
NCSM III: The Ambient Calculus 1

Part III: The Ambient Calculus

In this part:

� Ambients as units of mobility and security

� The untyped ambient calculus

� Types for regulating ambient behaviours



NCSM III: The Ambient Calculus 2

A calculus to describe the movement of

processes and devices, including movement

through administrative domains, and to suggest

flexible ways of programming mobility.



NCSM III: The Ambient Calculus 3

Background: Mobile Hardware and Software

Computation is getting more mobile than it used to be:

� devices: laptops, palmtops, smartcards, smartphones, . . .

� protocols: Mobile IP, WAP, Bluetooth, . . .

� code: Java applets, ECMAscript, WAPscript, . . .

� computation: Facile, Telescript, Obliq, Voyager, . . .

Consequently, programming is getting more complicated, and security
risks loom larger than ever, such as:

� secrecy risks: e.g., protect login credentials from smartcard reader

� integrity risks: e.g., prevent malicious applet from formatting the hard drive



NCSM III: The Ambient Calculus 4

Two Underlying Problems

First, security problems arise not so much from mobility itself (after all,

most code is mobile), but from careless or malicious crossing of

administrative domains .

Administrative domains are second-class citizens; for example,

security policies for untrusted code in Java are defined outside the

language in terms of stack walking.

What would first-class administrative domains look like?

Second, in Telescript or Obliq it is easy to move either a whole

application or a single object, but problematic to move a cluster of

logically related objects and threads.



NCSM III: The Ambient Calculus 5

The Idea of an Ambient

An ambient is a bounded place where computation happens, with an

inside and an outside.

An ambient is both a unit of mobility—of either software and

hardware—and an administrative domain.

An ambient may contain other ambients, to model related clusters of

objects, or hierarchical administrative domains.

An ambient has an unforgeable name .

An ambient’s security rests on the controlled distribution of suitable

credentials, or capabilities , derived from its name.



NCSM III: The Ambient Calculus 6

Our Aims

To study mobile computation we formalize ambients within a process

calculus, the ambient calculus .

Calculi of functions, processes, and objects clarify existing styles of

computation. Sometimes they suggest better programming habits too.

Our goal is that the theory and implementation of the ambient calculus

will do the same for mobile computation.

Specifically, in this part of the course, we use ambients to develop

type systems for mobility, adaptable for use in a bytecode verifier, for

example.



NCSM III: The Ambient Calculus 7

The Untyped

Ambient Calculus



NCSM III: The Ambient Calculus 8

Formalising Ambients

Our starting point, Milner, Parrow, and Walker’s �-calculus:

� groups processes in a single , contiguous , centralised collection

� enables interaction by shared names , used as communication channels

� has no direct account of access control

Our ambient calculus:

� groups processes in multiple , disjoint , distributed ambients

� enables interaction by shared position , with no action at a distance

� uses capabilities , derived from ambient names, for access control



NCSM III: The Ambient Calculus 9

Mobile Ambients: a packet from A to B

Machine A

z }| {

A[msg[out A:in B j hMi]

| {z }

A! B : M

] j

Machine B

z }| {

B[open msg:(x):P

| {z }

receive x; P

]

� Ambients may model both machines and packets

� Ambients are mobile: msg[� � �] moves out of A and into B

� Ambients are boundaries: passage is regulated by capabilities

You need capability out A to exit A; you need capability in B to enter B



NCSM III: The Ambient Calculus 10

Exiting an Ambient

The capability out A allows the ambient msg to exit the ambient A:
A[msg[out A:in B j hMi]]

! A[] j msg[in B j hMi]

Ambient msg is the unit of mobility, which crosses the perimeter A.



NCSM III: The Ambient Calculus 11

Entering an Ambient

The capability in B allows the ambient msg to enter the ambient B:

msg[in B j hMi] j B[open msg:(x):P]

! B[msg[hMi] j open msg:(x):P]

Ambient msg is the unit of mobility, which crosses the perimeter B.



NCSM III: The Ambient Calculus 12

Opening an Ambient

The capability open msg dissolves the boundary around ambient msg:

msg[hMi] j open msg:(x):P

! hMi j (x):P

The ambient msg is the unit of mobility in that as its perimeter is

breached, its subprocesses become subprocesses of the top-level.



NCSM III: The Ambient Calculus 13

Exchanging a Message

If there is no intervening boundary, messages may be exchanged:

hMi j (x):P ! Pffx Mgg

In the processes below, the boundary n prevents exchange of M:
n[hMi] j (x):P

hMi j n[(x):P]



NCSM III: The Ambient Calculus 14

Ambient Behaviour, By Example

Altogether, we have:

A[msg[out A:in B j hMi]] j B[open msg:(x):P]

! A[] j msg[in B j hMi] j B[open msg:(x):P]

! A[] j B[msg[hMi] j open msg:(x):P]

! A[] j B[hMi j (x):P]

! A[] j B[Pffx Mgg]



NCSM III: The Ambient Calculus 15

Syntax of the Untyped Ambient Calculus:
M ::= expression

n ambient name

in M can enter intoM

out M can exit out of M

open M can open M

P;Q;R ::= process

new(n)P restriction

stop inactivity

P j Q composition

repeat P replication

M[P] ambient

M:P action

(x1; : : : ; xk):P input action

hM1; : : : ;Mki asynchronous output action



NCSM III: The Ambient Calculus 16

Variation: Subjective versus Objective Moves

Subjective: “I move. I become a child ambient.”
n[in m:P j Q] j m[R] ! m[n[P j Q]j R]

m[n[out m:P j Q]j R] ! n[P j Q] j m[R]

Objective: “I make you move. You become a local process.”

mv in n:P j n[Q] ! n[P j Q]

n[mv out n:P j Q] ! P j n[Q]



NCSM III: The Ambient Calculus 17

Variation: Open versus Acid

Ambient acid: “I dissolve my own boundary.”

n[acid:P j Q] ! P j Q

Objective moves derivable:

mv in n:P

�
= new(q)q[in n:acid:P]

mv out n:P

�
= new(q)q[out n:acid:P]

But the risk is that objective moves allow ambient kidnap:

entrap m

�
= new(k)(k[] j mv in m:in k)

entrap m j m[P] !� new(k)k[m[P]]



NCSM III: The Ambient Calculus 18

Examples in the

Untyped Calculus



NCSM III: The Ambient Calculus 19

� Locks
� Objective Moves and Dissolution

� Booleans

� Numerals

� Turing Machines

� The Choice-Free Asynchronous �-calculus

� The �-calculus

� Mutable cells

� Routable packets and active networks



NCSM III: The Ambient Calculus 20

Example: Boolean Flags

flag n
�

= n[]

if tt P; if ff Q

�
=

new(k)(k[] j
open tt:open k:new(t)(ff[t[]]jopen t:P) j

open ff:open k:new(f)(tt[f[]]jopen f:Q))

We have:

flag tt j if tt P; if ff Q !

� � P

flag ff j if tt P; if ff Q !

� � Q



NCSM III: The Ambient Calculus 21

Example: Encoding Objective Moves I

n#[P]
�

= n[P j allow in]

allow n

�
= repeat open n

mv in n:P

�
= new(k)k[in n:in[out k:P]]

We get:

mv in n:P j n#[Q] ! n#[new(k)k[in[out k:P]] j Q]

! n#[new(k)k[] j in[P] j Q]

! n#[new(k)k[] j P j Q]

� n#[P j Q]



NCSM III: The Ambient Calculus 22

Example: Encoding Objective Moves II

Deriving objective exit:

n"[P]
�

= n[P] j allow out

mv out n:P

�
= new(k)k[out n:out[out k:P]]

We get:

n"[mv out n:P j Q] !�� P j n"[Q]

Ambient allowing both objective entry and exit:

nl[P]
�

= n[P j allow in] j allow out



NCSM III: The Ambient Calculus 23

Example: Turing Machines

Idea: tape looks like endl[ff[] j sql[ff[] j sql[ff[] j sql[� � �]]]].

head
�

= headl[repeat open S1:mv out head:

if tt (ff[] j mv in head:in sq:S2[]);

if ff (tt[] j mv in head:out sq:S3[]) j

: : : j

S1[]]

stretchRht !� sql[ff[] j stretchRht]
machine

�
= endl[ff[] j head j stretchRht]



NCSM III: The Ambient Calculus 24

Extended Example:

Semantics of a

Distributed Language



NCSM III: The Ambient Calculus 25

Programming Model

There is a flat collection of named nodes (or locations), each of which

contains a group of named channels and anonymous threads:

node a [channel c j

thread[output c(b)] j

thread[input c(x); go x]] j

node b []

Heteregeneous models like this underly several distributed

programming systems, and several distributed forms of the �-calculus.



NCSM III: The Ambient Calculus 26

An Encoding [[-]] in the Ambient Calculus

Ambients model nodes, channels, and threads. For example:

a[[[channel c]]a j

[[thread [output c(b)]]]a j

[[thread [input c(x); go x]]]a] j

b[]

A channel consists of a buffer ambient cb that opens up any packets

named cp sent into it:

[[channel c]]a = cb[repeat open cp:stop]



NCSM III: The Ambient Calculus 27

A thread is an anonymous ambient, with a fresh name.

An output is a packet that exits its thread, and enters a channel buffer:

[[thread [output c(b)]]]a = new(t)t[go(out t:in cb):cp[hb; bpi]]

In the untyped calculus, go M:n[P] is short for:

go M:n[P]
�

= new(k)k[M:n[out k:P]]



NCSM III: The Ambient Calculus 28

An input is a packet that exits its thread, enters the buffer, gets opened,

inputs a message, then returns to its thread. A move to x executes

capabilities to exit the current node, then enter the destination node x.

[[thread [input c(x); go x]]]a =

new(t)t[new(s)(go(out t:in cb):cp[(x; xp):

go(out cb:in t):s[open s:out a:in x:stop]] j

open s:s[])]

The name s is for synchronisation ambients s[], used to delay the

move until the input has completed.



NCSM III: The Ambient Calculus 29

A fragment of a distributed programming language:

Net ::= network

node n [Cro] node

Net j Net composition of networks

Cro ::= crowd of channels and threads

channel c channel

thread[Th] thread

Cro j Cro composition of crowds

Th ::= thread

go n; Th migration

output c(n1; : : : ; nk) output to a channel

input c(x1; : : : ; xk); Th input from a channel

� � � imperative features (omitted)



NCSM III: The Ambient Calculus 30

Summary of the Untyped Calculus

The core calculus (without I/O) is Turing complete. The full calculus

(with I/O) can naturally model the �-calculus.

It offers a simple, abstract description of classical distributed

languages, where ambients model both the unit of mobility (threads)

and security perimeters (network nodes).

This description of security and mobility is more direct and explicit

than possible in most other process calculi.



NCSM III: The Ambient Calculus 31

Ambient Types I:

Exchange Types



NCSM III: The Ambient Calculus 32

Motivation for Exchange Types

In the untyped calculus, certain processes arise that make no sense:

� Process in n[P] uses a capability as an ambient name

� Process new(n)n:P uses an ambient name as a capability

In an implementation, these processes are execution errors.

To avoid these errors, we regulate the types of messages a process

may exchange , that is, input or output.



NCSM III: The Ambient Calculus 33

Typing Input and Output

If a message M has message type W, then hMi is a process that

exchanges W messages.

If M : W then hMi : W.

If P is a process that exchanges W messages, then (x:W):P is also

a process that exchanges W messages.

If P : W then (x:W):P : W.



NCSM III: The Ambient Calculus 34

Typing Parallelism

Process stop exchanges messages of any type, since it exchanges

none.

stop : T for all T.

If P and Q are processes that exchange T messages, so is P j Q.

If P : T and Q : T then P j Q : T.

If P : T then repeat P : T.

These rules ensure matching of the types of inputs and outputs from

processes running in parallel.



NCSM III: The Ambient Calculus 35

Typing Ambients

An expression of type Amb[T] names an ambient inside which T

messages are exchanged.

If M is such an expression, and P is a process that exchanges T

messages, then M[P] is correctly typed.

If M : Amb[T] and P : T then M[P] : S for all S.

An ambient exchanges no messages, so it may be assigned any type.



NCSM III: The Ambient Calculus 36

Typing Capabilities

An expression of type Cap[T] is a capability that may unleash

exchanges of type T.

If M : Cap[T] and P : T then M:P : T.

If ambients named n exchange T messages, then the capability

open n may unleash these exchanges.

If n : Amb[T] then open n : Cap[T].

Capabilities in n and out n unleash no exchanges.

If n : Amb[S] then in n : Cap[T] for all T.

If n : Amb[S] then out n : Cap[T] for all T.



NCSM III: The Ambient Calculus 37

Exchange Types

Types:

W ::= message types

Amb[T] ambient name allowing T exchanges

Cap[T] capability unleashing T exchanges

S; T ::= exchange types

Shh no exchange

W1 � � � � �Wk tuple exchange

� A quiet ambient, Amb[Shh], and a harmless capability, Cap[Shh]

� An ambient allowing exchange of harmless capabilities: Amb[Cap[Shh]]

� A capability unleashing exchanges of names of quiet ambients: Cap[Amb[Shh]]



NCSM III: The Ambient Calculus 38

Properties of Exchange Types

Formally, we base our type system on judgments E `M : W and

E ` P : T, where E = x1:W1; : : : ; xk:Wk.

Theorem (Soundness) If E ` P : T and P! Q then E ` Q : T.

Hence, execution errors like in n[P] and new(n)n:P cannot arise

during a computation, since they are not typeable.



NCSM III: The Ambient Calculus 39

Typing the Packet Example

Packet from A to B:

If A : Amb[Shh], B;msg : Amb[W], and M;P : W then

A[msg[out A:in B

| {z }

Cap[W]

j hMi]]: j B[open msg

| {z }

Cap[W]

:(x:W):P] : Shh.



NCSM III: The Ambient Calculus 40

Example: The Distributed Language

Each name has a type Ty, either Node or Ch[Ty1; : : : ; Tyk].

Two ambient names represent each source name; e.g., each channel

name is represented by a buffer name and a packet name.

We translate these to ambient types so that [[Node]] = Amb[Shh] and

[[Ch[Ty1; : : : ; Tyk]]] = Amb[[[Ty1]]� [[Ty1]]�� � �� [[Tyk]]� [[Tyk]]].

We can prove that if a program in the distributed language is

well-typed, so is its translation to the ambient calculus.



NCSM III: The Ambient Calculus 41

Example using Exchange Types

Assuming c:Ch[Node], the translation of thread[input c(x); go x],

new(t)t[new(s)(go(out t:in cb):cp[(x; xp):

go(out cb:in t):s[open s:out a:in x:stop]] j

open s:s[])]
has type Shh assuming that:

a : Amb[Shh]; t : Amb[Shh];

cb; cp : Amb[[[Node]]; [[Node]]]; s : Amb[Shh]



NCSM III: The Ambient Calculus 42

Ambient Types II:

Mobility and Locking

Annotations



NCSM III: The Ambient Calculus 43

Regulating Mobility and Persistence

We decorate ambient types with annotations

AmbY[ZT]

The locking annotation Y is either locked (�) or unlocked (�).

The mobility annotation Z is either mobile (y) or immobile (Y).

Opening a locked ambient or moving an immobile ambient once its

running is an execution error. Our type system prevents such errors.



NCSM III: The Ambient Calculus 44

Modifying the Type System

Let an effect of a process be a pair ZT, where T is the type of

exchanged messages, and Z = Y only if no in or out capabilities are

exercised.

Types and judgments acquire the form:

Message type W ::= AmbY[F] j Cap[F]

Exchange type T ::= Shh j (W1 � � � � �Wk)

Good expression E `M : W

Good process E ` P : F

As before, any state reachable from a good process is a good process.



NCSM III: The Ambient Calculus 45

If n : AmbY[F] then in n : Cap[yT]

If n : AmbY[F] then out n : Cap[yT]

If n : Amb�[F] then open n : Cap[F]

If M : W then hMi : ZW

If P : ZW then (x:W):P : ZW

If M : AmbY[F] and P : F then M[P] : F 0

If M : Cap[F] and P : F then M:P : F

If M : Cap[F] and N[P] : F 0 then go M:N[P] : F 0

If P : F then new(n:W)P : F

If P : F and Q : F then P j Q : F

If P : F then repeat P : F

stop : F



NCSM III: The Ambient Calculus 46

Examples of Type Errors

You cannot open a locked ambient:

new(n:Amb�[F])(n[] j hni j (x:Amb�[F]):open x)

You cannot move an immobile ambient once its running:

(x:AmbY[YT]):x[out m]



NCSM III: The Ambient Calculus 47

Example: Encoding Distribution, Again

Assuming c:Ch[Node], the translation of thread[input c(x); go x],

new(t)t[new(s)(go(out t:in cb):cp[(x; xp):

go(out cb:in t):s[open s:out a:in x:stop]] j

open s:s[])]

has effect YShh assuming that:

a : Amb�[YShh]; t : Amb�[yShh];

cb : Amb�[Y[[Node]]b � [[Node]]p]; s : Amb�[yShh];

cp : Amb�[Y[[Node]]b � [[Node]]p]



NCSM III: The Ambient Calculus 48

Ambient Types III:

Ambient Groups



NCSM III: The Ambient Calculus 49

Motivating Ambient Groups

We may wish to express that an ambient n can enter the ambient m.

To formalise this, we introduce type-level groups of names G, H, as

we did for the �-calculus, and express the property as:

The name n belongs to group G; the name m belongs to

group H. Any ambient of group G can enter any ambient of

group H.



NCSM III: The Ambient Calculus 50

Generalizing Locking and Immobility Annotations

We decorate an ambient type with its group G, the set G of groups it

may cross once its running, the set H of groups it may open, and the

type T of exchanges within it:

G[yG; �H; T]

Moreover, a new operation, new(G)P, creates a new group G. Within

P, new names of group G can be created. In a well-typed situation,

scoping rules dictate that such names may only be handled within P.



NCSM III: The Ambient Calculus 51

Adding Groups to the Type System

Types and judgments acquire the form:

Effect F ::= yG; �G; T where G ::= fG1; : : : ; Gng

Message type W ::= G[F] j Cap[F]

Exchange type T ::= Shh j (W1 � � � � �Wk)

Good expression E `M : W
Good process E ` P : F

As before, any state reachable from a good process is a good process.

The effect of a good process is an upper bound on the ambients it

may cross or open, and the messages it may exchange.



NCSM III: The Ambient Calculus 52

If n : G[F] and G 2 G then in n : Cap[yG; �H; T]

If n : G[F] and G 2 G then out n : Cap[yG; �H; T]

If n : G[yG; �H; T] and G 2 H then open n : Cap[yG; �H; T]

If M : W then hMi : yG; �H;W

If P : yG; �H;W then (x:W):P : yG; �H;W

If M : Amb[F] and P : F then M[P] : F 0

If M : Cap[F] and P : F then M:P : F

If M : Cap[F] and N[P] : F 0 then go M:N[P] : F 0

If P : F then new(n:W)P : F

If P : F and Q : F then P j Q : F

If P : F then repeat P : F

stop : F



NCSM III: The Ambient Calculus 53

Example: Encoding Distribution, with Groups

Assuming c:Ch[Node], the translation of thread[input c(x); go x],

new(Sync)new(t)

t[new(s)(go(out t:in cb):cp[(x; xp):

go(out cb:in t):s[open s:out a:in x:stop]] j

open s:s[])]

has effecty?; �?; Shh assuming that:

a : Node[y?;
�Aux; Shh]; t : Thr [yNode; �Sync; Shh];

c
b : Ch[y?;
�Pkt; [[Node]]b � [[Node]]p]; s : Sync[yNode; �Sync; Shh];

c
p : Pkt[y?;
�Pkt; [[Node]]b � [[Node]]p]



NCSM III: The Ambient Calculus 54

Conclusions,

Related Work



NCSM III: The Ambient Calculus 55

Related Work

Several process calculi model distribution and mobility (Boudol;

Amadio and Prasad; Hennessy and Riely; Sewell; Fournet, Gonthier,

and Lévy).

Zimmer has proposed algorithms for our system with mobility and

locking annotations. Few other type systems regulate process mobility.

The idea of groups is related to Milner’s sorts for �, to channels and

binders found in flow analyses for �, and to the regions used for

memory management in ML.



NCSM III: The Ambient Calculus 56

Some Papers Related to this Lecture

Untyped ambient calculus (Cardelli and Gordon, FoSSaCS’98)

Abstractions for mobile computation (Cardelli, ICALP’99)

Equational properties (Gordon and Cardelli, FoSSaCS’99)

Safe ambients (Levi and Sangiorgi, POPL’00)

Modal logics (Cardelli and Gordon, POPL’00)

Exchange types (Cardelli and Gordon, POPL’99)

Mobility types (Cardelli, Ghelli, and Gordon, ICALP’99)

Subtyping and algorithms for mobility types (Zimmer, FOSSACS’00)

Ambient groups (Cardelli, Ghelli, and Gordon, TCS’00)



NCSM III: The Ambient Calculus 57

Implementations of Ambients

Ambit applet (Cardelli)

Ambient language design (Cardelli and Torgersen)

Ambients in Jocaml (Fournet, Lévy, Schmitt)

Reactive ambients (Sangiorgi and Boussinot)

Ambients in Haskell (Peyton Jones)



NCSM III: The Ambient Calculus 58

Summary

A goal of our calculus is to prototype a flexible, precise, secure, and

typeful programming model for mobile software components.

Types regulate aspects of mobile computation such as exchanging

messages and exercising capabilities for mobility.

Type systems like these could be checked by a bytecode verifier to

better constrain mobile code.

Papers and software available from:

http://www.luca.demon.co.uk/Ambit/Ambit.html

http://research.microsoft.com/users/adg/Publications

http://go.163.com/ mobileambient


