for the E machine are given as follows.
To evaluate a variable x, we look up its binding and pass the associated

value to the top frame of the control stack.

η(x) = V
K > x [η] 7−→ K < V (23.14)

Arithmetic is handled similarly to the C, except that we must be careful
to close expressions that may have free variables in them.

K > num[n] [η] 7−→ K < num[n] (23.15)

APRIL 5, 2006 WORKING DRAFT

23.3 The E Machine 156

K > plus(e1, e2) [η] 7−→ plus(−, e2)[η]; K > e1 [η] (23.16)

plus(−, e2)[η]; K < V1 7−→ plus(V1,−); K > e2 [η] (23.17)

n1 + n2 = n nat

plus(num[n1],−); K < num[n2] 7−→ K < num[n] (23.18)

To evaluate a conditional, we evaluate the test expression, pushing a
frame on the control stack to record the two pending branches, once again
closed with respect to the current environment.

K > ifz(e, e1, e2) [η] 7−→ ifz(−, e1, e2)[η]; K > e [η] (23.19)

ifz(−, e1, e2)[η]; K < num[0] 7−→ K > e1 [η] (23.20)

(n 6= 0)
ifz(−, e1, e2)[η]; K < num[n] 7−→ K > e2 [η] (23.21)

To evaluate a function expression, we close it with respect to the cur-
rent environment to ensure that its free variables are not inadvertently
captured, and pass the resulting closure to the control stack.

K > fun(τ1, τ2, f.x.e) [η] 7−→ K < fun(τ1, τ2, f.x.e)[η] (23.22)

The notation here may be a bit deceptive. On the left-hand side the envi-
ronment, η, is part of the machine state, whereas on the right-hand side it
is attached to the function expression to form a closure.

Finally, function applications are evaluated similarly to the C, except
that care must be taken with the environment.

K > app(e1, e2) [η] 7−→ app(−, e2)[η]; K > e1 [η] (23.23)

app(−, e2)[η]; K < V 7−→ app(V,−); K > e2 [η] (23.24)

APRIL 5, 2006 WORKING DRAFT

23.4 Exercises 157

V1 = fun(τ1, τ2, f.x.e)[η]
app(V1,−); K < V2 7−→ K > e [η, f =V1, x=V2] (23.25)

Notice that the environment of the closure is installed as the environment
of execution for the body, augmented with bindings for the function itself
and its argument.

Initial states have the form ε > e [ε], with the stack and environment
initially empty. The final states of the E machine have the form ε < V,
where V mvalue, and the stack is again empty.

23.4 Exercises

1. Prove type safety for the C machine.

2. Finish the proofs of the soundness and completeness lemmas.

3. State and prove the correctness of the E relative to the C.

APRIL 5, 2006 WORKING DRAFT

Chapter 24

Exceptions

Exceptions effects a non-local transfer of control from the point at which
the exception is raised to a dynamically enclosing handler for that excep-
tion. This transfer interrupts the normal flow of control in a program in
response to unusual conditions. For example, exceptions can be used to
signal an error condition, or to indicate the need for special handling in
certain circumstances that arise only rarely. To be sure, one could use ex-
plicit conditionals to check for and process errors or unusual conditions,
but using exceptions is often more convenient, particularly since the trans-
fer to the handler is direct and immediate, rather than indirect via a series
of explicit checks. All too often explicit checks are omitted (by design or
neglect), whereas exceptions cannot be ignored.

24.1 Failures

To begin with let us consider a simple control mechanism, called failures,
which permits the evaluation of an expression to “fail” by passing con-
trol to the nearest enclosing handler, which is said to “catch” the failure.
Failures are a simplified form of exception in which no value is associated
with the failure. This allows us to concentrate on the control flow aspects,
and to treat the associated value separately.

The following grammar describes an extension to MinML to include
failures:

Expr’s e : : = fail | catch(e1, e2)

The expression fail aborts the current evaluation. The expression catch(e1, e2)

158

24.1 Failures 159

evaluates e1. If it terminates normally, its value is returned; if it fails, its
value is the value of e2.

The static semantics of exceptions is quite straightforward:

Γ ` fail : τ (24.1)

Γ ` e1 : τ Γ ` e2 : τ

Γ ` catch(e1, e2) : τ (24.2)

Observe that a failure can have any type, because it never returns to the
site of the failure. Both clauses of a handler must have the same type, to
allow for either possible outcome of evaluation.

Stack Unwinding

One way to give a dynamic semantics to failures is to use a technique
called stack unwinding. Evaluation of a catch installs a handler on the
control stack. Evaluation of a fail unwinds the control stack by popping
frames until it reaches the nearest enclosing handler, to which control is
passed. The handler is evaluated in the context of the surrounding control
stack, so that failures within it propagate further up the stack.

This behavior is naturally specified usng the C machine (defined in
Chapter 23), because it makes the control stack explicit. The set of frames
is extended with the following additional rules:

e2 expr
catch(−, e2) frame (24.3)

The transition rules of the C machine are extended with the following
additional rules:

k > catch(e1, e2) 7−→ catch(−, e2); k > e1 (24.4)

catch(−, e2); k < v 7−→ k < v (24.5)

catch(−, e2); k > fail 7−→ k > e2 (24.6)

APRIL 5, 2006 WORKING DRAFT

24.1 Failures 160

(f 6= catch(−, e2))
f ; k > fail 7−→ k > fail (24.7)

To evaluate catch(e1, e2) we begin by evaluating e1. If it achieves a value,
we pop the pending handler and yield that value. If, however, it fails, we
continue by evaluating the nearest enclosing handler. We explicitly pop
non-handler frames while processing a failure; this is sometimes called
unwinding the control stack.

The definition of initial state remains the same as for the C machine,
but we change the definition of final state to include these two forms:

e value
ε < e final ε > fail final (24.8)

The first of these is as before, corresponding to a normal result with the
specified value. The second is new, corresponding to an uncaught excep-
tion propagating through the entire program.

It is a straightforward exercise the extend the definition of stack typ-
ing given in Chapter 23 to account for the new forms of frame. Using this,
safety can be proved by standard means. Note, however, that the meaning
of the progress theorem is now significantly different! A well-typed pro-
gram does not “get stuck” ... but it may well raise an uncaught exception.

Theorem 24.1 (Safety)
1. If s ok and s 7−→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7−→ s′.

Handler Stacks

Most implementations of exceptions do not unwind the stack frame-by-
frame, but rather implement a direct transfer of control to the appropriate
handler. But it is not just a matter of an indirect jump; the control stack
must also be reset to what it was at the point that handler was established.
This can be modelled by augmenting the abstract machine state with a
stack of stacks, called the handler stack, which records the information re-
quired for a non-local control transfer.

Let us call the augmented machine the H machine. The states of the H
machine have one of two forms:

APRIL 5, 2006 WORKING DRAFT

24.1 Failures 161

1. h | k > e corresponding to evaluation of expression e on control stack
k and handler stack h;

2. h | k < e, corresponding to return of a value e to control stack k and
handler stack h.

A handler stack is just a stack of control stacks:

ε hstack
k stack h hstack

k; h hstack (24.9)

A crucial invariant of the H machine execution is that each control stack
on the handler stack is an extension of the preceding one.

The key transition rules for the H machine are as follows. Evaluating
a handler installs a new handler by pushing an extension of the current
control stack onto the handler stack:

h | k > catch(e1, e2) 7−→ (catch(−, e2); k); h | catch(−, e2); k > e1
(24.10)

Notice that the same frame is pushed onto k to form the top of the handler
stack and the current control stack.

When a value is returned to a handler context, both the control stack
and the handler stack must be popped:

e1 value

(catch(−, e2); k); h | catch(−, e2); k < e1 7−→ h | k < e1 (24.11)

On normal return from an expression guarded by a handler, the handler
is removed and control passes up the control stack.

When a failure occurs, the current control stack is disregarded, and is
replaced by the top of the handler stack, which is itself popped:

(catch(−, e2); k); h | k′ > fail 7−→ h | k > e2 (24.12)

Control is passed to the handler, running on the control stack in effect at
the time the handler was installed. If the handler stack is empty, the failure
is uncaught, and we stop the machine:

ε | k > fail 7−→ ε | ε > fail (24.13)

Two invariants of the H machine are crucial to its implementation:

APRIL 5, 2006 WORKING DRAFT

24.1 Failures 162

1. Each control stack on the handler stack is an extension of its prede-
cessor.

2. Each control stack on the handler stack is a (not necessarily proper)
prefix of the current control stack.

This means that we can implement the handler stack as a stack of “point-
ers” into the control stack recording the spots at which handlers are placed.
On failure we simply pop the control stack to the point indicated by the
top of the handler stack, pop that handler stack, and resume execution.

The prefix property may be taken as a formal justification of an im-
plementation based on the setjmp and and longjmp constructs of the C
language. Unlike setjmp and longjmp, the exception mechanism is com-
pletely safe — it is impossible to return past the “finger” yet later attempt
to “pop” the control stack to that point. In C the fingers are kept as ad-
dresses (pointers) in memory, and there is no discipline for ensuring that
the set point makes any sense when invoked later in a computation.

Failure-Passing Style

Another approach to giving the semantics of exception is to eliminate ex-
ceptions by translating into a language with sum types. An expression of
type τ is translated into one of type unit + τ, where the left summand rep-
resents the occurrence of an error, and the right summand represents the
normal return of a value of type τ. Each language construct is translated
so as to case analyze on the occurrence of an error, propagating failures
upward, except for the catch construct, which re-directs errors to the han-
dler.

This interpretation is best described as a type-directed translation be-
tween the source language, the extension of MinML with exceptions, to the
target language, the extension of MinML with sum types. A type-directed
translation is specified by two judgement forms:

1. A type translation, τ τ′, which states that source type τ is trans-
lated to target type τ′.

2. An expression translation, e : τ e′ : unit + τ′, which states that
the source expression e : τ translates to the target expression e′ :
unit + τ′, where τ τ′.

APRIL 5, 2006 WORKING DRAFT

24.1 Failures 163

To account for free variables in the expression e we must consider hypo-
thetical translation judgements of the form

Θ ` e : τ e′ : unit + τ′.

The hypothesis list Θ consists of hypotheses of the form

xi : τi inr(x′i) : unit + τ′i ,

where τi τ′i . Each such hypothesis implicitly declares the source lan-
guage variable xi : τi and the target language variable x′i : τ′i , and specifies
the translation of the one in terms of the other.

The rules for the type translation are as follows:

nat nat

τ1 τ′1 τ2 τ′2
τ1→τ2 τ′1→(unit + τ′2)

And here are the corresponding rules for the type translation:

Θ ` n : nat inr(n) : unit + nat

τ1 τ′1 Θ, x : τ1 inr(x′) : unit + τ′1 ` e : τ2 e′ : unit + τ′2
Θ ` λ(x:τ1. e) : τ1→τ2 inr(λ(x′:τ′1. e′)) : unit + (τ′1→(unit + τ′2))

Θ ` e1 : τ2→τ e′1 : unit + (τ′2→(unit + τ′)) Θ ` e2 : τ2 e′2 : unit + τ′2
Θ ` e1(e2) : τ e′ : unit + τ′

where


e′ = let x′1 be e′1 in let x′2 be e′2 in e′′

e′′ = case x′1 { inl(:unit)⇒ inl(〈〉) | inr(y′1:τ′2→(unit + τ′))⇒ e′′′ }
e′′′ = case x′2 { inl(:unit)⇒ inl(〈〉) | inr(y′2:τ′2)⇒ y′1(y′2) }

τ τ′

Θ ` fail : τ inl(〈〉) : unit + τ′

Θ ` e1 : τ e′1 : unit + τ′ Θ ` e2 : τ e′2 : unit + τ′

Θ ` try e1 ow e2 : τ e′ : unit + τ′

where e′ = case e′1 { inl(:unit)⇒ e′2 | inr(x′1:τ′)⇒ inr(x′1) }

APRIL 5, 2006 WORKING DRAFT

24.2 Exceptions 164

24.2 Exceptions

Let us now consider enhancing the simple failures mechanism of the pre-
ceding section with an exception mechanism that permits a value to be
associated with the failure, which is then passed to the handler as part of
the control transfer. The syntax of exceptions is given by the following
grammar:

Expr’s e : : = raise(e) | handle(e1, x.e2)

The argument to raise is evaluated to determine the value passed to the
handler. The expression handle(e1, x.e2) binds a variable, x, in the han-
dler, e2, to which the associated value of the exception is bound, should an
exception be raised during the execution of e1.

The static semantics of exceptions is a straightforward generalization
of that of failures.

Γ ` e : τexn
Γ ` raise(e) : τ (24.14)

Γ ` e1 : τ Γ, x : τexn ` e2 : τ

Γ ` handle(e1, x.e2) : τ (24.15)

These rules are parameterized by the type of values associated with ex-
ceptions, τexn. But what should be the type τexn?

The first thing to observe is that all exceptions should be of the same
type, otherwise we cannot guarantee type safety. The reason is that a han-
dler might be invoked by any raise expression occurring during the exe-
cution of the expression that it guards. If different exceptions could have
different associated values, the handler could not predict (statically) what
type of value to expect, and hence could not dispatch on it without violat-
ing type safety.

Since the data associated with an exception is intended to indicate the
reason for the failure, it may seem reasonable to choose τexn to be a string
that describes the reason for the failure. For example, one might write

raise "Division by zero error."

to signal the obvious arithmetic fault, or

raise "File not found."

APRIL 5, 2006 WORKING DRAFT

24.3 Exercises 165

to indicate failure to open a specified file. While this might be reasonable
for exceptions that are not intended to be caught, it is quite unreasonable
for those that may wish to be caught by an exception handler — it would
have to parse the associated string, according to some conventions, to de-
termine what happened and how to respond! Similar criticisms apply to
choosing τexn to be, say, nat, associating an “error number” with each form
of failure, and requiring the handler to dispatch on the number. This, too,
is obviously rather primitive and error-prone, and would not permit a nat-
ural means of associating other, exception-specific data with the failure.

A much more reasonable choice would be to distinguish a labelled sum
type of the form

τexn = [div : unit, fnf : string, . . .].

Each variant of the sum specifies the type of data associated with that
variant. The handler may perform a case analysis on the tag of the variant,
thereby recovering the underlying data value of the appropriate type. For
example,

try e1 ow x.case x {
div 〈〉 ⇒ ediv

| fnf s ⇒ efnf
| · · · }

This code closely resembles the exception mechanisms found in many
well-known languages.

The only difficulty with this choice of τexn is that we must specify it
globally for the entire program. This precludes associating types with ex-
ceptions that only make sense within a region of code, and precludes in-
troducing new exceptions in a modular fashion. For this reason a natural
choice is to introduce an extensible sum type, which is similar to the labelled
sum type, except that new cases can be added to it dynamically. This is a
very useful notion beyond its role as providing a convenient type of excep-
tion values; we will discuss extensible sums in more detail in Chapter 31.

24.3 Exercises

1. Hand-simulate the evaluation of a few simple expressions with ex-
ceptions and handlers to get a feeling for how it works.

APRIL 5, 2006 WORKING DRAFT

24.3 Exercises 166

2. State and prove the safety of the formulation of exceptions using a
handler stack.

3. Prove that the H machine indeed maintains the invariants stated above.

APRIL 5, 2006 WORKING DRAFT

Chapter 25

Continuations

The semantics of many control constructs (such as exceptions and co-routines)
can be expressed in terms of reified control stacks, a representation of a con-
trol stack as an ordinary value. This is achieved by allowing a stack to be
passed as a value within a program and to be restored at a later point, even
if control has long since returned past the point of reification. Reified con-
trol stacks of this kind are called first-class continuations, where the qualifi-
cation “first class” stresses that they are ordinary values with an indefinite
lifetime that can be passed and returned at will in a computation. First-
class continuations never “expire”, and it is always sensible to reinstate a
continuation without compromising safety. Thus first-class continuations
support unlimited “time travel” — we can go back to a previous point in
the computation and then return to some point in its future, at will.

How is this achieved? The key to implementing first-class continua-
tions is to arrange that control stacks are persistent data structures, just like
any other data structure in ML that does not involve mutable references.
By a persistent data structure we mean one for which operations on it yield
a “new” version of the data structure without disturbing the old version.
For example, lists in ML are persistent in the sense that if we cons an ele-
ment to the front of a list we do not thereby destroy the original list, but
rather yield a new list with an additional element at the front, retaining the
possibility of using the old list for other purposes. In this sense persistent
data structures allow time travel — we can easily switch between several
versions of a data structure without regard to the temporal order in which
they were created. This is in sharp contrast to more familiar ephemeral data
structures for which operations such as insertion of an element irrevocably

167

25.1 Informal Overview 168

mutate the data structure, preventing any form of time travel.
Returning to the case in point, the standard implementation of a con-

trol stack is as an ephemeral data structure, a pointer to a region of mutable
storage that is overwritten whenever we push a frame. This makes it im-
possible to maintain an “old” and a “new” copy of the control stack at the
same time, making time travel impossible. If, however, we represent the
control stack as a persistent data structure, then we can easily reify a con-
trol stack by simply binding it to a variable, and continue working. If we
wish we can easily return to that control stack by referring to the variable
that is bound to it. This is achieved in practice by representing the control
stack as a list of frames in the heap so that the persistence of lists can be
extended to control stacks. While we will not be specific about implemen-
tation strategies in this note, it should be born in mind when considering
the semantics outlined below.

Why are first-class continuations useful? Fundamentally, they are rep-
resentations of the control state of a computation at a given point in time.
Using first-class continuations we can “checkpoint” the control state of a
program, save it in a data structure, and return to it later. In fact this is
precisely what is necessary to implement threads (concurrently executing
programs) — the thread scheduler must be able to checkpoint a program
and save it for later execution, perhaps after a pending event occurs or an-
other thread yields the processor. In Section 26 we will show how to build
a threads package for concurrent programming using continuations.

25.1 Informal Overview

We will extend MinML with the type cont(τ) of continuations accepting
values of type τ. The introductory form for cont(τ) is letcc(τ, x.e),
which binds the current continuation (i.e., the current control stack) to the
variable x, and evaluates the expression e. The eliminatory form is throw(e1, e2),
which restores the value of e1 to the control stack that is the value of e2.1

This description makes clear the need for a persistent representation of
control stacks so that they may be bound to variables and restored a value
is thrown to one.

1Close relatives of these primitives are available in SML/NJ in the following forms: for
letcc(τ, x.e), write SMLofNJ.Cont.callcc (fn x => e), and for throw(e1, e2), write
SMLofNJ.Cont.throw e2 e1.

APRIL 5, 2006 WORKING DRAFT

25.1 Informal Overview 169

Here is a simple example, written in an informal concrete syntax. The
idea is to multiply the elements of a list, short-circuiting the computation
in case zero is encountered. Here’s the code:

fun mult list (l:int list):int =

letcc ret:int cont in

let fun mult nil = 1

| mult (0::) = throw 0 to ret

| mult (n::l) = n * mult l

in mult l end

Ignoring the letcc for the moment, the body of mult list is a let expres-
sion that defines a recursive procedure mult, and applies it to the argument
of mult list. The job of mult is to return the product of the elements of
the list. Ignoring the second line of mult, it should be clear why and how
this code works.

Now let’s consider the second line of mult, and the outer use of letcc.
Intuitively, the purpose of the second line of mult is to short circuit the
multiplication, returning 0 immediately in the case that a 0 occurs in the
list. This is achieved by throwing the value 0 (the final answer) to the
continuation bound to the variable ret. This variable is bound by letcc

surrounding the body of mult list. What continuation is it? It’s the con-
tinuation that runs upon completion of the body of mult list. This con-
tinuation would be executed in the case that no 0 is encountered and eval-
uation proceeds normally. In the unusual case of encountering a 0 in the
list, we branch directly to the return point, passing the value 0, effecting
an early return from the procedure with result value 0.

Here’s another formulation of the same function:

fun mult list l =

let fun mult nil ret = 1

| mult (0::) ret = throw 0 to ret

| mult (n::l) ret = n * mult l ret

in letcc ret:int cont in (mult l) ret end

Here the inner loop is parameterized by the return continuation for early
exit. The multiplication loop is obtained by calling mult with the current
continuation at the exit point of mult list so that throws to ret effect an
early return from mult list, as desired.

APRIL 5, 2006 WORKING DRAFT

25.1 Informal Overview 170

Let’s look at another example: given a continuation k of type τ cont

and a function f of type τ′→τ, return a continuation k′ of type τ′ cont
with the following behavior: throwing a value v′ of type τ′ to k′ throws the
value f (v′) to k. This is called composition of a function with a continuation.
We wish to fill in the following template:

fun compose(f:τ′→τ,k:τ cont):τ′ cont =

The first problem is to obtain the continuation we wish to return. The
second problem is how to return it. The continuation we seek is the one
in effect at the point of the ellipsis in the expression throw f(...) to k.
This is the continuation that, when given a value v′, applies f to it, and
throws the result to k. We can seize this continuation using letcc, writing

throw f(letcc x:τ′ cont in ...) to k

At the point of the ellipsis the variable x is bound to the continuation we
wish to return. How can we return it? By using the same trick as we used
for short-circuiting evaluation above! We don’t want to actually throw a
value to this continuation (yet), instead we wish to abort it and return it as
the result. Here’s the final code:

fun compose (f:τ′→τ, k:τ cont):τ′ cont =

letcc ret:τ′ cont cont in

throw (f (letcc r in throw r to ret)) to k

Notice that the type of ret is that of a continuation-expecting continuation!
We can do without first-class continuations by creating our own during

execution. The idea is that we can perform (by hand or automatically) a
systematic program transformation in which a “copy” of the control stack
is maintained as a function, called a continuation. Every function takes as
an argument the control stack to which it is to pass its result by applying
given stack (represented as a function) to the result value. Functions never
return in the usual sense; they pass their result to the given continuation.
Programs written in this form are said to be in continuation-passing style, or
CPS for short.

Here’s the code to multiply the elements of a list, without short-circuiting,
in continuation-passing style:

APRIL 5, 2006 WORKING DRAFT

25.2 Semantics of Continuations 171

fun cps mult nil k = k 1

| cps mult (n::l) k = cps mult l (fn r => k (n * r))

fun mult l = cps mult l (fn r => r)

The short-circuiting version is just as simple:

fun cps mult list l k =

let fun cps mult nil k0 k = k 1

| fun cps mult (0::) k0 k = k0 0

| fun cps mult (n::l) k0 k = cps mult k0 l (fn p => k (n*p))

in cps mult l k k end

The continuation k0 never changes; it is always the return continuation for
cps mult list. The argument continuation to cps mult list is duplicated
on the call to cps mult.

25.2 Semantics of Continuations

We extend the language of MinML expressions with these additional forms:

Types τ : : = cont(τ)
Expr’s e : : = letcc(τ, x.e) | throw(e1, e2) | cont(k)

The expression cont(k) is a reified control stack; they arise during evalu-
ation, but are not available as expressions to the programmer.

The static semantics of this extension is defined by the following rules:

Γ, x : cont(τ) ` e : τ
Γ ` letcc(τ, x.e) : τ

Γ ` e1 : τ1 Γ ` e2 : cont(τ1)

Γ ` throw(e1, e2) : τ′
(25.1)

The result type of a throw expression is arbitrary because it does not return
to the point of the call.

The static semantics of continuation values is given by the following
rule:

k : stack(τ)
Γ ` cont(k) : cont(τ) (25.2)

A continuation value cont(k) has type cont(τ) exactly if it is a stack
accepting values of type τ.

APRIL 5, 2006 WORKING DRAFT

25.2 Semantics of Continuations 172

To define the dynamic semantics, we extend the C machine stacks with
two new forms of frame:

e2 exp
throw(−, e2) frame

e1 value
throw(e1,−) frame

(25.3)

Every reified control stack is a value:

k stack
cont(k) value (25.4)

The transition rules for the continuation constructs are as follows:

k > letcc(τ, x.e) 7−→ k > [x←cont(k)]e (25.5)

throw(v,−); k < cont(k′) 7−→ k′ < v (25.6)

k > throw(e1, e2) 7−→ throw(−, e2); k > e1 (25.7)

e1 value

throw(−, e2); k < e1 7−→ throw(e1,−); k > e2 (25.8)

Evaluation of a letcc expression duplicates the control stack; evaluation
of a throw expression destroys the current control stack.

The safety of this extension of MinML may be established by a simple
extension to the safety proof for the C machine given in Chapter 23.

We need only add typing rules for the two new forms of frame, which
are as follows:

e2 : cont(τ)

throw(−, e2) : frame(τ, τ′)

e1 : τ e1 value

throw(e1,−) : frame(cont(τ), τ′)
(25.9)

The rest of the definitions remain as in Chapter 23.

Lemma 25.1 (Canonical Forms)
If e : cont(τ) and e value, then v = cont(k) for some k such that k :
stack(τ).

Theorem 25.2 (Safety)
1. If s ok and s 7−→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7−→ s′.

APRIL 5, 2006 WORKING DRAFT

25.3 Failures from Continuations 173

25.3 Failures from Continuations

The dynamic semantics of failures may be specified by a translation into
a language with continuations. The general idea is to translate expres-
sions to functions that take as argument a continuation of type τexn cont,
representing the current exception handler. To fail, simply throw the unit
value to the current handler. To establish a new handler we must create
a new continuation to serve as the handler for the expression to be evalu-
ated, while ensuring that the handling expression is itself evaluated in the
context of the outer handler.

We will translate from the source langage, the extension of MinML with
exceptions described in Chapter 24 to the target language, the extension of
MinML with continuations described in the present chapter. The transla-
tion consists of two parts:

1. A type translation, τ τ′, from source language types to target
language types.

2. An expression translation, e : τ e′ : unit cont→τ′, where τ τ′,
from source language expressions to target language expressions.

Notice that the type of the translation makes the failure continuation pa-
rameter explicit.

The type translation is defined by the following rules:

nat nat

τ1 τ′1 τ2 τ′2
τ1→τ2 τ′1→(unit cont→τ′2)

The translation augments functions with an additional argument repre-
senting the exception handler to use while executing the body of the func-
tion.

The term translation must be defined for open, as well as closed, terms.
To do so we consider hypothetical translation judgements of the form

Θ ` e : τ e′ : unit cont→τ′,

where τi τ′i , in which Θ consists of hypotheses of the form

xi : τi λ(k:unit cont. x′i) : unit cont→τ′i .

APRIL 5, 2006 WORKING DRAFT

25.4 Exercises 174

Each such hypothesis is to be understood as implicitly declaring fresh vari-
ables xi : τi for the source language and x′i : τ′i for the target language. It
specifies that the variable xi, when encountered in e, is to be translated
to the constant function λ(k:unit cont. x′i) of type unit cont→τ′. This
choice reflects the call-by-value interpretation of variables in the source
language.

The expression translation is given by the following rules, wherein, for
the sake of concision, we abbreviate unit cont by τh.

Θ ` n : nat λ(k:τh. n) : τh→nat

τ1 τ′1 Θ, x : τ1 λ(k:τh. x′) : τh→τ′1 ` e : τ2 e′ : τh→τ′2
Θ ` λ(x:τ1. e) : τ1→τ2 λ(k:τh. λ(x′:τ′1. λ(k′:τh. e′(k′)))) : τh→(τ′1→τh→τ′2)

Θ ` e1 : τ2→τ e′1 : τh→(τ′2→τh→τ′) Θ ` e2 : τ2 e′2 : τh→τ′2
Θ ` e1(e2) : τ λ(k:τh. e′1(k)(e′2(k))) : τh→τ′

τ τ′

Θ ` fail : τ λ(k:τh. throw 〈〉 to k) : τh→τ′

Θ ` e1 : τ e′1 : τh→τ′ Θ ` e2 : τ e′2 : τh→τ′

Θ ` try e1 ow e2 : τ λ(k:τh. let k′ be e′k,k′ in e′1(k′)) : τh→τ′

In the translation for handlers the expression e′k,k′ is as follows:

letcc r in let x be (letcc k′ in throw k′ to r) in e′2(k).

This ensures that the handler, e2, runs in the context of the outer exception
handler, while building an inner exception handler for use by e1. This
handler simply passes the unit value to e2, the handler for the exception.

25.4 Exercises

1. Study the short-circuit multiplication example carefully to be sure
you understand why it works!

2. Attempt to solve the problem of composing a continuation with a
function yourself, before reading the solution.

APRIL 5, 2006 WORKING DRAFT

25.4 Exercises 175

3. Simulate the evaluation of compose (f, k) on the empty stack. Ob-
serve that the control stack substituted for x is

app(f ,−); throw(−, k); ε (25.10)

This stack is returned from compose. Next, simulate the behavior
of throwing a value v′ to this continuation. Observe that the above
stack is reinstated and that v′ is passed to it.

4. Verify the type preservation theorem for the exception translation.

APRIL 5, 2006 WORKING DRAFT

Chapter 26

Coroutines

A subroutine is a standard pattern of control flow in a program in which
one routine passes control to another by passing to it a data value, the ar-
gument, to the subroutine, and a return point at which to resume control
when finished. This arrangement is asymmetric in the sense that there is
a clear separation between the roles of the caller and the callee. A corou-
tine is a symmetric pattern of control flow in which two routines are each
subroutines of the other, each transferring control to the other by passing
a data value and a return point for that call. Execution consists of an in-
terleaving of the execution steps of the two routines determined by their
mutual transfers of control to each other.

While it is relatively easy to visualize and implement coroutines in-
volving only two partners, it is more complex, and less useful, to consider
a similar pattern of control among n ≥ 2 participants. In such cases it is
more common to structure the interaction as a collection of n routines each
coroutining with a central scheduler. A routine that transfers control to the
scheduler is said to yield to another routine determined by the scheduler
according to some (usually unspecified) other routine. This pattern of con-
trol flow is called cooperative multi-threading. Each routine is called a thread
of control, or just thread for short, whose execution is managed by a cen-
tral scheduler. Transfers of control only occur when one thread yields to
another, and otherwise continues without interruption or preemption.

176

26.1 Coroutines from Continuations 177

26.1 Coroutines from Continuations

Coroutines may be naturally and elegantly implemented using a combi-
nation of continuations and recursive types. Consider two symmetric rou-
tines that transfer control back and forth between each other by passing
a data value and a continuation. The data value plays the role of the “ar-
gument” of the partner routine, and the continuation specifies the point
at which execution is to be resumed by the partner. Thus, the state of the
coroutine is described by a type satisfying the isomorphism

state ∼= (τ× state) cont,

where τ is the type of the data values exchanged by the routines. The
solution to such an isomorphism is, of course, the recursive type

state = µ(t.(τ× t) cont).

Thus a state, s, encapsulates a pair consisting of a value of type τ together
with another state. The value represents the “current” data value being
exchanged by the routines, and the state represents the point of resump-
tion.

Control is transferred from one routine to another by applying the
function resume to a data value and a state. The function resume is de-
fined as follows:

λ(〈x, s〉:nat× state. letcc k in throw 〈x, roll(k)〉 to unroll(s))

The application resume(〈x, s〉) captures the continuation at the applica-
tion site, and passes x along with this continuation to the continuation
represented by s.

Both of the routines have the general form

fun loop(〈x, s〉:τ× state):τ× state is loop(resume(〈 f(x), s〉)),

where f : τ→τ transforms the “current” data value into the “next” data
value. Different instances of the routine are obtained by specifying differ-
ent functions f .

To obtain a classic producer/consumer pair, let producer and consumer

be two routines of the above form. The initialization routine, called run,
for the producer/consumer coroutines starts the producer with an initial

APRIL 5, 2006 WORKING DRAFT

26.2 Excercises 178

data value, i, of type τ, and arranges that it resumes the consumer with
the specified data value and resumption state.

λ(〈〉:unit. consumer(letcc k in producer(〈i, roll(k)〉))).

Notice that execution starts with the producer, and passes control to the
consumer when the producer resumes the state passed to it as argument.
This establishes the interaction loop between the producer and consumer,
which thereafter alternate execution in lockstep order.

26.2 Excercises

APRIL 5, 2006 WORKING DRAFT

Part IX

Propositions and Types

179

Chapter 27

Curry-Howard Isomorphism

The Curry-Howard Isomorphism is a central organzing principle of type the-
ory. Roughly speaking, the Curry-Howard Isomorphism states that there
is a correspondence between propositions and types such that proofs corre-
spond to programs. To each proposition, φ, there is an associated type, τ,
such that to each proof p of φ, there is a corresponding expression e of type
τ. Among other things, this correspondence tells us that proofs have com-
putational content and that programs are a form of proof. It also suggests that
programming language features may be expected to give rise to concepts
of logic, and conversely that concepts from logic give rise to programming
language features. It is a remarkable fact that this correspondence, which
began as a rather modest observation about types and logics, has devel-
oped into a central principle of language design whose implications are
still being explored.

This informal discussion leaves open what we mean by proposition
and proof. The original isomorphism observed by Curry and Howard per-
tains to a particular branch of logic called constructive logic, of which we
will have more to say in the next section. However, the observation has
since been extended to an impressive array of logics, all of which are, by
virtue of the correspondence, “constructive”, but which extend the inter-
pretation to richer notions of proposition and proof. Thus one might say
that there are many Curry-Howard Isomorphisms, of which the original is
but one!

We will focus our attention on constructive propositional logic, which
involves a minimum of technical machinery to motivate and explain. We
will concentrate on the “big picture”, and make only glancing reference to

180

27.1 Constructive Logic 181

the considerable technical details involved in fully working out the corre-
spondence between propositions and types.

27.1 Constructive Logic

27.1.1 Constructive Semantics

Constructive logic is concerned with two judgement forms, φ prop, stating
that φ expresses a proposition, and φ true, stating that φ is a true proposi-
tion. In constructive logic a proposition is a specification describing a prob-
lem to be solved. The solution to the problem posed by a proposition is a
proof. If a proposition has a proof (i.e., it specifies a soluble problem), then
the proposition is said to be true. The characteristic feature of constructive
logic is that there is no other criterion of truth than the existence of a proof.

In a contructive setting the notion of falsity of a proposition is not prim-
itive. Rather, to say that a proposition is false is simply to say that the as-
sumption that it is true (i.e., that it has a proof) is contradictory. In other
words, for a proposition to be false, constructively, means that there is a
refutation of it, which consists of a proof that assuming it to be true is con-
tradictory. In this sense constructive logic is a logic of positive, or affirma-
tive, information — we must have explicit evidence in the form of a proof
in order to affirm the truth or falsity of a proposition.

One consequence is that a given proposition need not be either true or
false! While at first this might seem absurd (what else could it be, green?),
a moment’s reflection on the semantics of propositions reveals that this
consequence is quite natural. There are, and always will be, unsolved
problems that can be posed as propositions. For a problem to be unsolved
means that we are not in possession of a proof of it, nor do we have a
refutation of it. Therefore, in an affirmative sense, we cannot say that the

proposition is either true or false! As an example, the famous P ?= NP
problem is a proposition that is, constructively, neither true nor false at
the time of this writing.

A proposition, φ, for which we possess either a proof or a refutation of
it is said to be decidable. Any proposition for which we have either a proof
or a refutation is, of course, decidable, because we have already “decided”
it by virtue of having that information! But we can also make general
statements about decidability of propositions. For example, if φ expresses

APRIL 5, 2006 WORKING DRAFT

27.1 Constructive Logic 182

an inequality between natural numbers, then φ is decidable, because we
can always work out, for given natural numbers m and n, whether m ≤ n
or m 6≤ n — we can either prove or refute the given inequality. Once
we step outside the realm of such immediately checkable conditions, it is
not clear whether a given proposition has a proof or a refutation. It’s a
matter of rolling up one’s sleeves and doing some work! And there’s no
guarantee of success! Life’s hard, but we muddle through somehow.

The judgements φ prop and φ true are basic, or categorical, judgements.
These are the building blocks of reason, but they are rarely of interest by
themselves. Rather, we are interested in the more general case of the hypo-
thetical judgement, or consequence relation, of the form

φ1 true, . . . , φn true ` φ true.

This judgement expresses that the proposition φ is true (i.e., has a proof),
under the assumptions that each of φ1, . . . , φn are also true (i.e., have proofs).
Of course, when n = 0 this is just the same as the categorical judgement
φ true. We let Γ range over finite sets of assumptions.

The hypothetical judgement satisfies the following structural properties,
which characterize what we mean by reasoning under hypotheses:

Γ, φ true ` φ true (27.1)

Γ ` φ true Γ, φ true ` ψ true

Γ ` ψ true (27.2)

Γ ` ψ true

Γ, φ true ` ψ true (27.3)

Γ, φ true, φ true ` θ true

Γ, φ true ` θ true (27.4)

Γ, ψ true, φ true, Γ′ ` θ true

Γ, φ true, ψ true, Γ′ ` θ true (27.5)

The last two rules are implicit in that we regard Γ as a set of hypotheses,
so that two “copies” are as good as one, and the order of hypotheses does
not matter.

APRIL 5, 2006 WORKING DRAFT

27.1 Constructive Logic 183

27.1.2 Propositional Logic

The connectives of propositional logic (truth, falsehood, conjunction, dis-
junction, implication, and negation) are given meaning by rules that de-
termine (a) what constitutes a “direct” proof of a proposition formed from
a given connective, and (b) how to exploit the existence of such a proof in
an “indirect” proof of another proposition. These are called the introduc-
tion and elimination rules for the connective. The principle of conservation
of proof states that these rules are inverse to one another — the elimination
rule cannot extract more information (in the form of a proof) than was put
into it by the introduction rule, and the introduction rules can be used to
reconstruct a proof from the information extracted from it by the elimina-
tion rules.

The abstract syntax of propositional logic is given by the following
rules for deriving judgements of the form φ prop.

true prop (27.6)

false prop (27.7)

φ prop ψ prop

and(φ, ψ) prop (27.8)

φ prop ψ prop

imp(φ, ψ) prop (27.9)

φ prop ψ prop

or(φ, ψ) prop (27.10)

The following table summarizes the concrete syntax of propositions:

Abstract Concrete
true >
false ⊥

and(φ, ψ) φ ∧ ψ
imp(φ, ψ) φ ⊃ ψ
or(φ, ψ) φ ∨ ψ

APRIL 5, 2006 WORKING DRAFT

27.1 Constructive Logic 184

Truth Our first proposition is trivially true. No information goes into
proving it, and so no information can be obtained from it.

Γ ` > true (27.11)

(no elimination rule) (27.12)

Conjunction Conjunction expresses the truth of both of its conjuncts.

Γ ` φ true Γ ` ψ true

Γ ` φ ∧ ψ true (27.13)

Γ ` φ ∧ ψ true

Γ ` φ true (27.14)

Γ ` φ ∧ ψ true

Γ ` ψ true (27.15)

Implication Implication states the truth of a proposition under an as-
sumption.

Γ, φ true ` ψ true

Γ ` φ ⊃ ψ true (27.16)

Γ ` φ ⊃ ψ true Γ ` φ true

Γ ` ψ true (27.17)

Falsehood Falsehood expresses the trivially false (refutable) proposition.

(no introduction rule) (27.18)

Γ ` ⊥ true
Γ ` φ true (27.19)

APRIL 5, 2006 WORKING DRAFT

27.1 Constructive Logic 185

Disjunction Disjunction expresses the truth of either (or both) of two
propositions.

Γ ` φ true

Γ ` φ ∨ ψ true (27.20)

Γ ` ψ true

Γ ` φ ∨ ψ true (27.21)

Γ ` φ ∨ ψ true Γ, φ true ` θ true Γ, ψ true ` θ true

Γ ` θ true (27.22)

27.1.3 Explicit Proofs

The key to the Curry-Howard Isomorphism is to make explict the forms
of proof. The categorical judgement φ true, which states that φ has a proof,
is replaced by the judgement p : φ, stating that p is a proof of φ. The hypo-
thetical judgement is modified correspondingly, with variables standing
for the presumed, but unknown, proofs:

x1 : φ1, . . . , xn : φn ` p : φ.

We again let Γ range over such hypothesis lists, subject to the restriction
that no variable occurs more than once.

The rules of constructive propositional logic may be restated using
proof terms as follows.

Γ ` true-i :> (27.23)

Γ ` p : φ Γ ` q : ψ

Γ ` and-i(p, q) : φ ∧ ψ (27.24)

Γ ` p : φ ∧ ψ

Γ ` and-e-l(p) : φ (27.25)

Γ ` p : φ ∧ ψ

Γ ` and-e-r(p) : ψ (27.26)

APRIL 5, 2006 WORKING DRAFT

27.2 Propositions as Types 186

Γ, x : φ ` p : ψ

Γ ` imp-i(φ, x.p) : φ ⊃ ψ (27.27)

Γ ` p : φ ⊃ ψ Γ ` q : φ

Γ ` imp-e(p, q) : ψ (27.28)

Γ ` p :⊥
Γ ` false-e(φ, p) : φ (27.29)

Γ ` p : φ

Γ ` or-i-l(ψ, p) : φ ∨ ψ (27.30)

Γ ` p : ψ

Γ ` or-i-r(φ, p) : φ ∨ ψ (27.31)

Γ ` p : φ ∨ ψ Γ, x : φ ` q : θ Γ, y : ψ ` r : θ

Γ ` or-e(p, φ, x.q, ψ, y.r) : θ (27.32)

27.2 Propositions as Types

The Curry-Howard Isomorphism amounts to the observation that there
is a close correspondence between propositions and their proofs, on the
one hand, and types and their elements, on the other. The following chart
summarizes the correspondence between propositions, φ, and types, φ∗:

Proposition Type
> unit

⊥ void

φ ∧ ψ φ∗×ψ∗

φ ⊃ ψ φ∗→ψ∗

φ ∨ ψ φ∗ +ψ∗

APRIL 5, 2006 WORKING DRAFT

27.2 Propositions as Types 187

The correspondence extends to proofs and programs as well:

Proof Program
true-i 〈〉
false-e(φ, p) abort(p∗)
and-i(p, q) 〈p∗, q∗〉
and-e-l(p) fst(p∗)
and-e-r(p) snd(p∗)
imp-i(φ, x.p) λ(x:φ∗. p∗)
imp-e(p, q) p∗(q∗)
or-i-l(ψ, p) inlψ∗(p∗)
or-i-r(φ, p) inrφ∗(p∗)
or-e(p, φ, x.q, ψ, y.r) . . .
case p∗ { inl(x:φ∗)⇒ q∗ | inr(y:ψ∗)⇒ r∗ }

The translations above preserve and reflect formation and membership
when viewed as a translation into a typed language with unit, product,
void, sum, and function types.

Theorem 27.1 (Curry-Howard Isomorphism)
1. If φ prop, then φ∗ type

2. If Γ ` p : φ, then Γ∗ ` p∗ : φ∗.

The preceding theorem establishes a static correspondence between propo-
sitions and types and their associated proofs and programs. It also extends
to a dynamic correspondence, in which we see that the execution behavior
of programs arises from the cancellation of elimination and introduction
rules in the following manner:

and-e-l(and-i(p, q)) 7−→ p
and-e-r(and-i(p, q)) 7−→ q

imp-e(imp-i(φ, x.q), p) 7−→ [x←p]q
or-e(or-i-l(ψ, p), φ, x.q, ψ, y.r) 7−→ [x←p]q
or-e(or-i-r(φ, p), φ, x.q, ψ, y.r) 7−→ [y←p]r

These are precisely the primitive instructions associated with the programs
corresponding to these proofs! Indeed, these rules may be understood as
the codification of the computational content of proofs — the precise sense

APRIL 5, 2006 WORKING DRAFT

27.3 Exercises 188

in which proofs in propositional logic correspond, both statically and dy-
namically, to programs.

It is worth stressing that the correspondence does not include general
recursive functions, which would correspond to “recursive proofs!” In-
deed, if we permit general recursive proofs, then the result is logically in-
consistent, since we can then find a proof of every proposition — namely,
the non-terminating recursive “proof”!

27.3 Exercises

APRIL 5, 2006 WORKING DRAFT

Chapter 28

Classical Logic

In Chapter 27 we saw that constructive logic is a logic of positive informa-
tion in that the meaning of the judgement φ true is that there exists a proof
of φ. A refutation of a proposition φ consists of a proof of the hypothetical
judgement φ true ` ⊥ true, asserting that the assumption of φ leads to a
proof of logical falsehood (i.e., a contradiction). Since there are proposi-
tions, φ, for which we possess neither a proof nor a refutation, we cannot
assert, in general, φ ∨ ¬φ true.

By contrast classical logic (the one we all learned in school) maintains a
complete symmetry between truth and falsehood — that which is not true
is false and that which is not false is true. Obviously such an interpreta-
tion conflicts with the constructive interpretation, for lack of a proof of a
proposition is not a refutation, nor is lack of a refutation a proof.1 In this
sense classical logic is a logic of perfect information, in which all mathe-
matical problems have been resolved, and for each one it is clear whether
it is true or false. One might consider this “god’s view” of mathematics, in
constrast to the “mortal’s view” we are stuck with.

Despite this absolutism, classical logic nevertheless has computational
content, albeit in a somewhat attenuated form compared to constructive
logic. Whereas in constructive logic truth is identified with the existence
of certain positive information, in classical logic it is identified with the ab-
sence of a refutation, a much weaker criterion. Dually, falsehood is iden-
tified with the absence of a proof, which is also much weaker than pos-

1Or, in the words of the brilliant military strategist Donald von Rumsfeld, the absence
of evidence is not evidence of absence.

189

28.1 Classical Propositional Logic 190

session of a refutation. This weaker interpretation is responsible for the
pleasing symmetries of classical logic. The drawback is that in classical
logic propositions means much less than they do in constructive logic. For
example, in classical logic the proposition φ ∨ ¬φ does not state that we
have either a proof of φ or a refutation of it, rather just that it is impossible
that we have both a proof of it and a refutation of it.

28.1 Classical Propositional Logic

Classical logic is concerned with three categorical judgement forms:

1. φ true, stating that proposition φ is true;

2. φ false, stating that proposition φ is false;

3. #, stating that a contradiction has been derived.

Hypothetical judgements have the form

φ1 false, . . . , φm false; ψ1 true, . . . , ψn true ` J,

where J is any of the three categorical judgement forms.
Rather than give the rules in this form, it is expedient to consider di-

rectly the corresponding judgements with explicit proof terms.

1. p : φ, stating that p is a proof of φ;

2. k÷ φ, stating that k is a refutation of φ;

3. k # p, stating that k and p are contradictory.

Hypothetical judgements have the form

u1÷ φ1, . . . , um÷ φm︸ ︷︷ ︸
∆

; x1 : ψ1, . . . , xn : ψn︸ ︷︷ ︸
Γ

` J,

where J is any of the preceding three categorical judgements. The struc-
tural rules discussed in Chapter 27 apply to both the truth and the false-
hood contexts of the hypothetical judgement.

APRIL 5, 2006 WORKING DRAFT

28.1 Classical Propositional Logic 191

Statics

A contradiction arises from the conflict between a proof and a refutation:

∆; Γ ` k÷ φ ∆; Γ ` p : φ

∆; Γ ` k # p

The reflexivity rules capture the meaning of hypotheses:

∆, u÷ φ; Γ ` u÷ φ ∆; Γ, x : ψ ` x : φ

Truth and falsity are complementary:

∆, u÷ φ; Γ ` k # p
∆; Γ ` ccr(u÷ φ.k # p) : φ

∆; Γ, x : φ ` k # p
∆; Γ ` ccp(x : φ.k # p)÷ φ

In both of these rules the entire contradiction, k # p, lies within the scope
of the abstractor!

The rules for the connectives are organized as introductory rules for
truth and for falsity, the latter playing the role of eliminatory rules in con-
structive logic.

∆; Γ ` 〈〉 :> ∆; Γ ` abort÷⊥

∆; Γ ` p : φ ∆; Γ ` q : ψ

∆; Γ ` 〈p, q〉 : φ ∧ ψ

∆; Γ ` k÷ φ ∧ ψ

∆; Γ ` fst; k÷ φ

∆; Γ ` k÷ φ ∧ ψ

∆; Γ ` snd; k÷ψ

∆; Γ, x : φ ` p : ψ

∆; Γ ` λ(x:φ. p) : φ ⊃ ψ

∆; Γ ` p : φ ∆; Γ ` k÷ψ

∆; Γ ` ap(p); k÷ φ ⊃ ψ

∆; Γ ` p : φ

∆; Γ ` inlψ(p) : φ ∨ ψ

∆; Γ ` p : ψ

∆; Γ ` inrφ(p) : φ ∨ ψ

∆; Γ ` k÷ φ ∆; Γ ` l÷ψ

∆; Γ ` case(k, l)÷ φ ∨ ψ

∆; Γ ` k÷ φ

∆; Γ ` not(k) :¬φ

∆; Γ ` p : φ

∆; Γ ` not(p)÷¬φ

APRIL 5, 2006 WORKING DRAFT

28.1 Classical Propositional Logic 192

28.1.1 Dynamics

The dynamic semantics of classical logic may be described as a process of
conflict resolution. The state of the abstract machine is a contradiction, k # p,
between a refutation, k, and a proof, p, of the same proposition. Execution
consists of “simplifying” the conflict based on the form of k and p. This
process is formalized by an inductive definition of a transition relation
between contradictory states.

Here are the rules for each of the logical connectives, which all have the
form of resolving a conflict between a proof and a refutation of a proposi-
tion formed with that connective.

fst; k # 〈p, q〉 7−→ k # p
snd; k # 〈p, q〉 7−→ k # q

case(k, l) # inlψ(p) 7−→ k # p
case(k, l) # inrφ(q) 7−→ l # q
ap(p); k # λ(x:φ. q) 7−→ k # [x←p]q

not(p) # not(k) 7−→ k # p

The symmetry of the transition rule for negation is particularly elegant.
Finally, here are the rules for the generic primitives relating truth and

falsity.
ccp(x : φ.k # p) # q 7−→ [x←q]k # [x←q]p

k # ccr(u÷ φ.l # p) 7−→ [u←k]l # [u←k]p

These rules explain the terminology: “ccp” means “call with current proof”,
and “ccr” means “call with current refutation”. The former is a refutation
that binds a variable to the current proof and installs the corresponding in-
stance of its constituent state as the current state. The latter is a proof that
binds a variable to the current refutation and installs the corresponding
instance of its constituent state as the current state.

It is important to observe that the last two rules overlap in the sense
that there are two possible transitions for a state of the form

ccp(x : φ.k # p) # ccr(u÷ φ.l # q).

This state may transition either to the state

[x←r]k # [x←r]p,

APRIL 5, 2006 WORKING DRAFT

28.1 Classical Propositional Logic 193

where r is ccr(u÷ φ.l # q), or to the state

[u←m]l # [u←m]q,

where m is ccp(x : φ.k # p), and these are not equivalent.
There are two possible attitudes about this. One is to simply accept

that classical logic has a non-deterministic dynamic semantics, and leave
it at that. But this means that it is difficult to predict the outcome of a com-
putation, since it could be radically different in the case of the overlapping
state just described. The alternative is to impose an arbitrary priority or-
dering among the two cases, either preferring the first transition to the
second, or vice versa. Preferring the first corresponds, very roughly, to a
“lazy” semantics for proofs, because we pass the unevaluated proof, r, to
the refutation on the left, which is thereby activated. Preferring the sec-
ond corresponds to an “eager” semantics for proofs, in which we pass the
unevaluated refutation, m, to the proof, which is thereby activated. Du-
ally, these choices correspond to an “eager” semantics for refutations in
the first case, and a “lazy” one for the second. Take your pick.

The final issue is the initial state: how is computation to be started?
Or, equivalently, when is it finished? The difficulty is that we need both a
proof and a refutation of the same proposition! While this can easily come
up in the “middle” of a proof, it would be impossible to have a finished
proof and a finished refutation of the same proposition! The solution for
an eager interpretation of proofs (and, correspondingly, a lazy interpre-
tation of refutations) is simply to postulate an initial (or final, depending
on your point of view) refutation, halt, and to deem a state of the form
halt # p to be initial, and also final, provided that p is not a “ccr” in-
struction. The solution for a lazy interpretation of proofs (and an eager
interpretation of refutations) is dual, taking k # halt as initial, and also
final, provided that k is not a “ccp” instruction.

APRIL 5, 2006 WORKING DRAFT

Part X

State

194

Chapter 29

Storage Effects

MinML is said to be a pure language because the execution model consists
entirely of evaluating an expression for its value. ML is an impure lan-
guage because its execution model also includes effects, specifically, control
effects and store effects. Control effects are non-local transfers of control;
these were studied in Chapters 25 and 24. Store effects are dynamic mod-
ifications to mutable storage. This chapter is concerned with store effects.

29.1 References

The MinML type language is extended with reference types ref(τ) whose
elements are to be thought of as mutable storage cells. We correspondingly
extend the expression language with these primitive operations:

e : : = l | new(e) | get(e) | set(e1, e2)

As in Standard ML, new(e) allocates a “new” reference cell, get(e) re-
trieves the contents of the cell e, and set(e1, e2) sets the contents of the
cell e1 to the value e2. The variable l ranges over a set of locations, an infi-
nite set of names disjoint from variables. These are needed for the dynamic
semantics, but are not expected to be notated directly by the programmer.
The set of values is extended to include locations.

The typing judgement, e : τ, for the extension of MinML with references
must be considered in the context of two forms of assumptions:

1. Variable assumptions of the form xi : τi, introducing a variable xi with
type τi.

195

29.1 References 196

2. Location assumptions of the form li : τi, introducing a location li whose
contents is of type τi.

The hypothetical typing judgement has the form

Λ; Γ ` e : τ,

where Γ stands for a finite set of variable assumptions, and Λ stands for a
finite set of location assumptions, such that no variable and no location is
the subject of more than one assumption.

The typing rules are those of MinML (extended to carry a location typ-
ing), plus the following rules governing the new constructs of the lan-
guage:

(Λ(l) = τ)
Λ; Γ ` l : ref(τ) (29.1)

Λ; Γ ` e : τ
Λ; Γ ` new(e) : ref(τ) (29.2)

Λ; Γ ` e : ref(τ)
Λ; Γ ` get(e) : τ (29.3)

Λ; Γ ` e1 : ref(τ2) Λ; Γ ` e2 : τ2
Λ; Γ ` set(e1, e2) : τ2 (29.4)

Notice that the location typing is not extended during type checking!
Locations arise only during execution, and are not part of complete pro-
grams, which must not have any free locations in them. The role of the
location typing will become apparent in the proof of type safety for MinML
extended with references.

A memory is a finite function mapping locations to closed values (but
possibly involving locations). The dynamic semantics of MinML with ref-
erences is given by an abstract machine. The states of this machine have
the form (M, e), where M is a memory and e is an expression possibly in-
volving free locations in the domain of M. The locations in dom(M) are
bound simultaneously in (M, e); the names of locations may be changed
at will without changing the identity of the state.

APRIL 5, 2006 WORKING DRAFT

29.1 References 197

The transitions for this machine are similar to those of the M machine,
but with these additional steps:

(M, e) 7−→ (M′, e′)
(M, new(e)) 7−→ (M′, new(e′)) (29.5)

(l /∈ dom(M))
(M, new(v)) 7−→ (M[l=v], l) (29.6)

(M, e) 7−→ (M′, e′)
(M, get(e)) 7−→ (M′, get(e′)) (29.7)

(l ∈ dom(M))
(M, get(l)) 7−→ (M, M(l)) (29.8)

(M, e1) 7−→ (M′, e′1)
(M, set(e1, e2)) 7−→ (M′, set(e′1, e2)) (29.9)

(M, e2) 7−→ (M′, e′2)
(M, set(v1, e2)) 7−→ (M′, set(v1, e′2)) (29.10)

(l ∈ dom(M))
(M, set(l, v)) 7−→ (M[l=v], v) (29.11)

A state (M, e) is final iff e is a value (possibly a location).
To prove type safety for this extension we will make use of some aux-

iliary relations. Most importantly, the typing relation between memories
and location typings, written M : Λ, is inductively defined by the follow-
ing rule:

dom(M) = dom(Λ) ∀l ∈ dom(Λ) Λ; • ` M(l) : Λ(l)
M : Λ (29.12)

It is very important to study this rule carefully! First, we require that Λ
and M govern the same set of locations. Second, for each location l in their
common domain, we require that the value at location l, namely M(l),

APRIL 5, 2006 WORKING DRAFT

29.1 References 198

have the type assigned to l, namely Λ(l), relative to the entire location
typing Λ. This means, in particular, that memories may be “circular” in
the sense that the value at location l may contain an occurrence of l, for
example if that value is a function.

The typing rule for memories is reminiscent of the typing rule for re-
cursive functions — we are allowed to assume the typing that we are try-
ing to prove while trying to prove it. This similarity is no accident, as the
following example shows.

let diverge:nat->nat be fun d(x:nat):nat = d x in

let fcell:(nat->nat) ref be new(diverge) in

let fpre:nat->nat be

λ (n:nat.ifz(n; 1; n * (get(fcell))(n-1))) in

let :nat = set(fcell,f) in

let n = f 5

This technique is called backpatching. It is used in some compilers to im-
plement recursive functions (and other forms of looping construct).

Exercise 29.1
1. Sketch the contents of the memory after each step in the above exam-

ple. Observe that after the assignment to fc the memory is “circular”
in the sense that some location contains a reference to itself.

2. Prove that every cycle in well-formed memory must “pass through”
a function. Suppose that M(l1) = l2, M(l2) = l3, . . . , M(ln) = l1 for
some sequence l1, . . . , ln of locations. Show that there is no location
typing Λ such that M : Λ.

The well-formedness of a machine state is inductively defined by the
following rule:

M : Λ Λ; • ` e : τ

(M, e) ok (29.13)

That is, (M, e) is well-formed iff there is a location typing for M relative
to which e is well-typed.

Theorem 29.2 (Preservation)
If (M, e) ok and (M, e) 7−→ (M′, e′), then (M′, e′) ok.

APRIL 5, 2006 WORKING DRAFT

29.2 Exercises 199

Proof: The trick is to prove a stronger result by induction on evaluation:
if (M, e) 7−→ (M′, e′), ` M : Λ, and Λ; • ` e : τ, then there exists Λ′ ⊇ Λ
such that M′ : Λ′ and Λ′; • ` e′ : τ. �

Exercise 29.3
Prove Theorem 29.2. The strengthened form tells us that the location typ-
ing, and the memory, increase monotonically during evaluation — the
type of a location never changes once it is established at the point of al-
location. This is crucial for the induction.

Theorem 29.4 (Progress)
If (M, e) ok then either (M, e) is a final state or there exists (M′, e′) such
that (M, e) 7−→ (M′, e′).

Proof: The proof is by induction on typing: if M : Λ and Λ; • ` e : τ,
then either e is a value or there exists M′ ⊇ M and e′ such that (M, e) 7−→
(M′, e′). �

29.2 Exercises
Exercise 29.5
Prove Theorem 29.4 by induction on typing of machine states.

APRIL 5, 2006 WORKING DRAFT

Chapter 30

Monadic Storage Effects

As we saw in Chapter 29 one way to combine functional and impera-
tive programming is to add a type of reference cells to MinML. This ap-
proach works well for call-by-value languages, because we can easily pre-
dict where expressions are evaluated, and hence where references are al-
located and assigned. For call-by-name languages this approach is prob-
lematic, because in such languages it is much harder to predict when (and
how often) expressions are evaluated.

Enriching ML with a type of references has an additional consequence
that one can no longer determine from the type alone whether an expres-
sion mutates storage. For example, a function of type arrow(int, int)
must taken an integer as argument and yield an integer as result, but may
or may not allocate new reference cells or mutate existing reference cells.
The expressive power of the type system is thereby weakened, because we
cannot distinguish pure (effect-free) expressions from impure (effect-ful) ex-
pressions.

Another approach to introducing effects in a purely functional lan-
guage is to make the possibility of effects explicit in the type system. This
is achieved by introducing a modality, called a monad, that segregates the
effect-free fragment of the language from the effect-ful fragment. These
two sub-languages are related by two principles: (a) every effect-free ex-
pression may be regarded as (vacuously) effectful, and (b) an effectful ex-
pression may be suspended and packaged as an effect-free expression,
and, correspondingly, unpackaging and activating such an expression is
an effect-ful operation. A packaged effectful expression is a value of monadic
type, τ comp, which signals that it classifies an impure computation yield-

200

30.1 A Monadic Language 201

ing a value of type τ.
In this setting the type nat→nat consists only of pure, possibly non-

terminating, functions on the natural numbers. Applying such a function
can have no effect on the store. However, the type nat→nat comp con-
sists of functions that, when applied to a natural number, yield an effect-
ful computation that, when activated, yields a natural number and may
also modify the store. Thus, the type distinguishes the possibility of there
being an effect.

30.1 A Monadic Language

The syntax of a monadic re-formulation of the extension of the language
MinML with references is given by the following grammar:

Types τ : : = nat | arrow(τ1, τ2) | ref(τ) | comp(τ)
Pure e : : = x | l | num[n] | plus(e1, e2) | . . . | ifz(e0, e1, e2) |

fun(τ1, τ2, f.x.e) | app(e1, e2) | comp(m)

Impure m : : = return(e) | letcomp(e, x.m) |
new(e) | get(e) | set(e1, e2)

The type system is extended to include a new type, comp(τ), of suspended
computations of type τ. The introductory form, which is pure, for this type
is comp(m), and the corresponding eliminatory form, which is impure, is
letcomp(e, x.m). The inclusion of pure into impure expressions is written
return(e). The other constructs are familiar from MinML and its exten-
sion with references described in Chapter 29. Note that the operations
for allocating, accessing, and modifying reference cells are all regarded as
impure.

The concrete syntax corresponding to the new forms of abstract syntax
is given by the following chart:

Abstract Concrete
comp(τ) τ comp

return(e) return e
letcomp(e, x.m) let comp(x) be e inm
comp(m) comp(m)

The static semantics of this language consists of two forms of typing
judgement, e : τ, stating that pure expression e has type τ, and m ∼ τ,

APRIL 5, 2006 WORKING DRAFT

30.1 A Monadic Language 202

stating that the impure expression m has type τ. Both of these judgement
forms are considered with respect to hypotheses of the form xi : τi, which
introduces a variable xi with type τi, and of the form li : τi, which intro-
duces a location li whose contents is to be of type τi. We will not have
need of hypotheses of the form ui ∼ τi, because variables are only ever
bound to values, which are always pure (since they are fully evaluated).
As in Chapter 29, we will write Γ for a finite set of variable assumptions,
and Λ for a finite set of location assumptions. We will segregate these
assumptions from one another when writing hypothetical judgements.

The typing rules for this extension are an extension of those for MinML,
with the following additional rules.

Λ; Γ ` m ∼ τ
Λ; Γ ` comp(m) : comp(τ)

Λ; Γ ` e : τ
Λ; Γ ` return(e) ∼ τ

Λ; Γ ` e : comp(τ) Λ; Γ, x : τ ` m ∼ τ′

Λ; Γ ` letcomp(e, x.m) ∼ τ′

Λ, l : τ; Γ ` l : ref(τ)

Λ; Γ ` e : τ
Λ; Γ ` new(e) ∼ ref(τ)

Λ; Γ ` e : ref(τ)
Λ; Γ ` get(e) ∼ τ

Λ; Γ ` e1 : ref(τ) Λ; Γ ` e2 : τ

Λ; Γ ` set(e1, e2) ∼ unit

The dynamic semantics of the monadic formulation of MinML with ref-
erences is structured into two parts:

1. A transition relation e 7−→ e′ for pure expressions.

2. A transition relation (M, m) 7−→ (M′, m′) for impure expressions.

APRIL 5, 2006 WORKING DRAFT

30.1 A Monadic Language 203

The former relation is defined just as it is for MinML, amended to account
for the new pure expression forms. The latter is defined similarly to Chap-
ter 29, again amended to account for the extensions with monadic primi-
tives.

There are two additional forms of value at the pure expression level:

comp(m) value l value

That is, both suspended computations and locations are values.
The rules governing the monadic primitives are as follows.

e 7−→ e′
(M, return(e)) 7−→ (M, return(e′))

e 7−→ e′
(M, letcomp(e, x.m)) 7−→ (M, letcomp(e′, x.m))

(M, m1) 7−→ (M′, m′1)
(M, letcomp(comp(m1), x.m2)) 7−→ (M′, letcomp(comp(m′1), x.m2))

e value
(M, letcomp(comp(return(e)), x.m)) 7−→ (M, [x←e]m)

The evaluation rules for the reference primitives are as follows:

e 7−→ e′
(M, new(e)) 7−→ (M, new(e′))

e value l # M
(M, new(e)) 7−→ (M[l 7→ e], return(l))

e 7−→ e′
(M, get(e)) 7−→ (M, get(e′))

e value l # M
(M[l 7→ e], get(l)) 7−→ (M[l 7→ e], return(e))

e1 7−→ e′1
(M, set(e1, e2)) 7−→ (M, set(e′1, e2))

e1 value e2 7−→ e′2
(M, set(e1, e2)) 7−→ (M, set(e1, e′2))

e value l # M
(M[l 7→ e′], set(l, e)) 7−→ (M[l 7→ e], return(e))

The transition rules for the monadic elimination form is somewhat un-
usual. First, the expression e is evaluated to obtain an encapsulated im-
pure computation. Once such a computation has been obtained, execution

APRIL 5, 2006 WORKING DRAFT

30.2 Exercises 204

continues by evaluating it in the current memory, updating that memory
as appropriate during its execution. This process ends once the encapsu-
lated computation is a return statement, in which case this value is passed
to the body of the letcomp.

30.2 Exercises

1. Consider other forms of effect such as I/O.

2. State and prove type safety for the monadic formulation of storage
effects.

APRIL 5, 2006 WORKING DRAFT

Chapter 31

Extensible Sums

205

Part XI

Lazy Evaluation

206

Chapter 32

Laziness

Lazy evaluation is a general term applied to a variety of concepts that have
in common the idea of avoiding “unnecessary” computations during eval-
uation. The basic example of laziness is the call-by-name evaluation strat-
egy for function applications, which passes the argument to a function in
unevaluated form so that if it is never needed to determine the result, it
is never evaluated. For example, if e is a very lengthy computation of
a natural number, then under the call-by-name strategy the application
λ(x:nat. 3)(e) takes one step to complete, and the entire computation of
e is avoided. On the other hand, call-by-name does not always result in
less work. For example, consider the application λ(x:nat. x+x)(e). Under
call-by-name the expression e is evaluated twice, even though the outcome
must be the same in both cases.

Eager evaluation is a term that generally connotes the opposite point of
view, in which computations are performed “early” so as to avoid their
repetition later should the result be needed more than once. Thus, the sec-
ond example above would, under call-by-value, evaluate e exactly once,
before the application is performed, so that the work of doing so need
never be repeated. On the other hand in the first example call-by-value
performs needless work computing e since it is never needed to determine
the result.

From this point of view we can see that both call-by-name and call-by-
value may be seen as efforts to save work, yet neither of them succeeds in
minimizing the work done in every case. One way to get the best of both
worlds is to use a hybrid strategy, known as call-by-need, that behaves like
call-by-name in avoiding evaluation of the argument to a function appli-

207

208

cation at the call site, but which avoids replication of effort by employing
memoization to save the result of an evaluation for future reference, ensur-
ing that a computation is performed at most once. In Section 1 we will
present a formal semantics of call-by-need to help clarify this important
idea.

All of these laziness concepts focus on function application. But there
are other important aspects of laziness as well. One aspect is that laziness
permits a general form of recursive self-reference. In MinML self-reference
is restricted to functions, which are given a name so that they may “call
themselves” recursively. But it is also possible to exploit laziness to give
a general form of recursive self-reference that is not tied to functions. In
Section 2 we describe the semantics of recursion in a call-by-need setting.
The semantics of call-by-need suggests the concept of speculative execution,
in which delayed bindings are evaluated “in parallel” with the “main”
thread of execution. We discuss speculative execution in Section 3.

Another aspect of laziness is lazy data structures. Should pairing eval-
uate its arguments before forming the pair? Should injections into a sum
type evaluation their argument before performing the injection? Should
recursive rolling evaluate its argument? In all these cases of data construc-
tors the eager approach is to do so, and the lazy approach is to not. While
in principle each of these decisions can be made independently of one an-
other, it is natural to consider all three as eager or lazy together. However,
it is interesting to observe that the treatment of data constructors is inde-
pendent of the evaluation strategy for function calls, for the simple reason
that formation of a pair, for example, is not a matter of calling a pairing
function, but rather of employing the primitive operation of pair forma-
tion, and similarly for the other data constructors.

A lazy language is one that employs lazy evaluation for data construc-
tors and for function applications; an eager language is one that imposes
an eager evaluation strategy on both data constructors and function ap-
plications. Many lazy languages also permit consideration of eager data
constructors, but there is little benefit in doing so compared to the alter-
native of supporting laziness in an eager language. This is achieved by
introducing a type of recursive suspensions that (a) suspend evaluation, (b)
memoize its computation, and (c) permit recursive self-reference. This per-
mits us to mix-and-match any combination of eagerness and laziness on a
per-program basis, rather than imposing the choice on all programs as a
matter of language design. Note that it is not possible to support eagerness

APRIL 5, 2006 WORKING DRAFT

32.1 Call-By-Need 209

in a lazy language in a fully general way, because the laziness of function
applications is unaffected by type information. Moreover, lazy languages
typically permit recursive self-reference for any expression, which cannot
be “defeated” through the use of types. Thus, eager languages are strictly
more powerful than lazy languages, because the former can simulate the
latter, but the converse fails. In Section 4 we detail the semantics of recur-
sive suspensions. A speculative variant of suspensions, called futures, are
also discussed.

32.1 Call-By-Need

The distinguishing feature of call-by-need, as compared to call-by-name,
is that it records in memory the bindings of all variables so that when
the binding of a variable is first needed, it is evaluated and the result is
re-bound to that variable. Subsequent demands for the binding simply
retrieve the stored value without having to repeat the computation. Of
course, if the binding is never needed, it is never evaluated, consistently
with the call-by-name semantics.

We will give the dynamic semantics of call-by-need using a transition
system with states of the form (M, e), where M is a memory (a finite func-
tion mapping variables to open expressions) and e is an open expression.
States satisfy the invariant that a free variable of e or any binding in M
must lie within the domain of M. We write x # M to indicate that x is a
variable that does not lie in the (finite) domain of M, and hence does not
occur free in the configuration (M, e). If x # M, then M[x 7→ e] denotes the
memory M′ such that M′(y) = M(y) whenever y is in the domain of M,
and M′(x) = e.

An initial state of the transition system has the form (∅, e), where e
is a closed expression. A final state has the form (M, e), where e is an
open value — but note well that variables themselves are not values! The

APRIL 5, 2006 WORKING DRAFT

32.1 Call-By-Need 210

transition judgement is inductively defined by the following rules:

e value
(M[x 7→ e], x) 7−→ (M[x 7→ e], e)

(M[x 7→ •], e) 7−→ (M′[x 7→ •], e′)
(M[x 7→ e], x) 7−→ (M′[x 7→ e′], x)

(M, e1) 7−→ (M′, e′1)
(M, e1(e2)) 7−→ (M′, e′1(e2))

x # M
(M, λ(x:τ. e)(e2)) 7−→ (M[x 7→ e2], e)

We omit here the presentation of the rules for the other constructs, which
follow a similar pattern.

The crucial rules are those for variables, since application merely binds
the unevaluated argument to the parameter of the function before evalu-
ating its body. If the binding of a variable is a value, then that value is
returned immediately. Otherwise, the binding must be evaluated to de-
termine its value, which replaces the binding for future reference. This is
accomplished in the second rule by performing a transition on the bind-
ing, e, of the variable, x, then replacing the binding with the result, e′.
During evaluation of e the binding of x is replaced by a special construct,
called a black hole, which ensures that evaluation would be “stuck” should
the binding of x ever be required during evaluation of e. (Observe that
since the black hole is not a value, and admits no transitions, a state of the
form (M[x 7→ •], x) is “stuck”.) The main reason to replace the binding
of x with a black hole is primarily to do with recursion, which will be dis-
cussed in the next section. It is important, however, that there be a binding
for x in the memory while evaluating its contents, so as to ensure that any
“fresh” variables that are added to the memory during this evaluation are
different from x so as to avoid confusion.

Type safety for the call-by-need interpretation is proved by methods
similar to those used to prove safety for mutable references (see Chap-
ter 29). However, unlike the situation with reference cells, no cyclic de-
pendencies are possible. Moreover, we wish to show that stuck states such
as (M[x 7→ •], x) do not arise during evaluation. We define the judgement
M : Γ iff M(x) = e implies that x : τ occurs in Γ for some τ such that

APRIL 5, 2006 WORKING DRAFT

32.2 General Recursion 211

Γ ` e : τ. We then define the judgement (M, e) ok iff the following three
conditions are met:

1. There exists Γ and τ such that M : Γ and Γ ` e : τ.

2. If M(x) = e, then x /∈ FV(e).

3. If y ∈ FV(e) or y ∈ FV(M(x)) for some x, then M(y) 6= •.

The first condition captures the typing invariants, the second rules out
self-reference, and the third suffices to ensure that evaluation does not get
stuck due to black holes.

Theorem 32.1
1. If (M, e) ok and (M, e) 7−→ (M′, e′), then (M′, e′) ok.

2. If (M, e) ok, then either (M, e) final, or there exists M′ and e′ such that
(M, e) 7−→ (M′, e′).

The first part is proved by rule induction on the definition of the transition
judgement. The second part is proved by induction on the definition of
(M, e) ok, treating the derivations of typing for e and the bindings in M as
sub-derivations.

32.2 General Recursion

In MinML we introduced recursive functions as a special construct so as to
permit functions that “call themselves”. This approach is well-suited to
a call-by-value interpretation in which variables range only over values.
But in a call-by-name setting a much more general form of recursion is
also available that permits self-reference for arbitrary expressions. This is
possible under call-by-name, because variables range over general expres-
sions, and not just values. The abstract syntax for general recursion has the
form rec(τ, x.e), which we write in concrete syntax as rec(x:τ.e). The
static semantics of general recursion is given by the following typing rule:

Γ, x : τ ` e : τ
Γ ` rec(τ, x.e) : τ

APRIL 5, 2006 WORKING DRAFT

32.2 General Recursion 212

The dynamic semantics for recursive expressions in a call-by-name lan-
guage is given by the following transition rule:

rec(τ, x.e) 7−→ [x←rec(τ, x.e)]e

That is, recursive expressions are “unrolled” when they are evaluated. It
is easy to check type safety for this variant of MinML.

Given general recursive expressions, recursive functions may be seen
as derived forms by defining fun f(x:τ1):τ2 is e to stand for the expres-
sion rec(f:τ1→τ2.λ(x:τ1. e)). It is easy to show that we obtain the fol-
lowing derived transition:

fun f(x:τ1):τ2 is e(e1)
∗7−→ [f , x←fun f(x:τ1):τ2 is e, e1]e,

as would be expected for recursive functions under a call-by-name seman-
tics for function applications.

One approach to defining the dynamic semantics of general recursion
is simply to mimic the call-by-name interpretation:

(M, rec(x:τ.e)) 7−→ (M, [x←rec(x:τ.e)]e).

But this rule does not share the evaluation of rec(x:τ.e) among the var-
ious occurrences of x in e. Instead, we adopt the following rule, which
shares this evaluation across all occurrences of x in e.

x # M
(M, rec(x:τ.e)) 7−→ (M[x 7→ e], x).

Observe that x may occur freely in e, in which case the binding is self-
referential. In particular, if x ∈ FV(e), then evaluation of e may well re-
quire the binding of x, in which case evaluation gets stuck with a state of
the form (M[x 7→ •], x). For example, rec(x:τ.x) gets stuck in precisely
this manner. Such stuck states correspond to infinite loops under the call-
by-name semantics. We may regard this as a “checked error” for certain
forms of non-termination, namely those that result from an infinite regress
of self-reference.

Obviously we may prove only a weakened form of type safety for the
call-by-need semantics of the language with general recursion. In partic-
ular, the second and third conditions on well-formedness for states given
above cannot be maintained as an invariant, and, as a result, evaluation
may get stuck at a black hole. It is best to regard this as a form of “checked
error”, and state the progress theorem accordingly.

APRIL 5, 2006 WORKING DRAFT

32.3 Speculative Execution 213

32.3 Speculative Execution

An interesting variant of the call-by-need semantics is obtained by relax-
ing the restriction that the bindings of variables be evaluated only once
they are needed. Instead, we may permit a step of execution of the bind-
ing of any variable to occur at any time. Specifically, we replace the second
variable rule given in Section 1 by the following general rule:

(M[y 7→ •], e) 7−→ (M[y 7→ •], e′)
(M[y 7→ e], e0) 7−→ (M[y 7→ e′], e0)

This rule permits any variable binding to be chosen at any time as the focus
of attention for the next evaluation step. The first variable rule remains as-
is, so that, as before, a variable may be evaluated only after the value of its
binding has been determined.

This formulation is said to be speculative, because there is no reason to
believe that the binding of the variable y will ever be needed to complete
the computation — we are speculating based on no evidence that it might
be and are willing to risk performing computation that is not strictly nec-
essary. The steps of such computation may be arbitrarily threaded among
the other steps of computation. This corresponds to a form of parallel
execution in which we interleave the individual steps of a parallel compu-
tation to form a sequential trace of their execution.

While this may seem contrary to the principle of call-by-need evalua-
tion, it is interesting to consider it because it leads to a particular model of
parallel computation, called speculative parallelism. The idea is that in the
context of a massively parallel computer, we may wish to employ other-
wise idle processors by using them to speculatively evaluate unevaluated
bindings of variables. To be sure, the effort may be wasted, but if the pro-
cessors would otherwise be idle, there is no real loss in doing the extra
work. Of course, one may wonder whether we might instead make better
use of idle processors; this topic is examined more closely in Chapter 34.

32.4 Suspension Types

Call-by-need evaluation addresses only one aspect of laziness, namely to
defer evaluation of function arguments until they are needed, and to share

APRIL 5, 2006 WORKING DRAFT

32.4 Suspension Types 214

the result among all other demands for it. Another aspect of laziness is the
evaluation of data constructors. When is a pair 〈e1, e2〉 a value? When is an
injection inr(e) or inl(e) a value? And when is roll(e) a value? Accord-
ing to the eager interpretation, these expressions are values only if their
constituent expressions are values — the components are “eagerly” eval-
uated when the composite is created. According to the lazy interpretation,
these are all values regardless of whether their constituent expressions are
values — they are evaluated only if they are required for computation to
proceed. In the case of pairing one could also consider a “half lazy” inter-
pretation, in which one component is evaluated eagerly, the other lazily,
but this is rarely considered in practice.

Which interpretation to take for the data constructors is entirely sepa-
rable from the decision on whether to evaluate function applications by-
value or by-need. Moreover, the decisions governing the various forms of
constructor are independent of one another — one could consider eager
injection and lazy pairing, for example. Once we see the degree of gener-
ality, it becomes clear that decisions about evaluation order ought not be
made at the level of the language, but rather at the level of the individual
program. Any fixed language-level policy is sure to be inconvenient (or
worse) for certain programs. It is preferable to put these decisions in the
the hands of the programmer.

This may be achieved by consolidating all aspects of laziness into a sin-
gle type, the type of memoized, suspended, self-referential computations,
which we will call suspensions for short. Values of type susp(τ) are sus-
pended computations of type τ. The expression forms associated with this
type are given by the following grammar:

e : : = delay(e) | force(e) | rec(x:susp(τ).e)

Note that general recursion is now limited to suspension types!
The static semantics of these constructs is given by the following typing

APRIL 5, 2006 WORKING DRAFT

32.4 Suspension Types 215

rules:
Γ ` e : τ

Γ ` delay(e) : susp(τ)

Γ ` e : susp(τ)

Γ ` force(e) : τ

Γ, x : susp(τ) ` e : τ

Γ ` rec(x:susp(τ).e) : susp(τ)

Note that the body of a recursive suspension has type τ — it is implicitly
delayed when created.

The dynamic semantics of suspensions is given by a transition system
that is reminiscent of that used for call-by-need. Indeed, the same princi-
ples of memoization and self-reference apply, albeit restricted to a particu-
lar type. The “ambient” evaluation strategy for applications and data con-
structors is eager — laziness is expresssed using suspension types. Thus
a call-by-name function of type τ1→τ2 is represented by a call-by-value
function of type τ1 susp→τ2, which takes as argument a suspended com-
putation of type τ1, which is a value of type τ1 susp. Similarly, the type
of fully lazy pairs is the type τ1 susp× τ2 susp consisting of pairs of sus-
pended comptuations of type τ1 and τ2, respectively. In this way we can
recover the benefits of laziness within the context of an eager language.

In the dynamic semantics a memory is now a finite mapping from loca-
tions to suspensions of the form delay(e). Evaluation of a delay allocates
a suspension in memory, and returns its location. Subsequent forces of
that location signal that evaluation is to be performed on the associated
suspension. Recursion is handled as in call-by-need, except that we must
take care to distinguish locations from variables, and we implicitly delay

APRIL 5, 2006 WORKING DRAFT

32.5 Excercises 216

the body.

(M, delay(e)) 7−→ (M[l 7→ delay(e)], l)

(M, e) 7−→ (M′, e′)
(M, force(e)) 7−→ (M′, force(e′))

e value
(M[l = delay(e)], force(l)) 7−→ (M[l = delay(e)], e)

(M[l = •], e) 7−→ (M[l = •], e′)
(M[l = delay(e)], force(l)) 7−→ (M′[l = delay(e′)], force(l))

(M, rec(x:susp(τ).e)) 7−→ (M[l = delay([x←l]e)], l)

We leave it as an exercise to formulate and prove type safety for the lan-
guage with explicit suspensions.

Just as with call-by-need, there is also a speculative version of suspen-
sions, which are called futures. Conceptually, a delayed computation in
memory is evaluated speculatively “in parallel” (modeled by non-determinism
in the rules) while computation along the main thread proceeds. When a
suspension is forced, evalation of the main thread is blocked until the sus-
pension has been evaluated, at which point the value is propagated to the
main thread and execution proceeds. We leave to the reader as an exercise
to give a precise formulation of the semantics of futures.

32.5 Excercises

1. Formulate an evaluation semantics of call-by-need, with and with-
out general recursion, and show its equivalence with the transition
semantics.

2. State and prove safety for suspensions.

3. Formulate the semantics of futures.

APRIL 5, 2006 WORKING DRAFT

Part XII

Cost Semantics and Parallelism

217

Chapter 33

Cost Semantics

The dynamic semantics of MinML is given by a transition relation e 7−→
e′ defined using Plotkin’s method of Structured Operational Semantics
(SOS). One benefit of a transition semantics is that it provides a natural
measure of the time complexity of an expression, namely the number of
steps required to reach a value.

An evaluation semantics, on the other hand, has an appealing simplic-
ity, since it defines directly the value of an expression, suppressing the
details of the process of execution. However, by doing so, we no longer
obtain a direct account of the cost of evaluation as we do in the transition
semantics.

The purpose of a cost semantics is to enrich evaluation semantics to
record not only the value of each expression, but also the cost of evalu-
ating it. One natural notion of cost is the number of instructions required
to evaluate the expression to a value. The assignment of costs in the cost
semantics can be justified by relating it to the transition semantics.

33.1 Evaluation Semantics

The evaluation relation, e ⇓ v, for MinML is inductively defined by the
following inference rules.

n ⇓ n (33.1)

e1 ⇓ n1 e2 ⇓ n2

+(e1, e2) ⇓ n1 + n2 (33.2)

218

33.2 Relating Evaluation Semantics to Transition Semantics 219

(and similarly for the other primitive operations).

true ⇓ true false ⇓ false (33.3)

e ⇓ true e1 ⇓ v
if e then e1 else e2 ⇓ v (33.4)

e ⇓ false e2 ⇓ v
if e then e1 else e2 ⇓ v (33.5)

fun f (x:τ1):τ2 is e ⇓ fun f (x:τ1):τ2 is e (33.6)

e1 ⇓ v1 e2 ⇓ v2 [f , x←v1, v2]e ⇓ v
apply(e1, e2) ⇓ v (33.7)

(where v1 = fun f (x:τ1):τ2 is e.)
This concludes the definition of the evaluation semantics of MinML. As

you can see, the specification is quite small and is very intuitively appeal-
ing.

33.2 Relating Evaluation Semantics to Transition
Semantics

The precise relationship between SOS and ES is given by the following
theorem.

Theorem 33.1
1. If e ⇓ v, then e 7−→∗ v.

2. If e 7−→ e′ and e′ ⇓ v, then e ⇓ v. Consequently, if e 7−→∗ v, then
e ⇓ v.

Proof:

1. By induction on the rules defining the evaluation relation. The re-
sult is clearly true for values, since trivially v 7−→∗ v. Suppose that
e = apply(e1, e2) and assume that e ⇓ v. Then e1 ⇓ v1, where v1 =

APRIL 5, 2006 WORKING DRAFT

33.3 Cost Semantics 220

fun f (x:τ1):τ2 is e, e2 ⇓ v2, and [f , x←v1, v2]e ⇓ v. By induction we
have that e1 7−→∗ v1, e2 7−→∗ v2 and [f , x←v1, v2]e 7−→∗ v. It fol-
lows that apply(e1, e2) 7−→∗ apply(v1, e2) 7−→∗ apply(v1, v2) 7−→
[f , x←v1, v2]e 7−→∗ v, as required. The other cases are handled simi-
larly.

2. By induction on the rules defining single-step transition. Suppose
that e = apply(v1, v2), where v1 = fun f (x:τ1):τ2 is e, and e′ =
[f , x←v1, v2]e. Suppose further that e′ ⇓ v; we are to show that e ⇓ v.
Since v1 ⇓ v1 and v2 ⇓ v2, the result follows immediately from the
assumption that e′ ⇓ v. Now suppose that e = apply(e1, e2) and e′ =
apply(e′1, e2), where e1 7−→ e′1. Assume that e′ ⇓ v; we are to show
that e ⇓ v. It follows that e′1 ⇓ v1, e2 ⇓ v2, and [f , x←v1, v2]e ⇓ v. By
induction e1 ⇓ v1, and hence e ⇓ v. The remaining cases are handled
similarly. It follows by induction on the rules defining multi-step
evaluation that if e 7−→∗ v, then e ⇓ v. The base case, v 7−→∗ v,
follows from the fact that v ⇓ v. Now suppose that e 7−→ e′ 7−→∗ v.
By induction e′ ⇓ v, and hence e ⇓ v by what we have just proved.

�

33.3 Cost Semantics

In this section we will give a cost semantics for MinML that reflects the
number of steps required to complete evaluation according to the struc-
tured operational semantics given in Chapter 12.

Evaluation judgements have the form e ⇓n v, with the informal mean-
ing that e evaluates to v in n steps. The rules for deriving these judgements
are easily defined.

n ⇓0 n (33.8)

e1 ⇓k1 n1 e2 ⇓k2 n2

+(e1, e2) ⇓k1+k2+1 n1 + n2 (33.9)

(and similarly for the other primitive operations).

true ⇓0 true false ⇓0 false (33.10)

APRIL 5, 2006 WORKING DRAFT

33.4 Relating Cost Semantics to Transition Semantics 221

e ⇓k true e1 ⇓k1 v
if e then e1 else e2 ⇓k+k1+1 v (33.11)

e ⇓k false e2 ⇓k2 v
if e then e1 else e2 ⇓k+k2+1 v (33.12)

fun f (x:τ1):τ2 is e ⇓0 fun f (x:τ1):τ2 is e (33.13)

e1 ⇓k1 v1 e2 ⇓k2 v2 [f , x←v1, v2]e ⇓k v
apply(e1, e2) ⇓k1+k2+k+1 v (33.14)

(where v1 = fun f (x:τ1):τ2 is e.)
This completes the definition of the cost semantics for MinML.

33.4 Relating Cost Semantics to Transition Seman-
tics

What is it that makes the cost semantics given above “correct”? Informally,
we expect that if e ⇓k v, then e should evaluate to v in k steps. Moreover,
we also expect the converse to hold — the cost semantics should be com-
pletely faithful to the underlying execution model. This is captured by the
following theorem.

To state the theorem we need one additional bit of notation. Define
e k7−→ e′ by induction on k as follows. For the basis, we define e 07−→ e′ iff

e = e′; if k = k′ + 1, we define e k7−→ e′ to hold iff e 7−→ e′′ k′7−→ e′.

Theorem 33.2
For any closed expression e and closed value v of the same type, e ⇓k v iff

e k7−→ v.

Proof: From left to right we proceed by induction on the definition of the
cost semantics. For example, consider the rule for function application.
We have e = apply(e1, e2) and k = k1 + k2 + k + 1, where

1. e1 ⇓k1 v1,

APRIL 5, 2006 WORKING DRAFT

33.5 Exercises 222

2. e2 ⇓k2 v2,

3. v1 = fun f (x:τ1):τ2 is e,

4. [f , x←v1, v2]e ⇓k v.

By induction we have

1. e1
k17−→ v1,

2. e2
k27−→ v2,

3. [f , x←v1, v2]e
k7−→ v,

and hence
e1(e2)

k17−→ v1(e2)
k27−→ v1(v2)

7−→ [f , x←v1, v2]e
k7−→ v

which is enough for the result.
From right to left we proceed by induction on k. For k = 0, we must

have e = v. By inspection of the cost evaluation rules we may check that
v ⇓0 v for every value v. For k = k′ + 1, we must show that if e 7−→ e′

and e′ ⇓k′ v, then e ⇓k v. This is proved by a subsidiary induction on the
transition rules. For example, suppose that e = e1(e2) 7−→ e′1(e2) = e′,
with e1 7−→ e′1. By hypothesis e′1(e2) ⇓k v, so k = k1 + k2 + k3 + 1, where

1. e′1 ⇓k1 v1,

2. e2 ⇓k2 v2,

3. v1 = fun f (x:τ1):τ2 is e,

4. [f , x←v1, v2]e ⇓k3 v.

By induction e1 ⇓k1+1 v1, hence e ⇓k+1 v, as required. �

33.5 Exercises

APRIL 5, 2006 WORKING DRAFT

Chapter 34

Implicit Parallelism

In this chapter we study the extension of MinML with implicit data paral-
lelism, a means of speeding up computations by allowing expressions to
be evaluated simultaneously. By “implicit” we mean that the use of paral-
lelism is invisible to the programmer as far as the ultimate results of com-
putation are concerned. By “data parallel” we mean that the parallelism
in a program arises from the simultaneous evaluation of the components
of a data structure.

Implicit parallelism is very natural in an effect-free language such as
MinML. The reason is that in such a language it is not possible to deter-
mine the order in which the components of an aggregate data structure
are evaluated. They might be evaluated in an arbitrary sequential order,
or might even be evaluated simultaneously, without affecting the outcome
of the computation. This is in sharp contrast to effect-ful languages, for
then the order of evaluation, or the use of parallelism, is visible to the pro-
grammer. Indeed, dependence on the evaluation order must be carefully
guarded against to ensure that the outcome is determinate.

34.1 Tuple Parallelism

We begin by considering a parallel semantics for tuples according to which
all components of a tuple are evaluated simultaneously. For simplicity we
consider only pairs, but the ideas generalize in a straightforward manner
to tuples of any size. Since the “widths” of tuples are specified statically
as part of their type, the amount of parallelism that can be induced in any

223

34.1 Tuple Parallelism 224

one step is bounded by a static constant. In Section 34.3 we will extend
this to permit a statically unbounded degree of parallelism.

To facilitate comparison, we will consider two operational semantics
for this extension of MinML, the sequential and the parallel. The sequen-
tial semantics is as in Chapter 15. However, we now write e 7→seq e′ for
the transition relation to stress that this is the sequential semantics. The
sequential evaluation rules for pairs are as follows:

e1 7→seq e′1
(e1,e2) 7→seq (e′1,e2) (34.1)

v1 value e2 7→seq e′2
(v1,e2) 7→seq (v1,e′2) (34.2)

v1 value v2 value

split (v1,v2) as (x,y) in e 7→seq [x, y←v1, v2]e (34.3)

e1 7→seq e′1
split e1 as (x,y) in e2 7→seq split e′1 as (x,y) in e2 (34.4)

The parallel semantics is similar, except that we evaluate both compo-
nents of a pair simultaneously whenever this is possible. This leads to the
following rules:1

e1 7→par e′1 e2 7→par e′2
(e1,e2) 7→par (e′1,e′2) (34.5)

e1 7→par e′1 v2 value

(e1,v2) 7→par (e′1,v2) (34.6)

v1 value e2 7→par e′2
(v1,e2) 7→par (v1,e′2) (34.7)

Three rules are required to account for the possibility that evaluation of
one component may complete before the other.

1It might be preferable to admit progress on either e1 or e2 alone, without requiring
the other to be a value.

APRIL 5, 2006 WORKING DRAFT

34.1 Tuple Parallelism 225

When presented two semantics for the same language, it is natural to
ask whether they are equivalent. They are, in the sense that both semantics
deliver the same value for any expression. This is the precise statement of
what we mean by “implicit parallelism”.

Theorem 34.1
For every closed, well-typed expression e, e 7→∗seq v iff e 7→∗par v.

Proof: For the implication from left to right, it suffices to show that if
e 7→seq e′ 7→∗par v, then e 7→∗par v. This is proved by induction on the sequen-
tial evaluation relation. For example, suppose that

(e1,e2) 7→seq (e′1,e2) 7→∗par (v1,v2),

where e1 7→seq e′1. By inversion of the parallel evaluation sequence, we
have e′1 7→∗par v1 and e2 7→∗par v2. Hence, by induction, e1 7→∗par v1, from
which it follows immediately that (e1,e2) 7→∗par (v1,v2). The other case
of sequential evaluation for pairs is handled similarly. All other cases are
immediate since the sequential and parallel semantics agree on all other
constructs.

For the other direction, it suffices to show that if e 7→par e′ 7→∗seq v,
then e 7→∗seq v. We proceed by induction on the definition of the parallel
evaluation relation. For example, suppose that we have

(e1,e2) 7→par (e′1,e′2) 7→∗seq (v1,v2)

with e1 7→par e′1 and e2 7→par e′2. We are to show that (e1,e2) 7→∗seq (v1,v2).
Since (e′1,e′2) 7→∗seq (v1,v2), it follows that e′1 7→∗seq v1 and e′2 7→∗seq v2. By
induction e1 7→∗seq v1 and e2 7→∗seq v2, which is enough for the result. The
other cases of evaluation for pairs are handled similarly.

�

One important consequence of this theorem is that parallelism is seman-
tically invisible: whether we use parallel or sequential evaluation of pairs,
the result is the same. Consequently, parallelism may safely be left implicit,
at least as far as correctness is concerned. However, as one might expect,
parallelism effects the efficiency of programs.

APRIL 5, 2006 WORKING DRAFT

34.2 Work and Depth 226

34.2 Work and Depth

An operational semantics for a language induces a measure of time com-
plexity for expressions, namely the number of steps required to evaluate
that expression to a value. The sequential complexity of an expression is
its time complexity relative to the sequential semantics; the parallel com-
plexity is its time complexity relative to the paralle semantics. These can,
in general, be quite different. Consider, for example, the following naı̈ve
implementation of the Fibonacci sequence in MinML with products:

fun fib (n:int):int is

if n=0 then 1

else if n=1 then 1

else plus(fib(n-1),fib(n-2)) fi fi

where plus is the following function on ordered pairs:

fun plus (p:int*int):int is

split p as (m:int,n:int) in m+n

The sequential complexity of fib n is O(2n), whereas the parallel com-
plexity of the same expression is O(n). The reason is that each recursive
call spawns two further recursive calls which, if evaluated sequentially,
lead to an exponential number of steps to complete. However, if the two
recursive calls are evaluated in parallel, then the number of parallel steps
to completion is bounded by n, since n is decreased by 1 or 2 on each call.
Note that the same number of arithmetic operations is performed in each
case! The difference is only in whether they are performed simultaneously.

This leads naturally to the concepts of work and depth. The work of
an expression is the total number of primitive instruction steps required
to complete evaluation. Since the sequential semantics has the property
that each rule has at most one premise, each step of the sequential seman-
tics amounts to the execution of exactly one instruction. Therefore the
sequential complexity coincides with the work required. (Indeed, work
and sequential complexity are often taken to be synonymous.) The work
required to evaluate fib n is O(2n).

On the other hand the depth of an expression is the length of the longest
chain of sequential dependencies in a complete evaluation of that expres-
sion. A sequential dependency is induced whenever the value of one ex-
pression depends on the value of another, forcing a sequential evaluation

APRIL 5, 2006 WORKING DRAFT

34.2 Work and Depth 227

ordering between them. In the Fibonacci example the two recursive calls
have no sequential dependency among them, but the function itself se-
quentially depends on both recursive calls — it cannot return until both
calls have returned. Since the parallel semantics evaluates both compo-
nents of an ordered pair simultaneously, it exactly captures the indepen-
dence of the two calls from each, but the dependence of the result on both.
Thus the parallel complexity coincides with the depth of the computation.
(Indeed, they are often taken to be synonymous.) The depth of the expres-
sion fib n is O(n).

With this in mind, the cost semantics introduced in Chapter 33 may be
extended to account for parallelism by specifying both the work and the
depth of evaluation. The judgements of the parallel cost semantics have
the form e ⇓w,d v, where w is the work and d the depth. For all cases but
evaluation of pairs the work and the depth track one another. The rule for
pairs is as follows:

e1 ⇓w1,d1 v1 e2 ⇓w2,d2 v2

(e1,e2) ⇓w1+w2,max(d1,d2) (v1,v2) (34.8)

The remaining rules are easily derived from the sequential cost semantics,
with both work and depth being additively combined at each step.2

The correctness of the cost semantics states that the work and depth
costs are consistent with the sequential and parallel complexity, respec-
tively, of the expression.

Theorem 34.2
For any closed, well-typed expression e, e ⇓w,d v iff e 7→w

seq v and e 7→d
par v.

Proof: From left to right, we proceed by induction on the cost semantics.
For example, we must show that if e1 7→d1

par v1 and e2 7→d2
par v2, then

(e1,e2) 7→d
par (v1,v2),

where d = max(d1, d2). Suppose that d = d2, and let d′ = d− d1 (the case
d = d1 is handled similarly). We have e1 7→d1

par v1 and e2 7→d1
par e′2 7→d′

par v2.

2If we choose, we might evaluate arguments of primop’s in parallel, in which case the
depth complexity would be calculated as one more than the maximum of the depths of
its arguments. We will not do this here since it would only complicate the development.

APRIL 5, 2006 WORKING DRAFT

34.3 Vector Parallelism 228

It follows that
(e1,e2) 7→d1

par (v1,e′2)
7→d′

par (v1,v2).

For the converse, we proceed by considering work and depth costs
separately. For work, we proceed as in Chapter 33. For depth, it suf-
fices to show that if e 7→par e′ and e′ ⇓d v, then e ⇓d+1 v.3 For exam-
ple, suppose that (e1,e2) 7→par (e′1,e′2), with e1 7→par e′1 and e2 7→par e′2.
Since (e′1,e′2) ⇓d v, we must have v = (v1,v2), d = max(d1, d2) with
e′1 ⇓d1 v1 and e′2 ⇓d2 v2. By induction e1 ⇓d1+1 v1 and e2 ⇓d2+1 v2 and hence
(e1,e2) ⇓d+1 (v1,v2), as desired. �

34.3 Vector Parallelism

To support vector parallelism we will extend MinML with a type of vectors,
which are finite sequences of values of a given type whose length is not
determined until execution time. The primitive operations on vectors are
chosen so that they may be executed in parallel on a shared memory multi-
processor, or SMP, in constant depth for an arbitrary vector.

The following primitives are added to MinML to support vectors:

Types τ : : = τ vector

Expr’s e : : = [e0, . . . ,en−1] | elt(e1,e2) | size(e) | index(e) |
map(e1,e2) | update(e1,e2)

Values v : : = [v0, . . . ,vn−1]

These expressions may be informally described as follows. The expres-
sion [e0, . . . ,en−1] evaluates to an n-vector whose elements are given by
the expressions ei, 0 ≤ i < n. The operation elt(e1,e2) retrieves the el-
ement of the vector given by e1 at the index given by e2. The operation
size(e) returns the number of elements in the vector given by e. The op-
eration index(e) creates a vector of length n (given by e) whose elements
are 0, . . . , n− 1. The operation map(e1,e2) applies the function given by
e1 to every element of e2 in parallel. Finally, the operation update(e1,e2)

yields a new vector of the same size, n, as the vector v given by e1, but

3The work component of the cost is suppressed here for the sake of clarity.

APRIL 5, 2006 WORKING DRAFT

34.3 Vector Parallelism 229

whose elements are updated according to the vector v′ given by e2. The
elements of e2 are triples of the form (b, i, x), where b is a boolean flag, i is
a non-negative integer less than or equal to n, and x is a value, specifying
that the ith element of v should be replaced by x, provided that b = true.

The static semantics of these primitives is given by the following typing
rules:

Γ ` e1 : τ · · · Γ ` en : τ

Γ ` [e0, . . . ,en−1] : τ vector (34.9)

Γ ` e1 : τ vector Γ ` e2 : int
Γ ` elt(e1,e2) : τ (34.10)

Γ ` e : τ vector
Γ ` size(e) : int (34.11)

Γ ` e : int
Γ ` index(e) : int vector (34.12)

Γ ` e1 : arrow(τ, τ′) Γ ` e2 : τ vector

Γ ` map(e1,e2) : τ′ vector (34.13)

Γ ` e1 : τ vector Γ ` e2 : (bool*int*τ) vector
Γ ` update(e1,e2) : τ vector (34.14)

The parallel dynamic semantics is given by the following rules. The
most important is the parallel evaluation rule for vector expressions, since
this is the sole source of parallelism:

∀i ∈ I (ei 7→par e′i) ∀i /∈ I (e′i = ei & ei value)
[e0, . . . ,en−1] 7→par [e′0, . . . ,e′n−1] (34.15)

where ∅ 6= I ⊆ { 0, . . . , n− 1 }. This allows for the parallel evaluation of
all components of the vector that have not yet been evaluated.

For each of the primitive operations of the language there is a rule spec-
ifying that its arguments are evaluated in left-to-right order. We omit these
rules here for the sake of brevity. The primitive instructions are as follows:

elt([v0, . . . ,vn−1],i) 7→par vi (34.16)

APRIL 5, 2006 WORKING DRAFT

34.3 Vector Parallelism 230

size([v0, . . . ,vn−1]) 7→par n (34.17)

index(n) 7→par [0, . . . ,n− 1] (34.18)

map(v,[v0, . . . ,vn−1]) 7→par [apply(v, v0), . . . ,apply(v, vn−1)] (34.19)

update([v0, . . . ,vn−1],[(b0,i0,x0), . . . ,(bk−1,ik−1,xk−1)])

7→par
[v′0, . . . ,v′n−1]

(34.20)

where for each i ∈ { i0, . . . , ik−1 }, if bi is true, then v′i = xi, and otherwise
v′i = vi. If an index i appears more than once, the rightmost occurrence
takes precedence over the others.

The sequential dynamic semantics of vectors is defined similarly to the
parallel semantics. The only difference is that vector expressions are eval-
uated in left-to-right order, rather than in parallel. This is expressed by the
following rule:

ei 7→seq e′i
[v0, . . . ,vi−1,ei,ei+1, . . . ,en−1] 7−→ [v0, . . . ,vi−1,e′i,ei+1, . . . ,en−1]

(34.21)
We write e 7→seq e′ to indicate that e steps to e′ under the sequential se-

mantics.
With these two basic semantics in mind, we may also derive a cost

semantics for MinML with vectors, where the work corresponds to the
number of steps required in the sequential semantics, and the depth cor-
responds to the number of steps required in the parallel semantics. The
rules are as follows.

Vector expressions are evaluated in parallel.

∀ 0 ≤ i < n (ei ⇓wi,di vi)
[e0, . . . ,en−1] ⇓w,d [v0, . . . ,vn−1] (34.22)

where w =
∑n−1

i=0 wi and d = maxn−1
i=0 di.

APRIL 5, 2006 WORKING DRAFT

34.3 Vector Parallelism 231

Retrieving an element of a vector takes constant work and depth.

e1 ⇓w1,d1 [v0, . . . ,vn−1] e2 ⇓w2,d2 i (0 ≤ i < n)
elt(e1,e2) ⇓w1+w2+1,d1+d2+1 vi (34.23)

Retrieving the size of a vector takes constant work and depth.

e ⇓w,d [v0, . . . ,vn−1]

size(e) ⇓w+1,d+1 n (34.24)

Creating an index vector takes linear work and constant depth.

e ⇓w,d n
index(e) ⇓w+n,d+1 [0, . . . ,n− 1] (34.25)

Mapping a function across a vector takes constant work and depth be-
yond the cost of the function applications.

e1 ⇓w1,d1 v e2 ⇓w2,d2 [v0, . . . ,vn−1]

[apply(v, v0), . . . ,apply(v, vn−1)] ⇓w,d [v′0, . . . ,v′n−1]

map(e1,e2) ⇓w1+w2+w+1,d1+d2+d+1 [v′0, . . . ,v′n−1] (34.26)

Updating a vector takes linear work and constant depth.

e1 ⇓w1,d1 [v0, . . . ,vn−1] e2 ⇓w2,d2 [(b1,i1,x1), . . . ,(bk,ik,xk)]

update(e1,e2) ⇓w1+w2+k+n,d1+d2+1 [v′0, . . . ,v′n−1] (34.27)

where for each i ∈ { i1, . . . , ik }, if bi is true, then v′i = xi, and otherwise
v′i = vi. If an index i appears more than once, the rightmost occurrence
takes precedence over the others.

Theorem 34.3
For the extension of MinML with vectors, e ⇓w,d v iff e 7→d

par v and e 7→w
seq v.

APRIL 5, 2006 WORKING DRAFT

Chapter 35

A Parallel Abstract Machine

The parallel operational semantics described in Chapter 34 abstracts away
some important aspects of the implementation of parallelism. For exam-
ple, the parallel evaluation rule for ordered pairs

e1 7→par e′1 e2 7→par e′2
(e1,e2) 7→par (e′1,e′2)

does not account for the overhead of allocating e1 and e2 to two (physical
or virtual) processors, or for synchronizing with those two processors to
obtain their results. In this chapter we will discuss a more realistic opera-
tional semantics that accounts for this overhead.

35.1 A Simple Parallel Language

Rather than specify which primitives, such as pairing, are to be evaluated
in parallel, we instead introduce a “parallel let” construct that allows the
programmer to specify the simultaneous evaluation of two expressions.
Moreover, we restrict the language so that the arguments to all primitive
operations must be values. This forces the programmer to decide for her-
self which constructs are to be evaluated in parallel, and which are to be
evaluated sequentially.

232

35.1 A Simple Parallel Language 233

Types τ : : = int | bool | unit | τ1*τ2 | arrow(τ1, τ2)
Expressions e : : = v | let x1:τ1 be e1 and x2:τ2 be e2 in e end |

o(v1, . . . , vn) | if τ then v else e1e2 |
apply(v1, v2) | split v as (x1,x2) in e

Values v : : = x | n | true | false | () | (v1,v2) |
fun x (y:τ1):τ2 is e

The binding conventions are as for MinML with product types, with the
additional specification that the variables x1 and x2 are bound within the
body of a let expression. Note that variables are regarded as values only
for the purpose of defining the syntax of the language; evaluation is, as
ever, defined only on closed terms.

As will become apparent when we specify the dynamic semantics, the
“sequential let” is definable from the “parallel let”:

let τ1:x1 be e1 in e2 := let x1:τ1 be e1 and x:unit be () in e2 end

where x does not occur free in e2. Using these, the “parallel pair” is defin-
able by the equation

(e1,e2)par := let x1:τ1 be e1 and x2:τ2 be e2 in (x1,x2) end

whereas the “(left-to-right) sequential pair” is definable by the equation

(e1,e2)seq := let τ1:x1 be e1 in let τ2:x2 be e2 in (x1,x2).

The static semantics of this language is essentially that of MinML with
product types, with the addition of the following typing rule for the par-
allel let construct:

Γ ` e1 : τ1 Γ ` e2 : τ2 Γ, x1:τ1, x2:τ2 ` e : τ

Γ ` let x1:τ1 be e1 and x2:τ2 be e2 in e end : τ (35.1)

It is a simple exercise to give a parallel structured operational semantics
to this language in the style of Chapter 34. In particular, it would employ
the following rules for the parallel let construct.

e1 7→par e′1 e2 7→par e′2
let x1:τ1 be e1 and x2:τ2 be e2 in e end

7→par
let x1:τ1 be e′1 and x2:τ2 be e′2 in e end

(35.2)

APRIL 5, 2006 WORKING DRAFT

35.2 A Parallel Abstract Machine 234

e1 7→par e′1
let x1:τ1 be e1 and x2:τ2 be v2 in e end

7→par
let x1:τ1 be e′1 and x2:τ2 be v2 in e end

(35.3)

e2 7→par e′2
let x1:τ1 be v1 and x2:τ2 be e2 in e end

7→par
let x1:τ1 be v1 and x2:τ2 be e′2 in e end

(35.4)

However, these rules ignore the overhead associated with allocating the
sub-expression to processors. In the next section we will consider an ab-
stract machine that accounts for this overhead.

Exercise 35.1
Prove preservation and progress for the static and dynamic semantics just
given.

35.2 A Parallel Abstract Machine

The essence of parallelism is the simultaneous execution of several pro-
grams. Each execution is called a thread of control, or thread, for short. The
problem of devising a parallel abstract machine is how to represent mul-
tiple threads of control, in particular how to represent the creation of new
threads and synchronization between threads. The P-machine is designed
to represent a parallel computer with an unbounded number of processors
in a simple and elegant manner.

The main idea of the P-machine is represent the state of a parallel com-
puter by a nested composition of parallel let statements representing the
active threads in a program. Each step of the machine consists of executing
all of the active instructions in the program, resulting in a new P-state.

In order to account for the activation of threads and the synchroniza-
tion of their results we make explicit the process of activating an expres-
sion, which corresponds to assigning it to a processor for execution. Exe-
cution of a parallel let instruction whose constituent expressions have not
yet been activated consists of the activation of these expressions. Execu-
tion of a parallel let whose constituents are completely evaluated consists

APRIL 5, 2006 WORKING DRAFT

35.2 A Parallel Abstract Machine 235

of substituting the values of these expressions into the body of the let,
which is itself then activated. Execution of all other instructions is exactly
as before, with the result being made active in each case.

This can be formalized using parallelism contexts, which capture the tree
structure of nested parallel computations. Let l and variants range over a
countable set of labels. These will serve to identify the abstract processors
assigned to the execution of an active expression. The set of parallelism
contexts L is defined by the following grammar:

L : : = l:− | l:let x1:τ1 beL1 and x2:τ2 beL2 in e end |
l:let x1:τ1 beL1 and x2:τ2 be v2 in e end |

l:let x1:τ1 be v1 and x2:τ2 beL2 in e end

A parallelism context is well-formed only if all labels occurring within it are
distinct; hereafter we will consider only well-formed parallelism contexts.

A labelled “hole” in a parallelism context represents an active compu-
tation site; a labelled let expression represents a pending computation
that is awaiting completion of its child threads. We have arranged things
so that all active sites are children of pending sites, reflecting the intuition
that an active site must have been spawned by some (now pending) site.

The arity of a context is defined to be the number of “holes” occurring
within it. The arity is therefore the number of active threads within the
context. If L is a context with arity n, then the expression L[l = e]ni=1
represents the result of “filling” the hole labelled li with the expression ei,
for each 1 ≤ i ≤ n. Thus the ei’s represent the active expressions within
the context; the label li represents the “name” of the processor assigned to
execute ei.

Each step of the P-machine consists of executing all of the active in-
structions in the current state. This is captured by the following evaluation
rule:

e1 −→ e′1 · · · en −→ e′n
L[l = e]ni=1 7→P L[l = e′]ni=1

The relation e −→ e′ defines the atomic instruction steps of the P-
machine. These are defined by a set of axioms. The first is the fork axiom,
which initiates execution of a parallel let statement:

let x1:τ1 be e1 and x2:τ2 be e2 in e end
−→

let x1:τ1 be l1:e1 and x2:τ2 be l2:e2 in e end
(35.5)

APRIL 5, 2006 WORKING DRAFT

35.3 Cost Semantics, Revisited 236

Here l1 and l2 are “new” labels that do not otherwise occur in the com-
putation. They serve as the labels of the processors assigned to execute e1
and e2, respectively.

The second instruction is the join axiom, which completes execution of
a parallel let:

v1 value v2 value

let x1:τ1 be l1:v1 and x2:τ2 be l2:v2 in e end −→ [x1, x2←v1, v2]e (35.6)

The other instructions are inherited from the M-machine. For example,
function application is defined by the following instruction:

v1 value v2 value (v1 = fun f (x:τ1):τ2 is e)
apply(v1, v2) −→ [f , x←v1, v2]e (35.7)

This completes the definition of the P-machine.

Exercise 35.2
State and prove preservation and progress relative to the P-machine.

35.3 Cost Semantics, Revisited

A primary motivation for introducing the P-machine was to achieve a
proper accounting for the cost of creating and synchronizing threads. In
the simplified model of Chapter 34 we ignored these costs, but here we
seek to take them into account. This is accomplished by taking the follow-
ing rule for the cost semantics of the parallel let construct:

e1 ⇓w1,d1 v1 e2 ⇓w2,d2 v2 [x1, x2←v1, v2]e ⇓w,d v

let x1:τ1 be e1 and x2:τ2 be e2 in e end ⇓w′,d′ v (35.8)

where w′ = w1 + w2 + w + 2 and d′ = max(d1, d2) + d + 2. Since the
remaining expression forms are all limited to values, they have unit cost
for both work and depth.

The calculation of work and depth for the parallel let construct is justi-
fied by relating the cost semantics to the P-machine. The work performed

APRIL 5, 2006 WORKING DRAFT

35.4 Provable Implementations (Summary) 237

in an evaluation sequence e 7→∗P v is the total number of primitive instruc-
tion steps performed in the sequence; it is the sequential cost of executing
the expression e.

Theorem 35.3
If e ⇓w,d v, then l:e 7→d

P l:v with work w.

Proof: The proof from left to right proceeds by induction on the cost se-
mantics. For example, consider the cost semantics of the parallel let con-
struct. By induction we have

1. l1:e1 7→d1
P l1:v1 with work w1;

2. l2:e2 7→d2
P l2:v2 with work w2;

3. l:[x1, x2←v1, v2]e 7→d
P l:v with work w.

We therefore have the following P-machine evaluation sequence:

l:let x1:τ1 be e1 and x2:τ2 be e2 in e end 7→P

l:let x1:τ1 be l1:e1 and x2:τ2 be l2:e2 in e end 7→max(d1,d2)
P

l:let x1:τ1 be l1:v1 and x2:τ2 be l2:v2 in e end 7→P

l:[x1, x2←v1, v2]e 7→d
P

l:v

The total length of the evaluation sequence is max(d1, d2) + d + 2, as re-
quired by the depth cost, and the total work is w1 + w2 + w + 2, as required
by the work cost. �

35.4 Provable Implementations (Summary)

The semantics of parallelism given above is based on an idealized par-
allel computer with an unlimited number of processors. In practice this
idealization must be simulated using some fixed number, p, of physical
processors. In practice p is on the order of 10’s of processors, but may
even rise (at the time of this writing) into the 100’s. In any case p does not
vary with input size, but is rather a fixed parameter of the implementa-
tion platform. The important question is how efficiently can one simulate

APRIL 5, 2006 WORKING DRAFT

35.4 Provable Implementations (Summary) 238

unbounded parallelism using only p processors? That is, how realistic are
the costs assigned to the language by our semantics? Can we make ac-
curate predictions about the running time of a program on a real parallel
computer based on the idealized cost assigned to it by our semantics?

The answer is yes, through the notion of a provably efficient implementa-
tion. While a full treatment of these ideas is beyond the scope of this book,
it is worthwhile to summarize the main ideas.

Theorem 35.4 (Blelloch and Greiner)
If e ⇓w,d v, then e can be evaluated on an SMP with p-processors in time
O(w/p + d lg p).

For our purposes, an SMP is any of a wide range of parallel computers,
including a CRCW PRAM, a hypercube, or a butterfly network. Observe
that for p = 1, the stated bound simplifies to O(w), as would be expected.

To understand the significance of this theorem, observe that the defi-
nition of work and depth yields a lower bound of Ω(max(w/p, d)) on the
execution time on p processors. We can never complete execution in fewer
than d steps, and can, at best, divide the total work evenly among the p
processors. The theorem tells us that we can come within a constant factor
of this lower bound. The constant factor, lg p, represents the overhead of
scheduling parallel computations on p processors.

The goal of parallel programming is to maximize the use of parallelism
so as to minimize the execution time. By the theorem this will occur if
the term w/p dominates, which occurs if the ratio w/d of work to depth
is at least p lg p. This ratio is sometimes called the parallelizability of the
program. For highly sequential programs, d is directly proportional to w,
yielding a low parallelizability — increasing the number of processors will
not speed up the computation. For highly parallel programs, d might be
constant or proportional to lg w, resulting in a large parallelizability, and
good utilization of the available computing resources. It is important to
keep in mind that it is not known whether there are inherently sequential
problems (for which no parallelizable solution is possible), or whether, in-
stead, all problems can benefit from parallelism. The best that we can say
at the time of this writing is that there are problems for which no paral-
lelizable solution is known.

To get a sense of what is involved in the proof of Blelloch and Greiner’s
theorem, let us consider the assumption that the index operation on vec-

APRIL 5, 2006 WORKING DRAFT

35.4 Provable Implementations (Summary) 239

tors (given in Chapter 34) has constant depth. The theorem implies that
index is implementable on an SMP in time O(n/p + lg p). We will briefly
sketch a proof for this one case. The main idea is that we may assume that
every processor is assigned a unique number from 0 to p − 1. To imple-
ment index, we simply allocate, but do not initialize, a region of memory
of the appropriate size, and ask each processor to simultaneously store its
identifying number i into the ith element of the allocated array. This works
directly if the size of the vector is no more than the number of processors.
Otherwise, we may divide the problem in half, and recursively build two
index vectors of half the size, one starting with zero, the other with n/2.
This process need proceed at most lg p times before the vectors are small
enough, leaving n/p sub-problems of size at most p to be solved. Thus the
total time required is O(n/p + lg p), as required by the theorem.

The other primitive operations are handled by similar arguments, jus-
tifying the cost assignments made to them in the operational semantics. To
complete the proof of Blelloch and Greiner’s theorem, we need only argue
that the total work w can indeed be allocated to p processors with a cost
of only lg p for the overhead. This is a consequence of Brent’s Theorem,
which states that a total workload w divided into d parallel steps may be
implemented on p processors in O(n/p + d lg p) time. The argument re-
lies on certain assumptions about the SMP, including the ability to perform
a parallel fetch-and-add operation in constant time.

APRIL 5, 2006 WORKING DRAFT

Part XIII

Subtyping

240

Chapter 36

Subtyping

A subtype relation is a pre-order1 on types that validates the subsumption
principle: if σ is a subtype of τ, then a value of type σ may be provided
whenever a value of type τ is required. This means that a value of the
subtype should “act like” a value of the supertype when used in supertype
contexts.

36.1 Subsumption

We will consider two extensions of MinML with subtyping. The first, MinML
with implicit subtyping, is obtained by adding the following rule of implicit
subsumption to the typing rules of MinML:

Γ ` e : σ σ <: τ
Γ ` e : τ

With implicit subtyping the typing relation is no longer syntax-directed,
since the subsumption rule may be applied to any expression e, without
regard to its form.

The second, called MinML with explicit subtyping, is obtained by adding
to the syntax by adding an explicit cast expression, (τ) e, with the follow-
ing typing rule:

Γ ` e : σ σ <: τ
Γ ` (τ) e : τ

1A pre-order is a reflexive and transitive binary relation.

241

36.1 Subsumption 242

The typing rules remain syntax-directed, but all uses of subtyping must be
explicitly indicated.

We will refer to either variation as MinML<: when the distinction does
not matter. When it does, the implicit version is designated MinMLi

<:, the
implicit MinMLe

<:.
To obtain a complete instance of MinML<: we must specify the subtype

relation. This is achieved by giving a set of subtyping axioms, which deter-
mine the primitive subtype relationships, and a set of variance rules, which
determine how type constructors interact with subtyping. To ensure that
the subtype relation is a pre-order, we tacitly include the following rules
of reflexivity and transitivity:

τ <: τ
ρ <: σ σ <: τ

ρ <: τ

Note that pure MinML is obtained as an instance of MinMLi
<: by giving no

subtyping rules beyond these two, so that σ <: τ iff σ = τ.
The dynamic semantics of an instance of MinML<: must be careful to

take account of subtyping. In the case of implicit subsumption the dy-
namic semantics must be defined so that the primitive operations of a su-
pertype apply equally well to a value of any subtype. In the case of explicit
subsumption we need only ensure that there be a means of casting a value
of the subtype into a corresponding value of the supertype.

The type safety of MinML<:, in either formulation, is assured, provided
that the following subtyping safety conditions are met:

• For MinMLe
<:, if σ <: τ, then casting a value of the subtype σ to the

supertype τ must yield a value of type τ.

• For MinMLi
<:, the dynamic semantics must ensure that the value of

each primitive operation is defined for closed values of any subtype
of the expected type of its arguments.

Under these conditions we may prove the Progress and Preservation
Theorems for either variant of MinML<:.

Theorem 36.1 (Preservation)
For either variant of MinML<:, under the assumption that the subtyping
safety conditions hold, if e : τ and e 7−→ e′, then e′ : τ.

APRIL 5, 2006 WORKING DRAFT

36.2 Varieties of Subtyping 243

Proof: By induction on the dynamic semantics, appealing to the casting
condition in the case of the explicit subsumption rule of MinMLe

<:. �

Theorem 36.2 (Progress)
For either variant of MinML<:, under the assumption that the subtyping
safety conditions hold, if e : τ, then either e is a value or there exists e′ such
that e 7−→ e′.

Proof: By induction on typing, appealing to the subtyping condition on
primitive operations in the case of primitive instruction steps. �

36.2 Varieties of Subtyping

In this section we will explore several different forms of subtyping in the
context of extensions of MinML. To simplify the presentation of the exam-
ples, we tacitly assume that the dynamic semantics of casts is defined so
that (τ) v 7−→ v, unless otherwise specified.

36.2.1 Arithmetic Subtyping

In informal mathematics we tacitly treat integers as real numbers, even
though Z 6⊆ R. This is justified by the observation that there is an injection
ι : Z ↪→ R that assigns a canonical representation of an integer as a real
number. This injection preserves the ordering, and commutes with the
arithmetic operations in the sense that ι(m + n) = ι(m) + ι(n), where m
and n are integers, and the relevant addition operation is determined by
the types of its arguments.

In most cases the real numbers are (crudely) approximated by floating
point numbers. Let us therefore consider an extension of MinML with an
additional base type, float, of floating point numbers. It is not necessary
to be very specific about this extension, except to say that we enrich the
language with floating point constants and arithmetic operations. We will
designate the floating point operations using a decimal point, writing +.

for floating point addition, and so forth.2

2This convention is borrowed from O’Caml.

APRIL 5, 2006 WORKING DRAFT

36.2 Varieties of Subtyping 244

By analogy with mathematical practice, we will consider taking the
type int to be a subtype of float. The analogy is inexact, because of the
limitations of computer arithmetic, but it is, nevertheless, informative to
consider it.

To ensure the safety of explicit subsumption we must define how to
cast an integer to a floating point number, written (float) n. We simply
postulate that this is possible, writing n.0 for the floating point represen-
tation of the integer n, and noting that n.0 has type float.3

To ensure the safety of implicit subsumption we must ensure that the
floating point arithmetic operations are well-defined for integer arguments.
For example, we must ensure that an expression such as +.(3, 4) has a
well-defined value as a floating point number. To achieve this, we simply
require that floating point operations implicitly convert any integer argu-
ments to floating point before performing the operation. In the foregoing
example evaluation proceeds as follows:

+.(3, 4) 7−→ +.(3.0, 4.0) 7−→ 7.0.

This strategy requires that the floating point operations detect the presence
of integer arguments, and that it convert any such arguments to floating
point before carrying out the operation. We will have more to say about
this inefficiency in Section 37.2 below.

36.2.2 Function Subtyping

Suppose that int <: float. What subtyping relationships, if any, should
hold among the following four types?

1. arrow(int, int)

2. arrow(int, float)

3. arrow(float, int)

4. arrow(float, float)

3We may handle the limitations of precision by allowing for a cast operation to fail in
the case of overflow. We will ignore overflow here, for the sake of simplicity.

APRIL 5, 2006 WORKING DRAFT

36.2 Varieties of Subtyping 245

To determine the answer, keep in mind the subsumption principle, which
says that a value of the subtype should be usable in a supertype context.

Suppose f : arrow(int, int). If we apply f to x : int, the result has
type int, and hence, by the arithmetic subtyping axiom, has type float.
This suggests that

arrow(int, int) <: arrow(int, float)

is a valid subtype relationship. By similar reasoning, we may derive that

arrow(float, int) <: arrow(float, float)

is also valid.
Now suppose that f : arrow(float, int). If x : int, then x : float by

subsumption, and hence we may apply f to x to obtain a result of type
int. This suggests that

arrow(float, int) <: arrow(int, int)

is a valid subtype relationship. Since arrow(int, int) <: arrow(int, float),
it follows that

arrow(float, int) <: arrow(int, float)

is also valid.
Subtyping rules that specify how a type constructor interacts with sub-

typing are called variance principles. If a type constructor preserves subtyp-
ing in a given argument position, it is said to be covariant in that position.
If, instead, it inverts subtyping in a given position it is said to be contravari-
ant in that position. The discussion above suggests that the function space
constructor is covariant in the range position and contravariant in the do-
main position. This is expressed by the following rule:

τ1 <: σ1 σ2 <: τ2

arrow(σ1, σ2) <: arrow(τ1, τ2)

Note well the inversion of subtyping in the domain, where the function
constructor is contravariant, and the preservation of subtyping in the range,
where the function constructor is covariant.

APRIL 5, 2006 WORKING DRAFT

36.2 Varieties of Subtyping 246

To ensure safety in the explicit case, we define the dynamic semantics
of a cast operation by the following rule:

(arrow(τ1, τ2)) v 7−→ fn x:τ1 in (τ2) v((σ1) x)

Here v has type arrow(σ1, σ2), τ1 <: σ1, and σ2 <: τ2. The argument is cast
to the domain type of the function prior to the call, and its result is cast to
the intended type of the application.

To ensure safety in the implicit case, we must ensure that the primi-
tive operation of function application behaves correctly on a function of
a subtype of the “expected” type. This amounts to ensuring that a func-
tion can be called with an argument of, and yields a result of, a subtype of
the intended type. One way is to adopt a semantics of procedure call that
is independent of the types of the arguments and results. Another is to
introduce explicit run-time checks similar to those suggested for floating
point arithmetic to ensure that calling conventions for different types can
be met.

36.2.3 Product and Record Subtyping

In Chapter 15 we considered an extension of MinML with product types.
In this section we’ll consider equipping this extension with subtyping.
We will work with n-ary products of the form τ1* · · · *τn and with n-ary
records of the form {l1:τ1, . . . ,ln:τn}. The tuple types have as elements
n-tuples of the form <e1, . . . ,en> whose ith component is accessed by pro-
jection, e.i. Similarly, record types have as elements records of the form
{l1:e1, . . . ,ln:en}whose lth component is accessed by field selection, e.l.

Using the subsumption principle as a guide, it is natural to consider a
tuple type to be a subtype of any of its prefixes:

m > n
τ1* · · · *τm <: τ1* · · · *τn

Given a value of type τ1* · · · *τn, we can access its ith component, for any
1 ≤ i ≤ n. If m > n, then we can equally well access the ith component
of an m-tuple of type τ1* · · · *τm, obtaining the same result. This is called
width subtyping for tuples.

For records it is natural to consider a record type to be a subtype of
any record type with any subset of the fields of the subtype. This may be

APRIL 5, 2006 WORKING DRAFT

36.2 Varieties of Subtyping 247

written as follows:

m > n
{l1:τ1, . . . ,lm:τm} <: {l1:τ1, . . . ,ln:τn}

Bear in mind that the ordering of fields in a record type is immaterial, so
this rule allows us to neglect any subset of the fields when passing to a
supertype. This is called width subtyping for records. The justification for
width subtyping is that record components are accessed by label, rather
than position, and hence the projection from a supertype value will apply
equally well to the subtype.

What variance principles apply to tuples and records? Applying the
principle of subsumption, it is easy to see that tuples and records may be
regarded as covariant in all their components. That is,

∀1 ≤ i ≤ n σi <: τi
σ1* · · · *σn <: τ1* · · · *τn

and
∀1 ≤ i ≤ n σi <: τi

{l1:σ1, . . . ,ln:σn} <: {l1:τ1, . . . ,ln:τn}.

These are called depth subtyping rules for tuples and records, respectively.
To ensure safety for explicit subsumption we must define the meaning

of casting from a sub- to a super-type. The two forms of casting corre-
sponding to width and depth subtyping may be consolidated into one, as
follows:

m ≥ n
(τ1* · · · *τn) <v1, . . . ,vm> 7−→ <(τ1) v1, . . . ,(τn) vn>.

An analogous rule defines the semantics of casting for record types.
To ensure safety for implicit subsumption we must ensure that projec-

tion is well-defined on a subtype value. In the case of tuples this means
that the operation of accessing the ith component from a tuple must be in-
sensitive to the size of the tuple, beyond the basic requirement that it have
size at least i. This can be expressed schematically as follows:

<v1, . . . ,vi,. . .>.i 7−→ vi.

APRIL 5, 2006 WORKING DRAFT

36.2 Varieties of Subtyping 248

The ellision indicates that fields beyond the ith are not relevant to the op-
eration. Similarly, for records we postulate that selection of the lth field is
insensitive to the presence of any other fields:

{l:v,. . .}.l 7−→ v.

The ellision expresses the independence of field selection from any “extra”
fields.

36.2.4 Reference Subtyping

Finally, let us consider the reference types of Chapter 29. What should be
the variance rule for reference types? Suppose that r has type σ ref. We
can do one of two things with r:

1. Retrieve its contents as a value of type σ.

2. Replace its contents with a value of type σ.

If σ <: τ, then retrieving the contents of r yields a value of type τ, by
subsumption. This suggests that references are covariant:

σ <: τ

σ ref
?
<: τ ref.

On the other hand, if τ <: σ, then we may store a value of type τ into r.
This suggests that references are contravariant:

τ <: σ

σ ref
?
<: τ ref.

Given that we may perform either operation on a reference cell, we
must insist that reference types are invariant:

σ <: τ τ <: σ
σ ref <: τ ref .

The premise of the rule is often strengthened to the requirement that σ and
τ be equal:

σ = τ
σ ref <: τ ref

APRIL 5, 2006 WORKING DRAFT

36.2 Varieties of Subtyping 249

since there are seldom situations where distinct types are mutual subtypes.
A similar analysis may be applied to any mutable data structure. For

example, immutable sequences may be safely taken to be covariant, but
mutable sequences (arrays) must be taken to be invariant, lest safety be
compromised.

APRIL 5, 2006 WORKING DRAFT

Chapter 37

Implementing Subtyping

37.1 Type Checking With Subtyping

Type checking for MinML<:, in either variant, clearly requires an algorithm
for deciding subtyping: given σ and τ, determine whether or not σ <:

τ. The difficulty of deciding type checking is dependent on the specific
rules under consideration. In this section we will discuss type checking for
MinML<:, under the assumption that we can check the subtype relation.

Consider first the explicit variant of MinML<:. Since the typing rules
are syntax directed, we can proceed as for MinML, with one additional
case to consider. To check whether (σ) e has type τ, we must check two
things:

1. Whether e has type σ.

2. Whether σ <: τ.

The former is handled by a recursive call to the type checker, the latter by
a call to the subtype checker, which we assume given.

This discussion glosses over an important point. Even in pure MinML it
is not possible to determine directly whether or not Γ ` e : τ. For suppose
that e is an application e1(e2). To check whether Γ ` e : τ, we must find
the domain type of the function, e1, against which we must check the type
of the argument, e2. To do this we define a type synthesis function that
determines the unique (if it exists) type τ of an expression e in a context
Γ, written Γ ` e ⇒ τ. To check whether e has type τ, we synthesize the
unique type for e and check that it is τ.

250

37.1 Type Checking With Subtyping 251

This methodology applies directly to MinMLe
<: by using the following

rule to synthesize a type for a cast:

Γ ` e⇒ σ σ <: τ
Γ ` (τ) e⇒ τ

Extending this method to MinMLi
<: is a bit harder, because expres-

sions no longer have unique types! The rule of subsumption allows us
to weaken the type of an expression at will, yielding many different types
for the same expression. A standard approach is define a type synthesis
function that determines the principal type, rather than the unique type, of
an expression in a given context. The principal type of an expression e in
context Γ is the least type (in the subtyping pre-order) for e in Γ. Not every
subtype system admits principal types. But we usually strive to ensure
that this is the case whenever possible in order to employ this simple type
checking method.

The rules synthesizing principal types for expressions of MinMLi
<: are

as follows:
(Γ(x) = τ)
Γ ` x ⇒ τ Γ ` n⇒ int

Γ ` true⇒ bool Γ ` false⇒ bool

Γ ` e1 ⇒ σ1 σ1 <: τ1 · · · Γ ` en ⇒ σn σn <: τn

Γ ` o(e1, . . . , en)⇒ τ

where o is an n-ary primitive operation with arguments of type τ1,. . . , τn,
and result type τ. We use subsumption to ensure that the argument types
are subtypes of the required types.

Γ ` e⇒ σ σ <: bool Γ ` e1 ⇒ τ1 τ1 <: τ Γ ` e2 ⇒ τ2 τ2 <: τ

Γ ` if e then e1 else e2 ⇒ τ

We use subsumption to ensure that the type of the test is a subtype of bool.
Moreover, we rely on explicit specification of the type of the two clauses
of the conditional.1

Γ[f :arrow(τ1, τ2)][x:τ1] ` e⇒ τ2

Γ ` fun f (x:τ1):τ2 is e⇒ arrow(τ1, τ2)

1This may be avoided by requiring that the subtype relation have least upper bounds
“whenever necessary”; we will not pursue this topic here.

APRIL 5, 2006 WORKING DRAFT

37.2 Implementation of Subtyping 252

Γ ` e1 ⇒ arrow(τ2, τ) Γ ` e2 ⇒ σ2 σ2 <: τ2

Γ ` e1(e2)⇒ τ

We use subsumption to check that the argument type is a subtype of the
domain type of the function.

Theorem 37.1
1. If Γ ` e⇒ σ, then Γ ` e : σ.

2. If Γ ` e : τ, then there exists σ such that Γ ` e⇒ σ and σ <: τ.

Proof:

1. By a straightforward induction on the definition of the type synthesis
relation.

2. By induction on the typing relation.

�

37.2 Implementation of Subtyping

37.2.1 Coercions

The dynamic semantics of subtyping sketched above suffices to ensure
type safety, but is in most cases rather impractical. Specifically,

• Arithmetic subtyping relies on run-time type recognition and con-
version.

• Tuple projection depends on the insensitivity of projection to the ex-
istence of components after the point of projection.

• Record field selection depends on being able to identify the lth field
in a record with numerous fields.

• Function subtyping may require run-time checks and conversions to
match up calling conventions.

APRIL 5, 2006 WORKING DRAFT

37.2 Implementation of Subtyping 253

These costs are significant. Fortunately they can be avoided by taking a
slightly different approach to the implementation of subtyping. Consider,
for example, arithmetic subtyping. In order for a mixed-mode expression
such as +.(3,4) to be well-formed, we must use subsumption to weaken
the types of 3 and 4 from int to float. This means that type conversions
are required exactly insofar as subsumption is used during type checking
— a use of subsumption corresponds to a type conversion.

Since the subsumption rule is part of the static semantics, we can in-
sert the appropriate conversions during type checking, and omit entirely
the need to check for mixed-mode expressions during execution. This is
called a coercion interpretation of subsumption. It is expressed formally by
augmenting each subtype relation σ <: τ with a function value v of type
arrow(σ, τ) (in pure MinML) that coerces values of type σ to values of type
τ. The augmented subtype relation is written σ <: τ v.

Here are the rules for arithmetic subtyping augmented with coercions:

τ <: τ idτ

ρ <: σ v σ <: τ v′

ρ <: τ v;v′

int <: float to float

τ1 <: σ1 v1 σ2 <: τ2 v2

arrow(σ1, σ2) <: arrow(τ1, τ2) arrow(v1, v2)

These rules make use of the following auxiliary functions:

1. Primitive conversion: to float.

2. Identity: idτ = fn x:τ in x.

3. Composition: v;v′ = fn x:τ in v′(v(x)).

4. Functions: arrow(v1, v2) =
fn f:arrow(σ1, σ2) in fn x:τ1 in v2(f(v1(x))).

The coercion interpretation is type correct. Moreover, there is at most
one coercion between any two types:

Theorem 37.2
1. If σ <: τ v, then `− v : arrow(σ, τ).

2. If σ <: τ v1 and σ <: τ v2, then `− v1
∼= v2 : arrow(σ, τ).

Proof:

APRIL 5, 2006 WORKING DRAFT

37.2 Implementation of Subtyping 254

1. By a simple induction on the rules defining the augmented subtyp-
ing relation.

2. Follows from these equations:

(a) Composition is associative with id as left- and right-unit ele-
ment.

(b) arrow(id, id) ∼= id.

(c) (arrow(v1, v2));(arrow(v′1, v′2)) ∼= arrow((v′1;v1), (v2;v′2)).

�

The type checking relation is augmented with a translation from MinMLi
<:

to pure MinML that eliminates uses of subsumption by introducing coer-
cions:

Γ ` e : σ e′ σ <: τ v
Γ ` e : τ v(e′)

The remaining rules simply commute with the translation. For example,
the rule for function application becomes

Γ ` e1 : arrow(τ2, τ) e′1 Γ ` e2 : τ2 e′2
Γ ` e1(e2) : τ e′1(e′2)

Theorem 37.3
1. If Γ ` e : τ e′, then Γ ` e′ : τ in pure MinML.

2. If Γ ` e : τ e1 and Γ ` e : τ e2, then Γ ` e1
∼= e2 : τ in pure

MinML.

3. If e : int e′ is a complete program, then e ⇓ n iff e′ ⇓ n.

The coercion interpretation also applies to record subtyping. Here the
problem is how to implement field selection efficiently in the presence
of subsumption. Observe that in the absence of subtyping the type of a
record value reveals the exact set of fields of a record (and their types). We
can therefore implement selection efficiently by ordering the fields in some
canonical manner (say, alphabetically), and compiling field selection as a
projection from an offset determined statically by the field’s label.

APRIL 5, 2006 WORKING DRAFT

37.2 Implementation of Subtyping 255

In the presence of record subtyping this simple technique breaks down,
because the type no longer reveals the fields of a record, not their types.
For example, every expression of record type has the record type {} with
no fields whatsoever! This makes it difficult to predict statically the po-
sition of the field labelled l in a record. However, we may restore this
important property by using coercions. Whenever the type of a record is
weakened using subsumption, insert a function that creates a new record
that exactly matches the supertype. Then use the efficient record field se-
lection method just described.

Here, then, are the augmented rules for width and depth subtyping for
records:

m > n
{l1:τ1, . . . ,lm:τm} <: {l1:τ1, . . . ,ln:τn} dropm,n,l,τ

σ1 <: τ1 v1 . . . σn <: τn vn
{l1:σ1, . . . ,ln:σn} <: {l1:τ1, . . . ,ln:τn} copyn,l,σ,v

These rules make use of the following coercion functions:

dropm,n,l,σ =
fn x:{l1:σ1, . . . ,lm:σm} in {l1:x.l1, . . . ,ln:x.ln}

copyn,l,σ,v =
fn x:{l1:σ1, . . . ,ln:σn} in {l1:v1(x.l1), . . . ,ln:vn(x.ln)}

In essence this approach represents a trade-off between the cost of sub-
sumption and the cost of field selection. By creating a new record when-
ever subsumption is used, we make field selection cheap. On the other
hand, we can make subsumption free, provided that we are willing to pay
the cost of a search whenever a field is selected from a record.

But what if record fields are mutable? This approach to coercion is out
of the question, because of aliasing. Suppose that a mutable record value
v is bound to two variables, x and y. If coercion is applied to the binding
of x, creating a new record, then future changes to y will not affect the
new record, nor vice versa. In other words, uses of coercion changes the
semantics of a program, which is unreasonable.

One widely-used approach is to increase slightly the cost of field se-
lection (by a constant factor) by separating the “view” of a record from its
“contents”. The view determines the fields and their types that are present

APRIL 5, 2006 WORKING DRAFT

37.2 Implementation of Subtyping 256

for each use of a record, whereas the contents is shared among all uses.
In essence we represent the record type {l1:τ1, . . . ,ln:τn} by the product
type

{l1:int, . . . ,ln:int}*(τ array).

The field selection l.e becomes a two-stage process:

snd(e)[fst(e).l]

Finally, coercions copy the view, without modifying the contents. If σ =
{l1:σ1, . . . ,ln:σn} and τ = {l1:int, . . . ,ln:int}, then

dropm,n,l,σ = fn x in (dropm,n,l,τ(fst(x)),snd(x)).

APRIL 5, 2006 WORKING DRAFT

Part XIV

Inheritance

257

Chapter 38

Featherweight Java

We will consider a tiny subset of the Java language, called Featherweight
Java, or FJ, that models subtyping and inheritance in Java. We will then
discuss design alternatives in the context of FJ. For example, in FJ, as in
Java, the subtype relation is tightly coupled to the subclass relation. Is
this necessary? Is it desirable? We will also use FJ as a framework for
discussing other aspects of Java, including interfaces, privacy, and arrays.

38.1 Abstract Syntax

The abstract syntax of FJ is given by the following grammar:

Classes C : : = class c extends c {c f; k d}
Constructors k : : = c(c x) {super(x); this. f=x;}
Methods d : : = c m(c x) {return e;}
Types τ : : = c
Expressions e : : = x | e. f | e.m(e) | new c(e) | (c) e

The variable f ranges over a set of field names, c over a set of class names, m
over a set of method names, and x over a set of variable names. We assume
that these sets are countably infinite and pairwise disjoint. We assume
that there is a distinguished class name, Object, standing for the root of
the class hierarchy. It’s role will become clear below. We assume that there
is a distinguished variable this that cannot otherwise be declared in a
program.

258

38.1 Abstract Syntax 259

As a notational convenience we use “underbarring” to stand for se-
quences of phrases. For example, d stands for a sequence of d’s, whose
individual elements we designate d1, . . . , dk, where k is the length of the se-
quence. We write c f for the sequence c1 f1, . . . , ck fk, where k is the length
of the sequences c and f . Similar conventions govern the other uses of
sequence notation.

The class expression

class c extends c′ {c f; k d}

declares the class c to be a subclass of the class c′. The subclass has addi-
tional fields c f , single constructor k, and method suite d. The methods of
the subclass may override those of the superclass, or may be new methods
specific to the subclass.

The constructor expression

c(c′ x′, c x) {super(x′); this. f=x;}

declares the constructor for class c with arguments c′ x′, c x, correspond-
ing to the fields of the superclass followed by those of the subclass. The
variables x′ and x are bound in the body of the constructor. The body of
the constructor indicates the initialization of the superclass with the argu-
ments x′ and of the subclass with arguments x.

The method expression

c m(c x) {return e;}

declares a method m yielding a value of class c, with arguments x of class
c and body returning the value of the expression e. The variables x and
this are bound in e.

The set of types is, for the time being, limited to the set of class names.
That is, the only types are those declared by a class. In Java there are more
types than just these, including the primitive types integer and boolean

and the array types.
The set of expressions is the minimal “interesting” set sufficient to illus-

trate subtyping and inheritance. The expression e. f selects the contents of
field f from instance e. The expression e.m(e) invokes the method m of in-
stance e with arguments e. The expression new c(e) creates a new instance
of class c, passing arguments e to the constructor for c. The expression
(c) e casts the value of e to class c.

APRIL 5, 2006 WORKING DRAFT

38.1 Abstract Syntax 260

class Pt extends Object {
int x;

int y;

Pt (int x, int y) {
super(); this.x = x; this.y = y;

}
int getx () { return this.x; }
int gety () { return this.y; }

}

class CPt extends Pt {
color c;

CPt (int x, int y, color c) {
super(x,y);

this.c = c;

}
color getc () { return this.c; }

}

Figure 38.1: A Sample FJ Program

The methods of a class may invoke one another by sending messages
to this, standing for the instance itself. We may think of this as a bound
variable of the instance, but we will arrange things so that renaming of
this is never necessary to avoid conflicts.

A class table T is a finite function assigning classes to class names. The
classes declared in the class table are bound within the table so that all
classes may refer to one another via the class table.

A program is a pair (T, e) consisting of a class table T and an expression
e. We generally suppress explicit mention of the class table, and consider
programs to be expressions.

A small example of FJ code is given in Figure 38.1. In this example we
assume given a class Object of all objects and make use of types int and
color that are not, formally, part of FJ.

APRIL 5, 2006 WORKING DRAFT

38.2 Static Semantics 261

38.2 Static Semantics

The static semantics of FJ is defined by a collection of judgments of the
following forms:

τ <: τ′ subtyping
Γ ` e : τ expression typing
d ok in c well-formed method
C ok well-formed class
T ok well-formed class table
fields(c) = c f field lookup
type(m, c) = c→ c method type

The rules defining the static semantics follow.
Every variable must be declared:

Γ(x) = τ

Γ ` x : τ (38.1)

The types of fields are defined in the class table.

Γ ` e0 : c0 fields(c0) = c f

Γ ` e0. fi : ci (38.2)

The argument and result types of methods are defined in the class ta-
ble.

Γ ` e0 : c0 Γ ` e : c
type(m, c0) = c′ → c c <: c′

Γ ` e0.m(e) : c (38.3)

Instantiation must provide values for all instance variables as argu-
ments to the constructor.

Γ ` e : c c <: c′ fields(c) = c′ f

Γ ` new c(e) : c (38.4)

APRIL 5, 2006 WORKING DRAFT

38.2 Static Semantics 262

All casts are statically valid, but must be checked at run-time.

Γ ` e0 : d
Γ ` (c) e0 : c (38.5)

The subtyping relation is read directly from the class table. Subtyping
is the smallest reflexive, transitive relation containing the subclass relation:

τ <: τ (38.6)

τ <: τ′ τ′ <: τ′′

τ <: τ′′ (38.7)

T(c) = class c extends c′ {. . . ; . . . }
c <: c′ (38.8)

A well-formed class has zero or more fields, a constructor that initial-
izes the superclass and the subclass fields, and zero or more methods. To
account for method override, the typing rules for each method are relative
to the class in which it is defined.

k = c(c′ x′, c x) {super(x′); this. f=x;}
fields(c′) = c′ f ′ d ok in c

class c extends c′ {c f; k d} ok (38.9)

Method overriding takes account of the type of the method in the su-
perclass. The subclass method must have the same argument types and
result type as in the superclass.

T(c) = class c extends c′ {. . . ; . . . }
type(m, c′) = c→ c0 x:c, this:c ` e0 : c0

c0 m(c x) {return e0;} ok in c (38.10)

A class table is well-formed iff all of its classes are well-formed:

∀c ∈ dom(T) T(c) ok

T ok (38.11)

APRIL 5, 2006 WORKING DRAFT

38.3 Dynamic Semantics 263

Note that well-formedness of a class is relative to the class table!
A program is well-formed iff its method table is well-formed and the

expression is well-formed:

T ok ∅ ` e : τ
(T, e) ok (38.12)

The auxiliary lookup judgments determine the types of fields and meth-
ods of an object. The types of the fields of an object are determined by the
following rules:

fields(Object) = • (38.13)

T(c) = class c extends c′ {c f; . . . } fields(c′) = c′ f ′

fields(c) = c′ f ′, c f (38.14)

The type of a method is determined by the following rules:

T(c) = class c extends c′ {. . . ; . . . d}
di = ci m(ci x) {return e;}

type(mi, c) = ci → ci (38.15)

T(c) = class c extends c′ {. . . ; . . . d}
m /∈ d type(m, c′) = ci → ci

type(m, c) = ci → ci (38.16)

38.3 Dynamic Semantics

The dynamic semantics of FJ may be specified using SOS rules similar
to those for MinML. The transition relation is indexed by a class table T,
which governs the semantics of casting and dynamic dispatch (which see
below). In the rules below we omit explicit mention of the class table for
the sake of brevity.

An instance of a class has the form new c(e), where each ei is a value.

e value

new c(e) value (38.17)

APRIL 5, 2006 WORKING DRAFT

38.3 Dynamic Semantics 264

Since we arrange that there be a one-to-one correspondence between in-
stance variables and constructor arguments, an instance expression of this
form carries all of the information required to determine the values of the
fields of the instance. This makes clear that an instance is essentially just a
labelled collection of fields. Each instance is labelled with its class, which
is used to guide method dispatch.

Field selection retrieves the value of the named field from either the
subclass or its superclass, as appropriate.

fields(c) = c′ f ′, c f e′ value e value

new c(e′, e). f ′i 7−→ e′i (38.18)

fields(c) = c′ f ′, c f e′ value e value

new c(e′, e). fi 7−→ ei (38.19)

Message send replaces this by the instance itself, and replaces the
method parameters by their values.

body(m, c) = x → e0 e value e′ value

new c(e).m(e′) 7−→ [x←e′][this←new c(e)]e0 (38.20)

Casting checks that the instance is of a sub-class of the target class, and
yields the instance.

c <: c′ e value

(c′) new c(e) 7−→ new c(e) (38.21)

These rules determine the order of evaluation:

e0 7−→ e′0
e0. f 7−→ e′0. f (38.22)

e0 7−→ e′0
e0.m(e) 7−→ e′0.m(e) (38.23)

e0 value e 7−→ e′

e0.m(e) 7−→ e0.m(e′) (38.24)

APRIL 5, 2006 WORKING DRAFT

38.4 Type Safety 265

e 7−→ e′

new c(e) 7−→ new c(e′) (38.25)

e0 7−→ e′0
(c) e0 7−→ (c) e′0 (38.26)

Dynamic dispatch makes use of the following auxiliary relation to find
the correct method body.

T(c) = class c extends c′ {. . . ; . . . d}
di = ci mi(ci x) {return e;}

body(mi, c) = x → e (38.27)

T(c) = class c extends c′ {. . . ; . . . d}
m /∈ d body(m, c′) = x → e

body(m, c) = x → e (38.28)

Finally, we require rules for evaluating sequences of expressions from
left to right, and correspondingly defining when a sequence is a value (i.e.,
consists only of values).

e1 value . . . ei−1 value ei 7−→ e′i
e1, . . . , ei−1, ei, ei+1, . . . , en 7−→ e1, . . . , ei−1, e′i, ei+1, . . . , en (38.29)

e1 value . . . en value
e value (38.30)

This completes the dynamic semantics of FJ.

38.4 Type Safety

The safety of FJ is stated in the usual manner by the Preservation and
Progress Theorems.

APRIL 5, 2006 WORKING DRAFT

38.5 Acknowledgement 266

Since the dynamic semantics of casts preserves the “true” type of an
instance, the type of an expression may become “smaller” in the subtype
ordering during execution.

Theorem 38.1 (Preservation)
Assume that T is a well-formed class table. If e : τ and e 7−→ e′, then e′ : τ′

for some τ′ such that τ′ <: τ.

The statement of Progress must take account of the possibility that a
cast may fail at execution time. Note, however, that field selection or mes-
sage send can never fail — the required field or method will always be
present.

Theorem 38.2 (Progress)
Assume that T is a well-formed class table. If e : τ then either

1. v value, or

2. e contains an instruction of the form (c) new c′(e0) with e0 value and
c′ 6<: c, or

3. there exists e′ such that e 7−→ e′.

It follows that if no casts occur in the source program, then the second
case cannot arise. This can be sharpened somewhat to admit source-level
casts for which it is known statically that the type of casted expression is a
subtype of the target of the cast. However, we cannot predict, in general,
statically whether a given cast will succeed or fail dynamically.

Lemma 38.3 (Canonical Forms)
If e : c and e value, then e has the form new c′(e0) with e0 value and c′ <: c.

38.5 Acknowledgement

This chapter is based on “Featherweight Java: A Minimal Core Calculus
for Java and GJ” by Atsushi Igarashi, Benjamin Pierce, and Philip Wadler.

APRIL 5, 2006 WORKING DRAFT

Chapter 39

Inheritance and Subtyping in Java

In this note we discuss the closely-related, but conceptually distinct, no-
tions of inheritance, or subclassing, and subtyping as exemplified in the Java
language. Inheritance is a mechanism for supporting code re-use through
incremental extension and modification. Subtyping is a mechanism for ex-
pressing behavioral relationships between types that allow values of a sub-
type to be provided whenever a value of a supertype is required.

In Java inheritance relationships give rise to subtype relationships, but
not every subtype relationship arises via inheritance. Moreover, there are
languages (including some extensions of Java) for which subclasses do not
give rise to subtypes, and there are languages with no classes at all, but
with a rich notion of subtyping. For these reasons it is best to keep a clear
distinction between subclassing and subtyping.

39.1 Inheritance Mechanisms in Java

39.1.1 Classes and Instances

The fundamental unit of inheritance in Java is the class. A class consists
of a collection of fields and a collection of methods. Fields are assignable
variables; methods are procedures acting on these variables. Fields and
methods can be either static (per-class) or dynamic (per-instance).1 Static
fields are per-class data. Static methods are just ordinary functions acting
on static fields.

1Fields and methods are assumed dynamic unless explicitly declared to be static.

267

39.1 Inheritance Mechanisms in Java 268

Classes give rise to instances, or objects, that consist of the dynamic
methods of the class together with fresh copies (or instances) of its dy-
namic fields. Instances of classes are created by a constructor, whose role is
to allocate and initialize fresh copies of the dynamic fields (which are also
known as instance variables). Constructors have the same name as their
class, and are invoked by writing new C(e1, . . . , en), where C is a class and
e1, . . . , en are arguments to the constructor.2 Static methods have access
only to the static fields (and methods) of its class; dynamic methods have
access to both the static and dynamic fields and methods of the class.

The components of a class have a designated visibility attribute, either
public, private, or protected. The public components are those that are
accessible by all clients of the class. Public static components are accessi-
ble to any client with access to the class. Public dynamic components are
visible to any client of any instance of the class. Protected components are
“semi-private; we’ll have more to say about protected components later.

The components of a class also have a finality attribute. Final fields
are not assignable — they are read-only attributes of the class or instance.
Actually, final dynamic fields can be assigned exactly once, by a construc-
tor of the class, to initialize their values. Final methods are of interest in
connection with inheritance, to which we’ll return below.

The components of a class have types. The type of a field is the type
of its binding as a (possibly assignable) variable. The type of a method
specifies the types of its arguments (if any) and the type of its results. The
type of a constructor specifies the types of its arguments (if any); its “re-
sult type” is the instance type of the class itself, and may not be specified
explicitly. (We will say more about the type structure of Java below.)

The public static fields and methods of a class C are accessed using
“dot notation”. If f is a static field of C, a client may refer to it by writ-
ing C. f . Similarly, if m is a static method of C, a client may invoke it by
writing C.m(e1,...,en), where e1, . . . , en are the argument expressions of
the method. The expected type checking rules govern access to fields and
invocations of methods.

The public dynamic fields and methods of an instance c of a class C
are similarly accessed using “dot notation”, albeit from the instance, rather
than the class. That is, if f is a public dynamic field of C, then c. f refers

2Classes can have multiple constructors that are distinguished by overloading. We
will not discuss overloading here.

APRIL 5, 2006 WORKING DRAFT

39.1 Inheritance Mechanisms in Java 269

to the f field of the instance c. Since distinct instances have distinct fields,
there is no essential connection between c. f and c′. f when c and c′ are
distinct instances of class C. If m is a public dynamic method of C, then
c.m(e1, . . . , en) invokes the method m of the instance c with the specified
arguments. This is sometimes called sending a message m to instance c with
arguments e1, . . . , en.

Within a dynamic method one may refer to the dynamic fields and
methods of the class via the pseudo-variable this, which is bound to the
instance itself. The methods of an instance may call one another (or them-
selves) by sending a message to this. Although Java defines conventions
whereby explicit reference to this may be omitted, it is useful to eschew
these conveniences and always use this to refer to the components of an
instance from within code for that instance. We may think of this as an
implicit argument to all methods that allows the method to access to object
itself.

39.1.2 Subclasses

A class may be defined by inheriting the visible fields and methods of an-
other class. The new class is said to be a subclass of the old class, the super-
class. Consequently, inheritance is sometimes known as subclassing. Java
supports single inheritance — every class has at most one superclass. That
is, one can only inherit from a single class; one cannot combine two classes
by inheritance to form a third. In Java the subclass is said to extend the
superclass.

There are two forms of inheritance available in Java:

1. Enrichment. The subclass enriches the superclass by providing addi-
tional fields and methods not present in the superclass.

2. Overriding. The subclass may re-define a method in the superclass
by giving it a new implementation in the subclass.

Enrichment is a relatively innocuous aspect of inheritance. The true power
of inheritance lies in the ability to override methods.

Overriding, which is also known as method specialization, is used to
“specialize” the implementation of a superclass method to suit the needs
of the subclass. This is particularly important when the other methods of
the class invoke the overridden method by sending a message to this. If

APRIL 5, 2006 WORKING DRAFT

39.1 Inheritance Mechanisms in Java 270

a method m is overridden in a subclass D of a class C, then all methods
of D that invoke m via this will refer to the “new” version of m defined
by the override. The “old” version can still be accessed explicitly from the
subclass by referring to super.m. The keyword super is a pseudo-variable
that may be used to refer to the overridden methods.

Inheritance can be controlled using visibility constraints. A sub-class
D of a class C automatically inherits the private fields and methods of C
without the possibility of overriding, or otherwise accessing, them. The
public fields and methods of the superclass are accessible to the subclass
without restriction, and retain their public attribute in the subclass, unless
overridden. A protected component is “semi-private” — accessible to the
subclass, but not otherwise publically visible.3

Inheritance can also be limited using finality constraints. If a method is
declared final, it may not be overridden in any subclass — it must be in-
herited as-is, without further modification. However, if a final method in-
vokes, via this, a non-final method, then the behavior of the final method
can still be changed by the sub-class by overriding the non-final method.
By declaring an entire class to be final, no class can inherit from it. This
serves to ensure that any instance of this class invokes the code from this
class, and not from any subclass of it.

Instantiation of a subclass of a class proceeds in three phases:

1. The instance variables of the subclass, which include those of the
superclass, are allocated.

2. The constructor of the superclass is invoked to initialize the super-
class’s instance variables.

3. The constructor of the subclass is invoked to initialize the subclass’s
instance variables.

The superclass constructor can be explicitly invoked by a subclass con-
structor by writing super(e1, . . . , en), but only as the very first statement
of the subclass’s constructor. This ensures proper initialization order, and
avoids certain anomalies and insecurities that arise if this restriction is re-
laxed.

3Actually, Java assigns protected components “package scope”, but since we are not
discussing packages here, we will ignore this issue.

APRIL 5, 2006 WORKING DRAFT

39.1 Inheritance Mechanisms in Java 271

39.1.3 Abstract Classes and Interfaces

An abstract class is a class in which one or more methods are declared,
but left unimplemented. Abstract methods may be invoked by the other
methods of an abstract class by sending a message to this, but since their
implementation is not provided, abstract classes do not themselves have
instances. Instead the obligation is imposed on a subclass of the abstract
class to provide implementations of the abstract methods to obtain a con-
crete class, which does have instances. Abstract classes are useful for set-
ting up “code templates” that are instantiated by inheritance. The abstract
class becomes the locus of code sharing for all concretions of that class,
which inherit the shared code and provide the missing non-shared code.

Taking this idea to the extreme, an interface is a “fully abstract” class,
which is to say that

• All its fields are public static final (i.e., they are constants).

• All its methods are abstract public; they must be implemented by
a subclass.

Since interfaces are a special form of abstract class, they have no instances.
The utility of interfaces stems from their role in implements declara-

tions. As we mentioned above, a class may be declared to extend a single
class to inherit from it.4 A class may also be declared to implement one
or more interfaces, meaning that the class provides the public methods of
the interface, with their specified types. Since interfaces are special kinds
of classes, Java is sometimes said to provide multiple inheritance of inter-
faces, but only single inheritance of implementation. For similar reasons an
interface may be declared to extend multiple interfaces, provided that the
result types of their common methods coincide.

The purpose of declaring an interface for a class is to support writing
generic code that works with any instance providing the methods speci-
fied in the interface, without requiring that instance to arise from any par-
ticular position in the inheritance hierarchy. For example, we may have
two unrelated classes in the class hierarchy providing a method m. If both
classes are declared to implement an interface that mentions m, then code
programmed against this interface will work for an instance of either class.

4Classes that do not specify a superclass implicitly extend the class Object of all ob-
jects.

APRIL 5, 2006 WORKING DRAFT

39.2 Subtyping in Java 272

The literature on Java emphasizes that interfaces are descriptive of be-
havior (to the extend that types alone allow), whereas classes are prescrip-
tive of implementation. While this is surely a noble purpose, it is curious
that interfaces are classes in Java, rather than types. In particular interfaces
are unable to specify the public fields of an instance by simply stating their
types, which would be natural were interfaces a form of type. Instead
fields in interfaces are forced to be constants (public, static, final), preclud-
ing their use for describing the public instance variables of an object.

39.2 Subtyping in Java

The Java type system consists of the following types:

1. Base types, including int, float, void, and boolean.

2. Class types C, which classify the instances of a class C.

3. Array types of the form τ [], where τ is a type, representing mutable
arrays of values of type τ.

The basic types behave essentially as one would expect, based on pre-
vious experience with languages such as C and C++. Unlike C or C++ Java
has true array types, with operations for creating and initializing an array
and for accessing and assigning elements of an array. All array operations
are safe in the sense that any attempt to exceed the bounds of the array
results in a checked error at run-time.

Every class, whether abstract or concrete, including interfaces, has as-
sociated with it the type of its instances, called (oddly enough) the instance
type of the class. Java blurs the distinction between the class as a program
structure and the instance type determined by the class — class names
serve not only to identify the class but also the instance type of that class.
It may seem odd that abstract classes, and interfaces, all define instance
types, even though they don’t have instances. However, as will become
clear below, even abstract classes have instances, indirectly through their
concrete subclasses. Similarly, interfaces may be thought of as possess-
ing instances, namely the instances of concrete classes that implement that
interface.

APRIL 5, 2006 WORKING DRAFT

39.2 Subtyping in Java 273

39.2.1 Subtyping

To define the Java subtype relation we need two auxiliary relations. The
subclass relation, C C C′, is the reflexive and transitive closure of the ex-
tends relation among classes, which holds precisely when one class is de-
clared to extend another. In other words, C C C′ iff C either coincides
with C′, inherits directly from C′, or inherits from a subclass of C′. Since
interfaces are classes, the subclass relation also applies to interfaces, but
note that multiple inheritance of interfaces means that an interface can be
a subinterface (subclass) of more than one interface. The implementation
relation, C J I, is defined to hold exactly when a class C is declared to
implement an interface that inherits from I.

The Java subtype relation is inductively defined by the following rules.
Subtyping is reflexive and transitive:

τ <: τ (39.1)

τ <: τ′ τ′ <: τ′′

τ <: τ′′ (39.2)
Arrays are covariant type constructors, in the sense of this rule:

τ <: τ′

τ [] <: τ′ [] (39.3)

Inheritance implies subtyping:

C C C′

C <: C′ (39.4)

Implementation implies subtyping:
C J I
C <: I (39.5)

Every class is a subclass of the distinguished “root” class Object:

τ <: Object (39.6)

The array subtyping rule is a structural subtyping principle — one need
not explicitly declare subtyping relationships between array types for them
to hold. On the other hand, the inheritance and implementation rules of
subtyping are examples of nominal subtyping — they hold when they are
declared to hold at the point of definition (or are implied by further sub-
typing relations).

APRIL 5, 2006 WORKING DRAFT

39.2 Subtyping in Java 274

39.2.2 Subsumption

The subsumption principle tells us that if e is an expression of type τ and
τ <: τ′, then e is also an expression of type τ′. In particular, if a method
is declared with a parameter of type τ, then it makes sense to provide an
argument of any type τ′ such that τ′ <: τ. Similarly, if a constructor takes
a parameter of a type, then it is legitimate to provide an argument of a
subtype of that type. Finally, if a method is declared to return a value of
type τ, then it is legitimate to return a value of any subtype of τ.

This brings up an awkward issue in the Java type system. What should
be the type of a conditional expression e ? e1: e2? Clearly e should have
type boolean, and e1 and e2 should have the same type, since we cannot
in general predict the outcome of the condition e. In the presence of sub-
typing, this amounts to the requirement that the types of e1 and e2 have
an upper bound in the subtype ordering. To avoid assigning an excessively
weak type, and to ensure that there is a unique choice of type for the condi-
tional, it would make sense to assign the conditional the least upper bound
of the types of e1 and e2. Unfortunately, two types need not have a least
upper bound! For example, if an interface I extends incomparable inter-
faces K and L, and J extends both K and L, then I and J do not have a
least upper bound — both K and L are upper bounds of both, but neither
is smaller than the other. To deal with this Java imposes the rather ad hoc
requirement that either the type of e1 be a subtype of the type of e2, or vice
versa, to avoid the difficulty.

A more serious difficulty with the Java type system is that the array
subtyping rule, which states that the array type constructor is covariant
in the type of the array elements, violates the subsumption principle. To
understand why, recall that we can do one of two things with an array:
retrieve an element, or assign to an element. If τ <: τ′ and A is an array of
type τ [], then retrieving an element of A yields a value of type τ, which is
by hypothesis an element of type τ′. So we are OK with respect to retrieval.
Now consider array assignment. Suppose once again that τ <: τ′ and that
A is an array of type τ []. Then A is also an array of type τ′ [], according
to the Java rule for array subtyping. This means we can assign a value x
of type τ′ to an element of A. But this violates the assumption that A is an
array of type τ [] — one of its elements is of type τ′.

With no further provisions the language would not be type safe. It is a
simple matter to contrive an example involving arrays that incurs a run-

APRIL 5, 2006 WORKING DRAFT

39.2 Subtyping in Java 275

time type error (“gets stuck”). Java avoids this by a simple, but expensive,
device — every array assignment incurs a “run-time type check” that en-
sures that the assignment does not create an unsafe situation. In the next
subsection we explain how this is achieved.

39.2.3 Dynamic Dispatch

According to Java typing rules, if C is a sub-class of D, then C is a sub-type
of D. Since the instances of a class C have type C, they also, by subsump-
tion, have type D, as do the instances of class D itself. In other words, if
the static type of an instance is D, it might be an instance of class C or an
instance of class D. In this sense the static type of an instance is at best an
approximation of its dynamic type, the class of which it is an instance.

The distinction between the static and the dynamic type of an object is
fundamental to object-oriented programming. In particular method spe-
cialization is based on the dynamic type of an object, not its static type.
Specifically, if C is a sub-class of D that overrides a method m, then in-
voking the method m of a C instance o will always refer to the overriding
code in C, even if the static type of o is D. That is, method dispatch is
based on the dynamic type of the instance, not on its static type. For this
reason method specialization is sometimes called dynamic dispatch, or, less
perspicuously, late binding.

How is this achieved? Essentially, every object is tagged with the class
that created it, and this tag is used to determine which method to invoke
when a message is sent to that object. The constructors of a class C “label”
the objects they create with C. The method dispatch mechanism consults
this label when determining which method to invoke.5

The same mechanism is used to ensure that array assignments do not
lead to type insecurities. Suppose that the static type of A is C [], and
that the static type of instance o is C. By covariance of array types the
dynamic type of A might be D [] for some sub-class D of C. But unless
the dynamic type of o is also D, the assignment of o to an element of A
should be prohibited. This is ensured by an explicit run-time check. In

5In practice the label is a pointer to the vector of methods of the class, and the method
is accessed by indexing into this vector. But we can just as easily imagine this to be
achieved by a case analysis on the class name to determine the appropriate method vec-
tor.

APRIL 5, 2006 WORKING DRAFT

39.2 Subtyping in Java 276

Java every single array assignment incurs a run-time check whenever the array
contains objects.6

39.2.4 Casting

A container class is one whose instances “contain” instances of another
class. For example, a class of lists or trees or sets would be a container
class in this sense. Since the operations on containers are largely (or en-
tirely) independent of the type of their elements, it makes sense to define
containers generally, rather than defining one for each element type. In
Java this is achieved by exploiting subsumption. Since every object has
type Object, a general container is essentially a container whose elements
are of type Object. This allows the container operations to be defined once
for all element types. However, when retrieving an element from a con-
tainer its static type is Object; we lost track of its dynamic type during
type checking. If we wish to use such an object in any meaningful way,
we must recover its dynamic type so that message sends are not rejected
at compile time.

Java supports a safe form of casting, or change of type. A cast is written
(τ) e. The expression e is called the subject of the cast, and the type τ is the
target type of the cast. The type of the cast is τ, provided that the cast makes
sense, and its value is that of e. In general we cannot determine whether
the cast makes sense until execution time, when the dynamic type of the
expression is available for comparison with the target type. For example,
every instance in Java has type Object, but its true type will usually be
some class further down the type hierarchy. Therefore a cast applied to an
expression of type Object cannot be validated until execution time.

Since the static type is an attenuated version of the dynamic type of an
object, we can classify casts into three varieties:

1. Up casts, in which the static type of the expression is a subtype of
the target type of the cast. The type checker accepts the cast, and no
run-time check is required.

2. Down casts, in which the static type of the expression is a supertype
of the target type. The true type may or may not be a subtype of the

6Arrays of integers and floats do not incur this overhead, because numbers are not
objects.

APRIL 5, 2006 WORKING DRAFT

39.3 Methodology 277

target, so a run-time check is required.

3. Stupid casts, in which the static type of the expression rules out the
possibility of its dynamic type matching the target of the cast. The
cast is rejected.

Similar checks are performed to ensure that array assignments are safe.
Note that it is up to the programmer to maintain a sufficiently strong

invariant to ensure that down casts do not fail. For example, if a container
is intended to contain objects of a class C, then retrieved elements of that
class will typically be down cast to a sub-class of C. It is entirely up to the
programmer to ensure that these casts do not fail at execution time. That
is, the programmer must maintain the invariant that the retrieved element
really contains an instance of the target class of the cast.

39.3 Methodology

With this in hand we can (briefly) discuss the methodology of inheritance
in object-oriented languages. As we just noted, in Java subclassing entails
subtyping — the instance type of a subclass is a subtype of the instance
type of the superclass. It is important to recognize that this is a method-
ological commitment to certain uses of inheritance.

Recall that a subtype relationship is intended to express a form of be-
havioral equivalence. This is expressed by the subsumption principle,
which states that subtype values may be provided whenever a supertype
value is required. In terms of a class hierarchy this means that a value
of the subclass can be provided whenever a value of the superclass is re-
quired. For this to make good sense the values of the subclass should “be-
have properly” in superclass contexts — they should not be distinguish-
able from them.

But this isn’t necessarily so! Since inheritance admits overriding of
methods, we can make almost arbitrary7 changes to the behavior of the
superclass when defining the subclass. For example, we can turn a stack-
like object into a queue-like object (replacing a LIFO discipline by a FIFO
discipline) by inheritance, thereby changing the behavior drastically. If we

7Limited only by finality declarations in the superclass.

APRIL 5, 2006 WORKING DRAFT

39.3 Methodology 278

are to pass off a subclass instance as a superclass instance using subtyping,
then we should refrain from making such drastic behavioral changes.

The Java type system provides only weak tools for ensuring a behav-
ioral subtyping relationship between a subclass and its superclass. Fun-
damentally, the type system is not strong enough to express the desired
constraints.8. To compensate for this Java provides the finality mechanism
to limit inheritance. Final classes cannot be inherited from at all, ensuring
that values of its instance type are indeed instances of that class (rather
than an arbitrary subclass). Final methods cannot be overridden, ensuring
that certain aspects of behavior are “frozen” by the class definition.

Nominal subtyping may also be seen as a tool for enforcing behavioral
subtyping relationships. For unless a class extends a given class or is de-
clared to implement a given interface, no subtyping relationship holds.
This helps to ensure that the programmer explicitly considers the behav-
ioral subtyping obligations that are implied by such declarations, and is
therefore an aid to controlling inheritance.

8Nor is the type system of any other language that I am aware of, including ML

APRIL 5, 2006 WORKING DRAFT

Part XV

Program Equivalence

279

Chapter 40

Functional Equivalence

One of the beauties of functional programming is the ease with which we
may reason about equivalence of expressions. Informally, we say that two
expressions e1 and e2 of the same type are equivalent iff replacing e1 by e2
in a complete program doesn’t change its final result. By a “complete pro-
gram” we mean a closed expression of type int or bool; the final result of
a complete program is therefore a number or a Boolean constant. What is
important here is that the final outcome be finitely observable — we can see
immediately that the answer is false or 17. Since functions are essentially
“infinite” objects (in the sense that the graph of a function on the integers
is infinite), we would not regard functions as observable outcomes of a
complete program.

We can think of a usage of an expression in a complete program as an
“experiment” or “observation” performed on that expression. The idea is
that the program “uses” the expression to compute an observable quan-
tity that we can regard as a kind of test performed on that expression. For
this reason the notion of equivalence just described is sometimes called
observational equivalence — two expressions are observationally equivalent
iff any experiment performed on one yields the same observable outcome
as the same experiment performed on the other. This relation is also called
contextual equivalence to emphasize that equivalence is determined by con-
sidering all contexts in which the two expressions might be used to form
a complete program. In philosophical logic this relation is known as Leib-
niz’s Principle of Identity of Indiscernibles — two things are equal iff we can-
not tell them apart.

Observational equivalence is very difficult to handle. To determine

280

40.1 Expression Equivalence 281

whether or not e1 and e2 are observationally equivalent requires us to con-
sider all possible programs that use them to compute an integer! This quickly
gets out of hand. What we need are alternative criteria for establishing
observational equivalences that avoid the need to explicitly consider all
possible usages of the expressions in question. Unfortunately, a rigorous
development of such alternatives would take us far beyond the scope of
the course. We will content ourselves with stating, without proof, a collec-
tion of laws of equivalence that are useful for deriving equations between
expressions such as these:

1. x + (y + z) is equivalent to (x + y) + z.

2. rev(rev(x)) is equivalent to x (where rev is the list reversal func-
tion).

3. If v = fun f (x:τ1):τ2 is e and v:τ1 is a value, then v(v1) is equiva-
lent to [f , x←v, v1]e.

In the next section we make precise the definition of observational
equivalence, and state an alternative characterization of it that is often eas-
ier to handle. In the subsequent section we enumerate a collection of valid
principles of equivalence for variants of MinML.

40.1 Expression Equivalence

We begin with the notion of Kleene equality between complete programs.
Kleene equivalence captures what we mean by “same outcome” for com-
plete programs. Two complete programs p1 and p2 are Kleene equivalent,
written p1 ' p2, exactly when p1 ⇓ v iff p2 ⇓ v. That is, either both p1 and
p2 diverge (fail to halt), or both converge to the same number or Boolean
constant (perhaps in very different ways, using very different amounts of
time and space).

A context C is a complete program with a single “hole” into which we
may insert an expression. That is, C has the form . . . • . . ., where the •
indicates the “hole” in the program. We write C{e} for the result of filling
the hole in C with the expression e to obtain . . . e The expression e
might have free variables that are captured when inserted into the hole.

APRIL 5, 2006 WORKING DRAFT

40.1 Expression Equivalence 282

For example, if C is the program context (fun f (x:int):int is •)(3) and
e is the expression x + 5, then C{x + 5} is the program

(fun f (x:int):int is x + 5)(3).

Suppose that Γ ` e1 : τ and Γ ` e2 : τ. We define the observational
equivalence relation Γ ` e1

∼=obs e2 : τ to hold iff for every program context
C such that C{e1} and C{e2} are programs, C{e1} ' C{e2}. That is, every
use of e1 has the same observable outcome as the corresponding use of e2,
and vice-versa.

As we remarked earlier, it is rather difficult to establish that two ex-
pressions are observationally equivalent. A direct application of the defi-
nition leaves us no recourse but to consider all possible program contexts
C, which quickly gets out of hand.

A more usable characterization of observational equivalence, called ap-
plicative equivalence, is defined as follows. For closed expressions e1 and e2
of type τ, we define e1

∼=closed
app e2 : τ by induction on the structure of τ as

follows:

• If τ = int, or τ = bool, then e1
∼=closed

app e2 : τ iff e1 ' e2.

• If τ = arrow(τ1, τ2), then e1
∼=closed

app e2 : τ iff for every v : τ1, e1(v) ∼=closed
app

e2(v) : τ2.

This relation is extended to open expressions by substitution of closed
values of appropriate type for the free variables. Let Γ be the context
x1:τ1, . . . , xn:τn. We define Γ ` e1

∼=app e2 : τ to hold iff

[x1, . . . , xn←v1, . . . , vn]e1
∼=closed

app [x1, . . . , xn←v1, . . . , vn]e2

for every substitution of closed values v1,. . . ,vn of type τ1,. . . , τn for x1,. . . ,xn.
An important result of Milner’s states that applicative and observa-

tional equivalence coincide. The proof is non-trivial, and is omitted from
this brief exposition.

Theorem 40.1 (Milner’s Context Lemma)
Γ ` e1

∼=obs e2 : τ iff Γ ` e1
∼=app e2 : τ.

APRIL 5, 2006 WORKING DRAFT

40.2 Some Laws of Equivalence 283

The point of the context lemma is that we may interpret the relation
Γ ` e1

∼=obs e2 : τ as expressing the universally-quantified formula

∀v1 : τ1 . . . ∀vn : τn [x1, . . . , xn←v1, . . . , vn]e1
∼=app [x1, . . . , xn←v1, . . . , vn]e2 : τ

where the quantifiers range over closed values of the appropriate type. For
example,

x:int, y:int ` x + y ∼=obs y + x : int

means that for every m and n, m + n ' n + m.

40.2 Some Laws of Equivalence

In this section we summarize some useful principles of equivalence. These
are all valid observational equivalences, but we will not prove this. What
is important is to get a feeling for what are some valid principles of equiv-
alence, and how to use them in practice. Since observational and applica-
tive equivalence coincide, we will write Γ ` e1

∼= e2 : τ for equality of
expressions of type τ relative to a context Γ, where we tacitly assume that
Γ ` ei : τ for i = 1, 2.

In the presentation of the rules, we use v to stand for an open value,
either a variable, a constant, or an function expression (perhaps with free
variables occurring within it). We admit variables as values because, in a
call-by-value language, variables are only ever bound to values, and hence
may be taken as standing for a fixed, but unknown, value.

It will be convenient to make use of a designated non-terminating ex-
pression of each type τ, written Ωτ, which is defined to be the expression

(fun f(x:int):τ is f(x) end)(0).

It is easy to check that Ωτ diverges (loops forever) when evaluated.

40.2.1 General Laws

First, equivalence is indeed an equivalence relation — it is reflexive, sym-
metric, and transitive.

Γ ` e ∼= e : τ (40.1)

APRIL 5, 2006 WORKING DRAFT

40.2 Some Laws of Equivalence 284

Γ ` e2
∼= e1 : τ

Γ ` e1
∼= e2 : τ (40.2)

Γ ` e1
∼= e2 : τ Γ ` e2

∼= e3 : τ

Γ ` e1
∼= e3 : τ (40.3)

Second, equivalence is a congruence — we may replace a sub-expression
of any expression by an equivalent one to obtain an equivalent expression.
This is most easily stated by a collection of rules that ensure that we may
replace equivalent sub-expressions to obtain equivalent expressions. We
will give just a few of these here; the rest follow a similar pattern.

Γ ` e1
∼= e′1 : τ1 · · · Γ ` en ∼= e′n : τn

Γ ` o(e1, . . . , en) ∼= o(e′1, . . . , e′n) : τ (40.4)

Γ ` e1
∼= e′1 : arrow(τ2, τ) Γ ` e2

∼= e′2 : τ2

Γ ` e1(e2)
∼= e′1(e′2) : τ (40.5)

Γ[f :arrow(τ1, τ2)][x:τ1] ` e ∼= e′ : τ2

Γ ` fun f (x:τ1):τ2 is e ∼= fun f (x:τ1):τ2 is e′ : arrow(τ1, τ2) (40.6)

Finally, equivalence is stable under substitution of values for free vari-
ables.

Γ[x:τ] ` e ∼= e′ : τ′

Γ ` [x←v]e ∼= [x←v]e′ : τ′ (40.7)

The restriction to values is essential; this rule is not true for general ex-
pression substitution! A counterexample is given in the next subsection.

40.2.2 Symbolic Evaluation

Evaluation of an expression in accordance with the rules of the operational
semantics results in an equivalent expression. This is called “symbolic
evaluation” because the transformations may involve expressions with
free variables, which are regarded as values for the purposes of these rules.

APRIL 5, 2006 WORKING DRAFT

40.2 Some Laws of Equivalence 285

An application of a primitive operation may be simplified if we know
the values of its arguments:

Γ ` o(v1, . . . , vn) ∼= v : τ, (40.8)

where v is the result of applying o to v1,. . . ,vn.
Similarly, if we know the result of the boolean test, then a conditional

may be simplified:

Γ ` if true then e1 else e2
∼= e1 : τ (40.9)

Γ ` if false then e1 else e2
∼= e2 : τ (40.10)

An application may be simplified if we know the function and the ar-
gument is a value. Note that either the function or argument may be open
expressions (containing free variables)!

Γ ` v(v1)
∼= [f , x←v, v1]e : τ2 (40.11)

where v = fun f (x:τ1):τ2 is e.

Exercise 40.2
Using these rules, check that (fn x in 3 end)(z) is equivalent to 3. Show
that (fn x in 3 end)(Ωint) is not equivalent to 3. Conclude that sub-
stitution of non-values for free variables does not preserve equivalence.

40.2.3 Extensionality

Two functions are equivalent if they are equivalent on all arguments.

Γ[x:τ1] ` e(x) ∼= e′(x) : τ2

Γ ` e ∼= e′ : arrow(τ1, τ2) (40.12)

In other words, if two functions are equal for all closed argument values,
then they are equal.

APRIL 5, 2006 WORKING DRAFT

40.2 Some Laws of Equivalence 286

40.2.4 Strictness Properties

The evaluation rules of MinML impose a call-by-value evaluation order on
function applications and primitive operations. This can be captured equa-
tionally by a set of strictness equations that are defined in terms of the
divergent expressions Ωτ. We may state that an expression e of type τ di-
verges as an equation by stating that e ∼= Ωτ. The following rules give
some conditions under which expressions are divergent.

If any argument of a primitive operation is divergent, so is the whole
expression:

Γ ` o(e1, . . . , ei−1, Ωτi , ei+1, . . . , en) ∼= Ωτ : τ (40.13)

If the test expression of a conditiona is divergent, so is the conditional.

Γ ` ifΩbool then e1 else e2
∼= Ωτ : τ (40.14)

If the function or argument of an application is divergent, so is the
entire expression:

Γ ` Ωarrow(τ2,τ)(e2)
∼= Ωτ : τ (40.15)

Γ ` e1(Ωτ2)
∼= Ωτ : τ (40.16)

40.2.5 Arithmetic Laws

Arithmetic and comparison operations behave as expected. For example,
addition is associative and commutative, and equality test on integers is
an equivalence relation. In general appropriate laws governing the primi-
tive operations on integers hold, provided that they hold mathematically.
The same could not be said for floating point (for which addition is not
even associative!). Observe that these laws fail, in general, in the presence
of effects such as writing to the screen or destructively updating a refer-
ence cell! In that case we must restrict attention to values, not general
expressions.

APRIL 5, 2006 WORKING DRAFT

40.2 Some Laws of Equivalence 287

Γ ` e1+e2
∼= e2+e1 : int (40.17)

Γ ` e1+(e2+e3) ∼= (e1+e2)+e3 : int (40.18)

Γ ` e1=e2
∼= e2=e1 : bool (40.19)

40.2.6 Products

For the extension of MinML to product types,1 we have the following sym-
bolic evaluation rule:

Γ ` split (v1,v2) as (x1:τ1,x2:τ2) in e ∼= [x1, x2←v1, v2]e (40.20)

We may, in general, replace equals by equals:

Γ ` e1
∼= e′1 : τ1 Γ ` e2

∼= e′2 : τ2

Γ ` (e1,e2)
∼= (e′1,e′2) : τ1*τ2 (40.21)

Γ ` e1
∼= e′1 : τ1*τ2 Γ[x1:τ1][x2:τ2] ` e2

∼= e′2 : τ′

Γ ` split e1 as (x1:τ1,x2:τ2) in e2
∼= split e′1 as (x1:τ1,x2:τ2) in e′2

(40.22)

Finally, the expected strictness properties hold:

Γ ` (Ωτ1,e2)
∼= Ω(τ1,τ2)

(40.23)

Γ ` (e1,Ωτ2)
∼= Ω(τ1,τ2)

(40.24)

Γ ` splitΩτ1*τ2 as (x1:τ1,x2:τ2) in e ∼= Ωτ′ (40.25)

1We do not consider nested or wildcard patterns, for the sake of simplicity. It is a
simple matter to extend these rules to the more general case.

APRIL 5, 2006 WORKING DRAFT

40.2 Some Laws of Equivalence 288

40.2.7 Lists

We may extend MinML with list types τ list by adding the expressions
nil, cons(e1, e2), and listcase e of nil => e′ | cons(x, y) => e′′, with the fol-
lowing typing rules:

Γ ` nil : τ list (40.26)

Γ ` cons(e1, e2) : τ list (40.27)

Γ ` e : τ list Γ ` e′ : τ′

Γ[x:τ][y:τ list] ` e′′ : τ′

Γ ` listcase e of nil => e′ | cons(x, y) => e′′ : τ′ (40.28)

The following symbolic evaluation and strictness rules express the eval-
uation of these constructs:

Γ ` listcase nil of nil => e′ | cons(x, y) => e′′ ∼= e′ : τ′ (40.29)

Γ ` listcase cons(v1, v2) of nil => e′ | cons(x1, x2) => e′′ ∼= [x1, x2←v1, v2]e′′ : τ′

(40.30)

Γ ` cons(Ωτ, e) ∼= Ωτlist : τ list (40.31)

Γ ` cons(e, Ωτlist)
∼= Ωτlist : τ list (40.32)

Γ ` listcaseΩτlist of nil => e′ | cons(x1, x2) => e′′ ∼= Ωτ′ : τ′ (40.33)

Most importantly, we may prove equivalences by induction on the
structure of a list. Suppose that Γ[x:τ list] ` ei : τ′ (i = 1, 2). To prove
that

Γ[x:τ list] ` e1
∼= e2 : τ′,

it suffices to show the following two facts:

1. Γ ` [x←nil]e1
∼= [x←nil]e2 : τ′

APRIL 5, 2006 WORKING DRAFT

40.2 Some Laws of Equivalence 289

2. For every Γ ` vh : τ and Γ ` vt : τ list, if Γ ` [x←vt]e1
∼= [x←vt]e2 :

τ′, then Γ ` [x←cons(vh, vt)]e1
∼= [x←cons(vh, vt)]e2 : τ′.

Exercise 40.3
The list append and reversal functions are defined as follows:2

fun app(l:τ list, m:τ list):τ list is

listcase l of nil => m | h::t => h :: app (t, m) end

end

fun rev (l:τ list) is

listcase l of nil => nil | h::t => app (rev(t), [h]) end

end

Use list induction and the laws of expression equivalence to prove the
following two facts:

1. x:τ list, y:τ list ` rev(app(x, y)) ∼= app(rev(y), rev(x)) : τ list

2. x:τ list ` rev(rev(x)) ∼= x : τ list

2Officially, the two-argument append function is written using bind as follows:

fun app(lm:τ list * τ list):τ list is bind (l:τ list, m:τ list) to
lm in ...end end.

We use infix notation for the append function for the sake of clarity.

APRIL 5, 2006 WORKING DRAFT

Chapter 41

Parametricity

Our original motivation for introducing polymorphism was to enable more
programs to be written — those that are “generic” in one or more types,
such as the composition function give above. The idea is that if the behav-
ior of a function does not depend on a choice of types, then it is useful to be
able to define such “type oblivious” functions in the language. Once we
have such a mechanism in hand, it can also be used to ensure that a par-
ticular piece of code can not depend on a choice of types by insisting that it
be polymorphic in those types. In this sense polymorphism may be used
to impose restrictions on a program, as well as to allow more programs to
be written.

The restrictions imposed by requiring a program to be polymorphic
underlie the often-observed experience when programming in ML that
if the types are correct, then the program is correct. Roughly speaking,
since the ML type system is polymorphic, if a function type checks with
a polymorphic type, then the strictures of polymorphism vastly cut down
the set of well-typed programs with that type. Since the intended program
is one these (by the hypothesis that its type is “right”), you’re much more
likely to have written it if the set of possibilities is smaller.

The technical foundation for these remarks is called parametricity. The
goal of this chapter is to give an account of parametricity for PolyMinML.
To keep the technical details under control, we will restrict attention to
the ML-like (prenex) fragment of PolyMinML. It is possibly to generalize
to first-class polymorphism, but at the expense of considerable technical
complexity. Nevertheless we will find it necessary to gloss over some tech-
nical details, but wherever a “pedagogic fiction” is required, I will point it

290

41.1 Informal Overview 291

out. To start with, it should be stressed that the following does not apply to
languages with mutable references!

41.1 Informal Overview

We will begin with an informal discussion of parametricity based on a
“seat of the pants” understanding of the set of well-formed programs of a
type.

Suppose that a function value f has the type ∀t(arrow(t, t)). What
function could it be?

1. It could diverge when instantiated — f [τ] goes into an infinite loop.
Since f is polymorphic, its behavior cannot depend on the choice of
τ, so in fact f [τ′] diverges for all τ′ if it diverges for τ.

2. It could converge when instantiated at τ to a function g of type arrow(τ, τ)
that loops when applied to an argument v of type τ — i.e., g(v) runs
forever. Since f is polymorphic, g must diverge on every argument v
of type τ if it diverges on some argument of type τ.

3. It could converge when instantiated at τ to a function g of type arrow(τ, τ)
that, when applied to a value v of type τ returns a value v′ of type
τ. Since f is polymorphic, g cannot depend on the choice of v, so v′

must in fact be v.

Let us call cases (1) and (2) uninteresting. The foregoing discussion sug-
gests that the only interesting function f of type ∀t(arrow(t, t)) is the poly-
morphic identity function.

Suppose that f is an interesting function of type ∀t(t). What function
could it be? A moment’s thought reveals that it cannot be interesting! That
is, every function f of this type must diverge when instantiated, and hence
is uninteresting. In other words, there are no interesting values of this type
— it is essentially an “empty” type.

For a final example, suppose that f is an interesting function of type
∀t(arrow(t list, t list)). What function could it be?

1. The identity function that simply returns its argument.

2. The constantly-nil function that always returns the empty list.

APRIL 5, 2006 WORKING DRAFT

41.1 Informal Overview 292

3. A function that drops some elements from the list according to a pre-
determined (data-independent) algorithm — e.g., always drops the
first three elements of its argument.

4. A permutation function that reorganizes the elements of its argu-
ment.

The characteristic that these functions have in common is that their behav-
ior is entirely determined by the spine of the list, and is independent of the
elements of the list. For example, f cannot be the function that drops all
“even” elements of the list — the elements might not be numbers! The
point is that the type of f is polymorphic in the element type, but reveals
that the argument is a list of unspecified elements. Therefore it can only
depend on the “list-ness” of its argument, and never on its contents.

In general if a polymorphic function behaves the same at every type in-
stance, we say that it is parametric in that type. In PolyMinML all polymor-
phic functions are parametric. In Standard ML most functions are, except
those that involve equality types. The equality function is not parametric
because the equality test depends on the type instance — testing equality
of integers is different than testing equality of floating point numbers, and
we cannot test equality of functions. Such “pseudo-polymorphic” opera-
tions are said to be ad hoc, to contrast them from parametric.

How can parametricity be exploited? As we will see later, parametric-
ity is the foundation for data abstraction in a programming language. To
get a sense of the relationship, let us consider a classical example of ex-
ploiting parametricity, the polymorphic Church numerals. Let N be the type
∀t(arrow(t, arrow((arrow(t, t)), t))). What are the interesting functions of
the type N? Given any type τ, and values z : τ and s : arrow(τ, τ), the
expression

f [τ](z)(s)

must yield a value of type τ. Moreover, it must behave uniformly with
respect to the choice of τ. What values could it yield? The only way to
build a value of type τ is by using the element z and the function s passed
to it. A moment’s thought reveals that the application must amount to the
n-fold composition

s(s(. . . s(z) . . .)).

That is, the elements of N are in 1-to-1 correspondence with the natural
numbers.

APRIL 5, 2006 WORKING DRAFT

41.1 Informal Overview 293

Let us write n for the polymorphic function of type N representing the
natural number n, namely the function

Fun t in

fn z:t in

fn s:t->t in

s(s(... s)...))

end

end

end

where there are n occurrences of s in the expression. Observe that if we
instantiate n at the built-in type int and apply the result to 0 and succ, it
evaluates to the number n. In general we may think of performing an “ex-
periment” on a value of type N by instantiating it at a type whose values
will constitute the observations, the applying it to operations z and s for
performing the experiment, and observing the result.

Using this we can calculate with Church numerals. Let us consider
how to define the addition function on N. Given m and n of type N, we
wish to compute their sum m + n, also of type N. That is, the addition
function must look as follows:

fn m:N in

fn n:N in

Fun t in

fn z:t in

fn s:t->t in

...

end

end

end

end

end

The question is: how to fill in the missing code? Think in terms of ex-
periments. Given m and n of type N, we are to yield a value that when
“probed” by supplying a type t, an element z of that type, and a function
s on that type, must yield the (m + n)-fold composition of s with z. One
way to do this is to “run” m on t, z, and s, yielding the m-fold composition

APRIL 5, 2006 WORKING DRAFT

41.2 Relational Parametricity 294

of s with z, then “running” n on this value and s again to obtain the n-fold
composition of s with the n-fold composition of s with z — the desired
answer. Here’s the code:

fn m:N in

fn n:N in

Fun t in

fn z:t in

fn s:t->t in

n[t](m[t](z)(s))(s)

end

end

end

end

end

To see that it works, instantiate the result at τ, apply it to z and s, and
observe the result.

41.2 Relational Parametricity

In this section we give a more precise formulation of parametricity. The
main idea is that polymorphism implies that certain equations between
expressions must hold. For example, if f : ∀t(arrow(t, t)), then f must be
equal to the identity function, and if f : N, then f must be equal to some
Church numeral n. To make the informal idea of parametricity precise, we
must clarify what we mean by equality of expressions.

The main idea is to define equality in terms of “experiments” that we
carry out on expressions to “test” whether they are equal. The valid exper-
iments on an expression are determined solely by its type. In general we
say that two closed expressions of a type τ are equal iff either they both di-
verge, or they both converge to equal values of that type. Equality of closed
values is then defined based on their type. For integers and booleans,
equality is straightforward: two values are equal iff they are identical. The
intuition here is that equality of numbers and booleans is directly observ-
able. Since functions are “infinite” objects (when thought of in terms of
their input/output behavior), we define equality in terms of their behav-
ior when applied. Specifically, two functions f and g of type arrow(τ1, τ2)

APRIL 5, 2006 WORKING DRAFT

41.2 Relational Parametricity 295

are equal iff whenever they are applied to equal arguments of type τ1, they
yield equal results of type τ2.

More formally, we make the following definitions. First, we define
equality of closed expressions of type τ as follows:

e ∼=exp e′ : τ iff e 7−→∗ v⇔ e′ 7−→∗ v′ andv ∼=val v′ : τ.

Notice that if e and e′ both diverge, then they are equal expressions in this
sense. For closed values, we define equality by induction on the structure
of monotypes:

v ∼=val v′ : bool iff v = v′ = true or v = v′ = false

v ∼=val v′ : int iff v = v′ = n for some n ≥ 0
v ∼=val v′ : arrow(τ1, τ2) iff v1

∼=val v′1 : τ1 implies v(v1)
∼=exp v′(v′1) : τ2

The following lemma states two important properties of this notion of
equality.

Lemma 41.1
1. Expression and value equivalence are reflexive, symmetric, and tran-

sitive.

2. Expression equivalence is a congruence: we may replace any sub-
expression of an expression e by an equivalent sub-expression to ob-
tain an equivalent expression.

So far we’ve considered only equality of closed expressions of monomor-
phic type. The definition is made so that it readily generalizes to the poly-
morphic case. The idea is that when we quantify over a type, we are not
able to say a priori what we mean by equality at that type, precisely be-
cause it is “unknown”. Therefore we also quantify over all possible notions
of equality to cover all possible interpretations of that type. Let us write
R : τ ↔ τ′ to indicate that R is a binary relation between values of type τ
and τ′.

Here is the definition of equality of polymorphic values:

v ∼=val v′ : ∀t(σ) iff for all τ and τ′, and all R : τ ↔ τ′, v [τ] ∼=exp v′ [τ′] : σ

where we take equality at the type variable t to be the relation R (i.e., v ∼=val
v′ : t iff v R v′).

APRIL 5, 2006 WORKING DRAFT

41.2 Relational Parametricity 296

There is one important proviso: when quantifying over relations, we
must restrict attention to what are called admissible relations, a sub-class
of relations that, in a suitable sense, respects computation. Most natu-
ral choices of relation are admissible, but it is possible to contrive exam-
ples that are not. The rough-and-ready rule is this: a relation is admissi-
ble iff it is closed under “partial computation”. Evaluation of an expres-
sion e to a value proceeds through a series of intermediate expressions
e 7−→ e1 7−→ e2 7−→ · · · en. The expressions ei may be thought of as “par-
tial computations” of e, stopping points along the way to the value of e. If
a relation relates corresponding partial computations of e and e′, then, to
be admissible, it must also relate e and e′ — it cannot relate all partial com-
putations, and then refuse to relate the complete expressions. We will not
develop this idea any further, since to do so would require the formaliza-
tion of partial computation. I hope that this informal discussion suffices to
give the idea.

The following is Reynolds’ Parametricity Theorem:

Theorem 41.2 (Parametricity)
If e : σ is a closed expression, then e ∼=exp e : σ.

This may seem obvious, until you consider that the notion of equality be-
tween expressions of polymorphic type is very strong, requiring equiva-
lence under all possible relational interpretations of the quantified type.

Using the Parametricity Theorem we may prove a result we stated in-
formally above.

Theorem 41.3
If f : ∀t(arrow(t, t)) is an interesting value, then f ∼=val id : ∀t(arrow(t, t)),
where id is the polymorphic identity function.

Proof: Suppose that τ and τ′ are monotypes, and that R : τ ↔ τ′. We
wish to show that

f [τ] ∼=exp id [τ′] : arrow(t, t),

where equality at type t is taken to be the relation R.
Since f (and id) are interesting, there exists values fτ and idτ′ such that

f [τ] 7−→∗ fτ

APRIL 5, 2006 WORKING DRAFT

41.2 Relational Parametricity 297

and
id [τ′] 7−→∗ idτ′ .

We wish to show that

fτ
∼=val idτ′ : arrow(t, t).

Suppose that v1
∼=val v′1 : t, which is to say v1 R v′1 since equality at type

t is taken to be the relation R. We are to show that

fτ(v1)
∼=exp idτ′(v′1) : t

By the assumption that f is interesting (and the fact that id is interesting),
there exists values v2 and v′2 such that

fτ(v1) 7−→∗ v2

and
idτ′(v′1) 7−→∗ v′2.

By the definition of id, it follows that v′2 = v′1 (it’s the identity function!).
We must show that v2 R v′1 to complete the proof.

Now define the relation R′ : τ ↔ τ to be the set { (v, v) | v R v′1 }. Since
f : ∀t(arrow(t, t)), we have by the Parametricity Theorem that f ∼=val f :
∀t(arrow(t, t)), where equality at type t is taken to be the relation R′. Since
v1 R v′1, we have by definition v1 R′ v1. Using the definition of equality of
polymorphic type, it follows that

fτ(v1)
∼=exp idτ′(v1) : t.

Hence v2 R v′1, as required. �

You might reasonably wonder, at this point, what the relationship f ∼=val
id : ∀t(arrow(t, t)) has to do with f ’s execution behavior. It is a gen-
eral fact, which we will not attempt to prove, that equivalence as we’ve
defined it yields results about execution behavior. For example, if f :
∀t(arrow(t, t)), we can show that for every τ and every v : τ, f [τ](v)
evaluates to v. By the preceding theorem f ∼=val id : ∀t(arrow(t, t)). Sup-
pose that τ is some monotype and v : τ is some closed value. Define the
relation R : τ ↔ τ by

v1 R v2 iff v1 = v2 = v.

APRIL 5, 2006 WORKING DRAFT

41.2 Relational Parametricity 298

Then we have by the definition of equality for polymorphic values

f [τ](v) ∼=exp id [τ](v) : t,

where equality at t is taken to be the relation R. Since the right-hand side
terminates, so must the left-hand side, and both must yield values related
by R, which is to say that both sides must evaluate to v.

APRIL 5, 2006 WORKING DRAFT

Chapter 42

Representation Independence

Parametricity is the essence of representation independence. The typing
rules for open given above ensure that the client of an abstract type is
polymorphic in the representation type. According to our informal under-
standing of parametricity this means that the client’s behavior is in some
sense “independent” of the representation type.

More formally, we say that an (admissible) relation R : τ1 ↔ τ2 is a
bisimulation between the packages

pack τ1 with v1 as ∃t(σ)

and
pack τ2 with v2 as ∃t(σ)

of type ∃t(σ) iff v1
∼=val v2 : σ, taking equality at type t to be the relation

R. The reason for calling such a relation R a bisimulation will become
apparent shortly. Two packages are said to be bisimilar whenever there is
a bisimulation between them.

Since the client ec of a data abstraction of type ∃t(σ) is essentially a
polymorphic function of type ∀t(arrow(σ, τc)), where t /∈ FTV(τc), it fol-
lows from the Parametricity Theorem that

[t, x←τ1, v1]ec ∼=exp [t, x←τ2, v2]ec : τc

whenever R is such a bisimulation. Consequently,

open e1 as t with x:σ in ec ∼=exp open e2 as t with x:σ in ec : τc.

299

300

That is, the two implementations are indistinguishable by any client of
the abstraction, and hence may be regarded as equivalent. This is called
Representation Independence; it is merely a restatement of the Parametricity
Theorem in the context of existential types.

This observation licenses the following technique for proving the cor-
rectness of an ADT implementation. Suppose that we have an implemen-
tation of an abstract type ∃t(σ) that is “clever” in some way. We wish to
show that it is a correct implementation of the abstraction. Let us therefore
call it a candidate implementation. The Representation Theorem suggests a
technique for proving the candidate correct. First, we define a reference im-
plementation of the same abstract type that is “obviously correct”. Then
we establish that the reference implementation and the candidate imple-
mentation are bisimilar. Consequently, they are equivalent, which is to say
that the candidate is “equally correct as” the reference implementation.

Returning to the queues example, let us take as a reference implemen-
tation the package determined by representing queues as lists. As a candi-
date implementation we take the package corresponding to the following
ML code:

structure QFB :> QUEUE =

struct

type queue = int list * int list

val empty = (nil, nil)

fun insert (x, (bs, fs)) = (x::bs, fs)

fun remove (bs, nil) = remove (nil, rev bs)

| remove (bs, f::fs) = (f, (bs, fs))

end

We will show that QL and QFB are bisimilar, and therefore indistinguishable
by any client.

Define the relation R : int list↔ int list*int list as follows:

R = { (l, (b, f))) | l ∼=val b@rev(f) }

We will show that R is a bisimulation by showing that implementations
of empty, insert, and remove determined by the structures QL and QFB are
equivalent relative to R.

To do so, we will establish the following facts:

1. QL.empty R QFB.empty.

APRIL 5, 2006 WORKING DRAFT

301

2. Assuming that m ∼=val n : int and l R (b, f), show that

QL.insert((m,l)) R QFB.insert((n,(b, f))).

3. Assuming that l R (b, f), show that

QL.remove(l) ∼=exp QFB.remove((b, f)) : int*t,

taking t equality to be the relation R.

Observe that the latter two statements amount to the assertion that the op-
erations preserve the relation R — they map related input queues to related
output queues. It is in this sense that we say that R is a bisimulation, for
we are showing that the operations from QL simulate, and are simulated
by, the operations from QFB, up to the relationship R between their repre-
sentations.

The proofs of these facts are relatively straightforward, given some rel-
atively obvious lemmas about expression equivalence.

1. To show that QL.empty R QFB.empty, it suffices to show that

nil@rev(nil) ∼=exp nil : int list,

which is obvious from the definitions of append and reverse.

2. For insert, we assume that m ∼=val n : int and l R (b, f), and prove
that

QL.insert(m, l) R QFB.insert(n, (b, f)).

By the definition of QL.insert, the left-hand side is equivalent to
m::l, and by the definition of QR.insert, the right-hand side is equiv-
alent to (n::b, f). It suffices to show that

m::l ∼=exp (n::b)@rev(f) : int list.

Calculating, we obtain

(n::b)@rev(f) ∼=exp n::(b@rev(f))
∼=exp n::l

since l ∼=exp b@rev(f). Since m ∼=val n : int, it follows that m = n,
which completes the proof.

APRIL 5, 2006 WORKING DRAFT

302

3. For remove, we assume that l is related by R to (b, f), which is to say
that l ∼=exp b@rev(f). We are to show

QL.remove(l) ∼=exp QFB.remove((b, f)) : int*t,

taking t equality to be the relation R. Assuming that the queue is
non-empty, so that the remove is defined, we have l ∼=exp l′@[m] for
some l′ and m. We proceed by cases according to whether or not f is
empty. If f is non-empty, then f ∼=exp n:: f ′ for some n and f ′. Then
by the definition of QFB.remove,

QFB.remove((b, f)) ∼=exp (n,(b, f ′)) : int*t,

relative to R. We must show that

(m,l′) ∼=exp (n,(b, f ′)) : int*t,

relative to R. This means that we must show that m = n and l′ ∼=exp
b@rev(f ′) : int list.

Calculating from our assumptions,

l = l′@[m]

= b@rev(f)
= b@rev(n:: f ′)
= b@(rev(f ′)@[n])
= (b@rev(f ′))@[n]

From this the result follows. Finally, if f is empty, then b ∼=exp b′@[n]
for some b′ and n. But then rev(b) ∼=exp n::rev(b′), which reduces
to the case for f non-empty.

This completes the proof — by Representation Independence the refer-
ence and candidate implementations are equivalent.

APRIL 5, 2006 WORKING DRAFT

Part XVI

Concurrency

303

Chapter 43

Process Calculus

304

Chapter 44

Cooperative Threads

In Chapter 26 we introduced the concept of symmetric coroutines that ex-
plicitly hand-off control between them according to a a fixed pattern of
interaction. A difficulty with this style of programming is that the pattern
of interaction between the producer and consumer is “hardwired” into the
code. But what if there are multiple producers? Or multiple consumers?
How could we generalize to permit preemption or asynchronous events?

An elegant solution to these problems is to generalize the notion of a
coroutine to the notion of a cooperative thread. As with coroutines, threads
enjoy a symmetric relationship among one another, but, unlike corou-
tines, they do not explicitly hand off control amongst themselves. Instead
threads run as coroutines of a scheduler that mediates interaction among
the threads, deciding which to run next based on considerations such as
priority relationships or availability of data. Threads yield control to the
scheduler, which determines which other thread should run next, rather
than explicitly handing control to another thread.

Here is a simple interface for a user-level threads package, written in
Standard ML.

signature THREADS = sig

exception NoMoreThreads

val fork : (unit -> unit) -> unit

val yield : unit -> unit

val exit : unit -> ’a

end

The function fork is called to create a new thread executing the body of

305

306

the given function. The function yield is called to cede control to another
thread, selected by the thread scheduler. The function exit is called to
terminate a thread.

A thread is a value of type unit cont. The scheduler maintains a queue
of threads that are ready to execute. To dispatch the scheduler dequeues
a thread from the ready queue and invokes it by throwing () to it. Fork-
ing is implemented by creating a new thread. Yielding is achieved by en-
queueing the current thread and dispatching; exiting is a simple dispatch,
abandoning the current thread entirely. This implementation is suggestive
of a slogan coined by Olin Shivers: “A thread is a trajectory through con-
tinuation space”. During its lifetime a thread of control is represented by
a succession of continuations that are processed by the scheduler.

Here is a simple implementation of the thread package just described,
again written in Standard ML.

structure Threads :> THREADS = struct

open SMLofNJ.Cont

exception NoRunnableThreads

type thread = unit cont

val readyQueue : thread Queue.queue = Queue.mkQueue()

fun dispatch () =

let

val t = Queue.dequeue readyQueue

handle Queue.Dequeue => raise NoRunnableThreads

in

throw t ()

end

fun exit () = dispatch()

fun enqueue t = Queue.enqueue (readyQueue, t)

fun fork f =

callcc (fn parent => (enqueue parent; f (); exit()))

fun yield () =

callcc (fn parent => (enqueue parent; dispatch()))

end

Using the above thread interface we may implement a simple producer-
consumer example, using a buffer variable to communicate between them,
as follows:

APRIL 5, 2006 WORKING DRAFT

307

structure Client = struct

open Threads

val buffer : int ref = ref (~1)

fun producer (n) =

(buffer := n ; yield () ; producer (n+1))

fun consumer () =

(print (Int.toString (!buffer)); yield (); consumer())

fun run () =

(fork (consumer); producer 0)

end

This example is excessively naı̈ve, however, in that it relies on the strict
FIFO ordering of threads by the scheduler, allowing careful control over
the order of execution. If, for example, the producer were to run several
times in a row before the consumer could run, several numbers would be
omitted from the output.

Here is a better solution that avoids this problem (but does so by “busy
waiting”):

structure Client = struct

open Threads

val buffer : int option ref = ref NONE

fun producer (n) =

(case !buffer

of NONE => (buffer := SOME n ; yield() ; producer (n+1))

| SOME => (yield (); producer (n)))

fun consumer () =

(case !buffer

of NONE => (yield (); consumer())

| SOME n =>

(print (Int.toString n); buffer := NONE; yield(); consumer()))

fun run () =

(fork (consumer); producer 0)

end

There is much more to be said about threads! For now, the main idea is
to give a flavor of how first-class continuations can be used to implement a
user-level threads package with very little difficulty. A more complete im-
plementation is, of course, somewhat more complex, but not much more.

APRIL 5, 2006 WORKING DRAFT

44.1 Exercises 308

We can easily provide all that is necessary for sophisticated thread pro-
gramming in a few hundred lines of code.

44.1 Exercises

APRIL 5, 2006 WORKING DRAFT

Chapter 45

Concurrent ML

309

Part XVII

Storage Management

310

Chapter 46

Storage Management

The dynamic semantics for MinML given in Chapter 12, and even the C-
machine given in Chapter 23, ignore questions of storage management. In
particular, all values, be they integers, booleans, functions, or tuples, are
treated the same way. But this is unrealistic. Physical machines are capable
of handling only rather “small” values, namely those that can fit into a
word. Thus, while it is reasonable to treat, say, integers and booleans as
values directly, it is unreasonable to do the same with “large” objects such
as tuples or functions.

In this chapter we consider an extension of the C-machine to account
for storage management. We proceed in two steps. First, we give an ab-
stract machine, called the A-machine, that includes a heap for allocating
“large” objects. This introduces the problem of garbage, storage that is al-
located for values that are no longer needed by the program. This leads
to a discussion of automatic storage management, or garbage collection, which
allows us to reclaim unused storage in the heap.

46.1 The A Machine

The A-machine is defined for an extension of MinML in which we add an
additional form of expression, a location, l, which will serve as a “refer-
ence” or “pointer” into the heap.

Values are classified into two categories, small and large, by the follow-

311

46.1 The A Machine 312

ing rules:
(l ∈ Loc)
l svalue (46.1)

(n ∈ Z)
n svalue (46.2)

true svalue (46.3)

false svalue (46.4)

x var y var e exp

fun x (y:τ1):τ2 is e lvalue (46.5)

A state of the A-machine has the form (H, k, e), where H is a heap, a
finite function mapping locations to large values, k is a control stack, and e
is an expression. A heap H is said to be self-contained iff FL(H) ⊆ dom(H),
where FL(H) is the set of locations occuring free in any location in H, and
dom H is the domain of H.

Stack frames are similar to those of the C-machine, but refined to ac-
count for the distinction between small and large values.

e2 exp

+(−, e2) frame (46.6)

v1 svalue

+(v1,−) frame (46.7)

(There are analogous frames associated with the other primitive opera-
tions.)

e1 exp e2 exp
if− then e1 else e2 frame (46.8)

e2 exp
apply(−, e2) frame (46.9)

v1 svalue
apply(v1,−) frame (46.10)

APRIL 5, 2006 WORKING DRAFT

46.1 The A Machine 313

Notice that v1 is required to be a small value; a function is represented by
a location in the heap, which is small.

As with the C-machine, a stack is a sequence of frames:

ε stack (46.11)

f frame k stack

f ; k stack (46.12)

The dynamic semantics of the A-machine is given by a set of rules
defining the transition relation (H, k, e) 7−→A (H′, k′, e′). The rules are sim-
ilar to those for the C-machine, except for the treatment of functions.

Arithmetic expressions are handled as in the C-machine:

(H, k, +(e1, e2)) 7−→A (H, +(−, e2); k, e1) (46.13)

(H, +(−, e2); k, v1) 7−→A (H, +(v1,−); k, e2) (46.14)

(H, +(n1,−); k, n2) 7−→A (H, k, n1 + n2) (46.15)

Note that the heap is simply “along for the ride” in these rules.
Booleans are also handled similarly to the C-machine:

(H, k, if e then e1 else e2)
7−→A

(H, if− then e1 else e2; k, e)
(46.16)

(H, if− then e1 else e2; k, true) 7−→A (H, k, e1) (46.17)

(H, if− then e1 else e2; k, false) 7−→A (H, k, e2) (46.18)

Here again the heap plays no essential role.
The real difference between the C-machine and the A-machine is in the

treatment of functions. A function expression is no longer a (small) value,
but rather requires an execution step to allocate it on the heap.

(H, k, fun x (y:τ1):τ2 is e)
7−→A

(H[l 7→ fun x (y:τ1):τ2 is e], k, l)
(46.19)

APRIL 5, 2006 WORKING DRAFT

46.1 The A Machine 314

where l is chosen so that l /∈ dom H.
Evaluation of the function and argument position of an application is

handled similarly to the C-machine.

(H, k, apply(e1, e2)) 7−→A (H, apply(−, e2); k, e1) (46.20)

(H, apply(−, e2); k, v1) 7−→A (H, apply(v1,−); k, e2) (46.21)

Execution of a function call differs from the corresponding C-machine
instruction in that the function must be retrieved from the heap in order
to determine the appropriate instance of its body. Notice that the location
of the function, and not the function itself, is substituted for the function
variable!

v1 loc H(v1) = fun f (x:τ1):τ2 is e
(H, apply(v1,−); k, v2) 7−→A (H, k, [f , x←v1, v2]e) (46.22)

The A-machine preserves self-containment of the heap. This follows
from observing that whenever a location is allocated, it is immediately
given a binding in the heap, and that the bindings of heap locations are
simply those functions that are encountered during evaluation.

Lemma 46.1
If H is self-contained and (H, k, e) 7−→A (H′, k′, e′), then H′ is also self-
contained. Moreover, if FL(k) ∪ FL(e) ⊆ dom H, then FL(k′) ∪ FL(e′) ⊆
dom H′.

It is not too difficult to see that the A-machine and the C-machine have
the same “observable behavior” in the sense that both machines deter-
mine the same value for closed expressions of integer type. However, it is
somewhat technically involved to develop a precise correspondence. The
main idea is to define the heap expansion of an A-machine state to be the
C-machine state obtained by replacing all locations in the stack and ex-
pression by their values in the heap. (It is important to take care that the
locations occurring in a value stored are themselves replaced by their val-
ues in the heap!) We then prove that an A-machine state reaches a final

APRIL 5, 2006 WORKING DRAFT

46.2 Garbage Collection 315

state in accordance with the transition rules of the A-machines iff its ex-
pansion does in accordance with the rules of the C-machine. Finally, we
observe that the value of a final state of integer type is the same for both
machines.

Formally, let Ĥ(e) stand for the substitution

[l1, . . . , ln←H(l1), . . . , H(ln)]e,

where dom H = { l1, . . . , ln }. Similarly, let Ĥ(k) denote the result of per-
forming this substitution on every expression occurring in the stack k.

Theorem 46.2
If (H, k, e) 7−→A (H′, k′, e′), then Ĥ(k) @ Ĥ(e) 7−→0,1

C Ĥ′(k′) @ Ĥ′(e′).

Notice that the allocation of a function in the A-machine corresponds to
zero steps of execution on the C-machine, because in the latter case func-
tions are values.

46.2 Garbage Collection

The purpose of the A-machine is to model the memory allocation that
would be required in an implementation of MinML. This raises the ques-
tion of garbage, storage that is no longer necessary for a computation to
complete. The purpose of a garbage collector is to reclaim such storage for
further use. Of course, in a purely abstract model there is no reason to
perform garbage collection, but in practice we must contend with the lim-
itations of finite, physical computers. For this reason we give a formal
treatment of garbage collection for the A-machine.

The crucial issue for any garbage collector is to determine which lo-
cations are unnecessary for computation to complete. These are deemed
garbage, and are reclaimed so as to conserve memory. But when is a loca-
tion unnecessary for a computation to complete? Consider the A-machine
state (H, k, e). A location l ∈ dom(H) is unnecessary, or irrelevant, for this
machine state iff execution can be completed without referring to the con-
tents of l. That is, l ∈ dom H is unnecessary iff (H, k, e) 7−→∗A (H′, ε, v) iff
(Hl, k, e) 7−→∗A (H′′, ε, v), where Hl is H with the binding for l removed,
and H′′ is some heap.

Unfortunately, a machine cannot decide whether a location is unneces-
sary!

APRIL 5, 2006 WORKING DRAFT

46.2 Garbage Collection 316

Theorem 46.3
It is mechanically undecidable whether or not a location l is unnecessary
for a given state of the A-machine.

Intuitively, we cannot decide whether l is necessary without actually run-
ning the program. It is not hard to formulate a reduction from the halting
problem to prove this theorem: simply arrange that l is used to complete
a computation iff some given Turing machine diverges on blank input.

Given this fundamental limitation, practical garbage collectors must
employ a conservative approximation to determine which locations are un-
necessary in a given machine state. The most popular criterion is based
on reachability. A location ln is unreachable, or inaccessible, iff there is no
sequence of locations l1, . . . , ln such that l1 occurs in either the current ex-
pression or on the control stack, and li occurs in li+1 for each 1 ≤ i < n.

Theorem 46.4
If a location l is unreachable in a state (H, k, e), then it is also unnecessary
for that state.

Each transition depends only on the locations occurring on the control
stack or in the current expression. Some steps move values from the heap
onto the stack or current expression. Therefore in a multi-step sequence,
execution can depend only on reachable locations in the sense of the defi-
nition above.

The set of unreachable locations in a state may be determined by trac-
ing. This is easily achieved by an iterative process that maintains a finite
set of of locations, called the roots, containing the locations that have been
found to be reachable up to that point in the trace. The root set is initial-
ized to the locations occurring in the expression and control stack. The
tracing process completes when no more locations can be added. Having
found the reachable locations for a given state, we then deem all other
heap locations to be unreachable, and hence unnecessary for computation
to proceed. For this reason the reachable locations are said to be live, and
the unreachable are said to be dead.

Essentially all garbage collectors used in practice work by tracing. But
since reachability is only a conservative approximation of necessity, all
practical collectors are conservative! So-called conservative collectors are, in
fact, incorrect collectors that may deem as garbage storage that is actually

APRIL 5, 2006 WORKING DRAFT

46.2 Garbage Collection 317

necessary for the computation to proceed. Calling such a collector “con-
servative” is misleading (actually, wrong), but it is nevertheless common
practice in the literature.

The job of a garbage collector is to dispose of the unreachable loca-
tions in the heap, freeing up memory for later use. In an abstract setting
where we allow for heaps of unbounded size, it is never necessary to col-
lect garbage, but of course in practical situations we cannot afford to waste
unlimited amounts of storage. We will present an abstract model of a par-
ticular form of garbage collection, called copying collection, that is widely
used in practice. The goal is to present the main ideas of copying collec-
tion, and to prove that garbage collection is semantically “invisible” in the
sense that it does not change the outcome of execution.

The main idea of copying collection is to simultaneously determine
which locations are reachable, and to arrange that the contents of all reach-
able locations are preserved. The rest are deemed garbage, and are re-
claimed. In a copying collector this is achieved by partitioning storage
into two parts, called semi-spaces. During normal execution allocation oc-
curs in one of the two semi-spaces until it is completely filled, at which
point the collector is invoked. The collector proceeds by copying all reach-
able storage from the current, filled semi-space, called the from space, to the
other semi-space, called the to space. Once this is accomplished, execution
continues using the “to space” as the new heap, and the old “from space”
is reclaimed in bulk. This exchange of roles is called a flip.

By copying all and only the reachable locations the collector ensures
that unreachable locations are reclaimed, and that no reachable locations
are lost. Since reachability is a conservative criterion, the collector may
preserve more storage than is strictly necessary, but, in view of the fun-
damental undecidability of necessity, this is the price we pay for mechan-
ical collection. Another important property of copying collectors is that
their execution time is proportion to the size of the live data; no work
is expended manipulating reclaimable storage. This is the fundamental
motivation for using semi-spaces: once the reachable locations have been
copied, the unreachable ones are eliminated by the simple measure of
“flipping” the roles of the spaces. Since the amount of work performed is
proportional to the live data, we can amortize the cost of collection across
the allocation of the live storage, so that garbage collection is (asymptot-
ically) “free”. However, this benefit comes at the cost of using only half

APRIL 5, 2006 WORKING DRAFT

46.2 Garbage Collection 318

of available memory at any time, thereby doubling the overall storage re-
quired.

Copying garbage collection may be formalized as an abstract machine
with states of the form (H f , S, Ht), where H f is the “ from” space, Ht is
the “to” space, and S is the scan set, the set of reachable locations. The
initial state of the collector is (H, S, ∅), where H is the “current” heap and
∅ 6= S ⊆ dom(H f) is the set of locations occurring in the program or
control stack. The final state of the collector is (H f , ∅, Ht), with an empty
scan set.

The collector is invoked by adding the following instruction to the A-
machine:

(H, FL(k) ∪ FL(e), ∅) 7−→∗G (H′′, ∅, H′)
(H, k, e) 7−→A (H′, k, e) (46.23)

The scan set is initialized to the set of free locations occurring in either
the current stack or the current expression. These are the locations that are
immediately reachable in that state; the collector will determine those that
are transitively reachable, and preserve their bindings. Once the collector
has finished, the “to” space is installed as the new heap.

Note that a garbage collection can be performed at any time! This
correctly models the unpredictability of collection in an implementation,
but avoids specifying the exact criteria under which the collector is in-
voked. As mentioned earlier, this is typically because the current heap
is exhausted, but in an abstract setting we impose no fixed limit on heap
sizes, preferring instead to simply allow collection to be performed spon-
taneously according to unspecified criteria.

The collection machine is defined by the following two rules:

(H f [l = v], S ∪ { l }, Ht) 7−→G (H f , S ∪ FL(v), Ht[l = v]) (46.24)

(H f , S ∪ { l }, Ht[l = v]) 7−→G (H f , S, Ht[l = v]) (46.25)

The first rule copies a reachable binding in the “from” space to the “to”
space, and extends the scan set to include those locations occurring in the
copied value. This ensures that we will correctly preserve those locations
that occur in a reachable location. The second rule throws away any lo-
cation in the scan set that has already been copied. This rule is necessary
because when the scan set is updated by the free locations of a heap value,

APRIL 5, 2006 WORKING DRAFT

46.2 Garbage Collection 319

we may add locations that have already been copied, and we do not want
to copy them twice!

The collector is governed by a number of important invariants.

1. The scan set contains only “valid” locations: S ⊆ dom H f ∪ dom Ht;

2. The “from” and “to” space are disjoint: dom H f ∩ dom Ht = ∅;

3. Every location in “to” space is either in “to” space, or in the scan set:
FL(Ht) ⊆ S ∪ dom Ht;

4. Every location in “from” space is either in “from” or “to” space:
FL(H f) ⊆ dom H f ∪ dom Ht.

The first two invariants are minimal “sanity” conditions; the second two
are crucial to the operation of the collector. The third states that the “to”
space contains only locations that are either already copied into “to” space,
or will eventually be copied, because they are in the scan set, and hence in
“from” space (by disjointness). The fourth states that locations in “from”
space contain only locations that either have already been copied or are
yet to be copied.

These invariants are easily seen to hold of the initial state of the col-
lector, since the “to” space is empty, and the “from” space is assumed to
be self-contained. Moreover, if these invariants hold of a final state, then
FL(Ht) ⊆ dom Ht, since S = ∅ in that case. Thus the heap remains self-
contained after collection.

Theorem 46.5 (Preservation of Invariants)
If the collector invariants hold of (H f , S, Ht) and (H f , S, Ht) 7−→G (H′f , S′, H′t),
then the same invariants hold of (H′f , S′, H′t).

The correctness of the collector follows from the following lemma.

Lemma 46.6
If (H f , S, Ht) 7−→G (H′f , S′, H′t), then H f ∪Ht = H′f ∪H′t and S∪dom Ht ⊆
S′ ∪ dom H′t.

The first property states that the union of the semi-spaces never changes;
bindings are only copied from one to the other. The second property
states that the domain of the “to” space together with the scan set does
not change.

APRIL 5, 2006 WORKING DRAFT

46.2 Garbage Collection 320

From this lemma we obtain the following crucial facts about the collec-
tor. Let S = FL(k) ∪ FL(e), and suppose that

(H, S, ∅) 7−→∗G (H′′, ∅, H′).

Then we have the following properties:

1. The reachable locations are bound in H′: FL(k) ∪ FL(e) ⊆ dom H′.
This follows from the lemma, since the inital “to” space and the final
scan set are empty.

2. The reachable data is correctly copied: H′ ⊆ H. This follows from
the lemma, which yields H = H′′ ∪ H′.

APRIL 5, 2006 WORKING DRAFT

