
1

Nominal Calculi for 
Security and Mobility

Andy Gordon, Microsoft Research

FOSAD, Bertinoro, September 2000

Parts I and II



2

Goals of the Course

Explain the fundamentals of nominal calculi 
and programming with names

o Nominal (6): of names: relating to or consisting 
of a name or names (Encarta World English Dictionary)

Explain various specification techniques, 
including equations and correspondence 
assertions

Explain various verification techniques, 
especially type-checking



3

Non-Goals of the Course

Describe implementations

They include: Pict, Jocaml, Funnel, XLANG

Describe formalisms and proofs in full detail

See papers

Describe all applications of nominal calculi to 
security and mobility

My selection reflects a personal bias!



4

Overall…

I want to get you up to speed on recent 
advances on applying nominal calculi to 
security and mobility

Security specific models have proved very 
effective…

…but I want to emphasise the benefits of 
general computational models

And get you interested in making new 
advances yourselves!



5

Acknowledgements

I’ve drawn the material in this course from 
several books and articles

I’ve attempted to credit all the authors whose 
work is directly reported

Still, the context of all these works is a 
thriving research community

In these lectures there is sadly no time to 
cover all the indirect influences or all the 
related work



6

A Fundamental Abstraction

A pure name is

“nothing but a bit pattern that is an identifier, and 
is only useful for comparing for identity with other 
bit patterns” (Needham 1989).

A useful, informal abstraction for distributed 
systems

o Ex: heap references in type-safe languages, 
GUIDs in COM, and encryption keys.

o Non Ex: integers, pointers in C, or a path to a file.



7

Formalizing Pure Names

A nominal calculus includes a set of pure 
names and allows the generation of fresh, 
unguessable names.
Ex:

o the π-calculus (Milner, Parrow, and Walker 1989)
o the join calculus (Fournet and Gonthier 1996)
o the spi calculus (Abadi and Gordon 1997)
o the ambient calculus (Cardelli and Gordon 1998)

Non Ex:
o CSP (Hoare 1977), CCS (Milner 1980): channels 

named, but neither generated nor communicated



8

Three Nominal Calculi

I: The π-calculus (today)

programming with names

II: The spi calculus (Thursday)

programming with cryptography

III: The ambient calculus (Friday)

programming with mobile containers



9

Part I: The π-Calculus

In this part:
o Examples, syntax, and semantics of the 

untyped π-calculus
o Use of Woo and Lam’s correspondence 

assertions to specify authenticity properties
o A dependent type system for type-checking 

correspondence assertions
o A simple type system for guaranteeing 

locality and secrecy properties



10

Syntax and Semantics

The structure and interpretation 
of π-calculus processes

R. Milner, J. Parrow and D. Walker 
invented the π-calculus 



11

Basic Ideas

The π-calculus is a parsimonious formalism 
intended to describe the essential semantics 
of concurrent systems.

A running π-program is an assembly of 
concurrent processes, communicating on 
named channels.

Applications: semantics, specifications, and 
verifications of concurrent programs and 
protocols; various implementations



12

Example in the π-Calculus

Client: start virtual printer v; use it:
new(v); (out start(v) | out v(job))

Server: handles real printer; makes virtual printers.

new(p); (… p … | repeat (inp start(x);
repeat (inp x(y); out p(y)))

All the data items are channel names.

All interactions are channel inputs or outputs.

Driver code
Make new 

virtual printer Virtual 
printer at x



Syntax of the π-Calculus

Names x,y,z are the only data
Processes P,Q,R are the only computations
Beware: non-standard syntax

namesx,y,z

new name in scope Pnew(x); P

output tuple on xout x(y1,…,yn)
input tuple off xinp x(z1,…, zn); P

compositionP | Q
replicationrepeat P
inactivitystop

processesP,Q,R ::=



14

Semantics of the π-Calculus

We define process behaviour in the 
“chemical” style (Berry and Boudol 1990).

The semantics divides into a reduction 
relation P → P’, describing the evolution of P
into P’, and an equivalence relation P 7 P’

Think of → as internal, nondeterministic 
computation, and 7 as re-arrangement



15

Parallel Composition

Parallel composition is a binary operator:

P | Q

Processes P and Q may interact together, or with 
their environment, or on their own.

It is associative and commutative:
P | Q 7 Q | P

(P | Q) | R 7 P | (Q | R)

It obeys the reduction rule:
P → Q ⇒ P | R → Q | R 



16

Replication

Replication repeat P behaves like the parallel 
composition of unboundedly many replicas of P

It obeys the rule:
repeat P 7 P | repeat P

There are no reduction rules for repeat P
o We cannot reduce within repeat P but must first expand 

into the form P | repeat P

Replication has a simple semantics, and can encode 
recursion and repetition



17

Stop

An inactive process that does nothing
stop

Sometimes, it is garbage to be collected:
P | stop 7 P

new(x); stop 7 stop

repeat stop 7 stop

It has no reduction rules



18

Restriction

Restriction creates a new, unforgeable, 
unique channel name x with scope P
new(x); P

It may be re-arranged:
new(x); new(y); P 7 new(y); new(x); P 

new(x); (P | Q) 7 P | new(x); Q if x not free in P

It obeys the reduction rule:
P → Q ⇒ new(x); P → new(x); Q 

Scope extrusion



19

Channel Output

Channel output represents a tuple (y1,…,yn) 
sent on a channel x
out x(y1,…,yn)

An abbreviation for asynchronous output:
out x(y1,…,yn); P @ out x(y1,…,yn) | P

Means: send a tuple asynchronously, then do P

Some versions of the π-calculus feature a 
synchronous, blocking output as primitive.



20

Channel Input

Channel input blocks awaiting a tuple (z1,…,zn) 
sent on a channel x, then does P
inp x(z1,…,zn); P

The names z1,…,zn have scope P

Input and output reduce together:
out x(y1,…,yn) | inp x(z1,…,zn); P → P{z1←y1,…,zn←yn}

where P{z←y} is the outcome of substituting y for 
each free occurrence of z in P



21

The Semantics on One Page

P 7 Q ⇒ inp x(z1,…,zn);P 7 inp x(z1,…,zn);Q
P 7 Q ⇒ repeat P 7 repeat Q 

P 7 Q ⇒ new(x);P 7 new(x);Q
P 7 Q ⇒ P | R 7 Q | R 

repeat stop 7 stop

new(x);stop 7 stop

new(x);(P | Q) 7 P | new(x);Q if xÌfn(P)
new(x);new(y);P 7 new(y);new(x);P

repeat P 7 P | repeat P

P 7 Q, Q 7 R ⇒ P 7 R 
P 7 Q ⇒ Q 7 P 
P 7 P

out x(y1,…,yn) | inp x(z1,…,zn);P → P{z1←y1,…,zn←yn}

P’ 7 P, P → Q, Q 7 Q’ ⇒ P’ → Q’

P → Q ⇒ new(x);P → new(x);Q
P → Q ⇒ P | R → Q | R 

P | stop 7 P
P | Q 7 Q | P
(P | Q) | R 7 P | (Q | R)



22

Ex: Exchanging Global Names

Consider a fragment of our example:
out start(v) | out v(job) |
inp start(x); inp x(y); out p(y) 

We may re-arrange the process:
7 out v(job) |

out start(v) | inp start(x); inp x(y); out p(y)
Apply a reduction:
→ out v(job) | inp v(y); out p(y)

And again:
→ out p(job)



23

Ex: Exchanging Local Names

Next, we freshly generate a private v:
new(v);(out start(v) | out v(job)) |
inp start(x); inp x(y); out p(y)

To allow reduction, we enlarge v’s scope:
7 new(v);(out v(job) | out start(v) |

inp start(x); inp x(y); out p(y))
Apply reductions:
→ new(v);(out v(job) | inp v(y); out p(y))
→ new(v); out p(job)

And garbage collect:
7 out p(job)



24

Exercises

1. Derive: if xÌfn(P) then new(x);P 7 P.

2. Find a derivation showing that the full 
printer example can reduce to a state 
where job has been sent on p.

Need to manipulate restrictions and replications

See notes for a solution (but don’t cheat!)



25

Lessons so far…

The π-calculus is a basic model of 
computation based on interaction between 
concurrent processes

Its semantics consists of relations P → P’
(evolution) and P 7 P’ (re-arrangement)

The operator new(x);P tracks the mobile 
scope of dynamically created names

Hence, we can tell who can know and who cannot 
know a particular name



26

Correspondence 
Assertions

Using the π-calculus to specify 
authenticity properties of protocols.

T. Woo and S. Lam invented 
correspondence assertions.

Joint work with A. Jeffrey



27

Ex 1: Synchronised Exchange

After receiving an acknowledgement on the private 
channel ack, the sender believes the receiver has 
obtained the message msg.

How can this be formalized?

sender(msg) @
new(ack);
out c (msg,ack);
inp ack();

receiver @
inp c (msg,ack);
out ack();

system @ (new(msg);sender(msg)) | receiver



28

Correspondence Assertions

To specify authenticity properties, Woo and 
Lam propose correspondence assertions

Let e ‹ïïñ b mean that the count of e events 
never exceeds the count of b events

Ex: “dispense coffee” ‹ïïñ “insert coin”

Ex: “A gets receipt for m” ‹ïïñ “B gets m”

These assertions are simple safety properties

Rule out replays, confused identities, etc.



29

Adding Correspondences to π
Programmers may write begin(x1,…,xn) and 

end(x1,…,xn) annotations in our π-calculus

These annotations implicitly define 
correspondence assertions of the form:
end(x1,…, xn) ‹ïïñ begin(x1,…, xn)
that is, the count of end(x1,…, xn)’s never exceeds 

the count of begin(x1,…, xn)’s
no requirement that the begin and end events be 

properly bracketed

The programmer thinks of these assertions as 
verified at runtime (like assert in C)



30

Adding Assertions

This code makes the assertion:
o end(msg) ‹ïïñ begin(msg)
o that is, the count of “Receiver said they got msg” 

never exceeds the count of “Receiver got msg”

sender(msg) @
new(ack);
out c (msg,ack);
inp ack();
end (msg)

receiver @
inp c (msg,ack);
begin (msg);
out ack();

“Receiver said 
they got msg”

“Receiver 
got msg”



31

Ex 2: Hostname Lookup

We consider n hosts named h1,…,hn

Host hi listens for pings on channel pingi; it 
replies to each ping it receives

A single name server maps from hostnames 
hi to ping channels pingi

After receiving a ping reply, a client may 
conclude it has talked to the correct server

o We formalize this as a correspondence assertion



32

The Name Server

inp query(h,res);
if h=h1 then out res(ping1); else
…
if h=hn then out res(pingn);

repeat
NameServer(query,h1,…,hn,ping1,…,pingn) @

Returns the ping channel pingi
when sent the hostname hi



33

Ping Server on each Host

inp ping(ack);
begin(“h pinged”);
out ack();

repeat
PingServer(h,ping) @

There is a process 
PingServer(hi,pingi) 

running on each 
host hi

Before sending each 
acknowledgment, it runs 

begin(“hi pinged”); to indicate 
that it has been pinged

“h pinged” @ h



34

A Client Process

PingClient(h,query) @
new(res);
out query (h,res);
inp res(ping);
new(ack);
out ping (ack);
inp ack();
end(“h pinged”)

Get ping address 
ping for hostname h

Ping the 
server at ping

If we get an acknowledgement, we 
believe we’ve been in touch with h



35

The Whole Example

The begin and end annotations implicitly 
define a correspondence assertion:

o the count of “hj pinged” by PingClient(hj,query)
never exceeds the count of “hj pinged” by 
PingServer (hj,pingj) 

Easily generalises to multiple clients

system @
NameServer(query,h1,…,hn,ping1,…,pingn) |
pingServer (h1,ping1) |… | pingServer (hn,pingn) |
pingClient(hj,query)



36

A Semantics for Assertions

Our existing semantics P → Q is very simple 
and elegant, but has no notion of “event” or 
“event history”, just “internal evolution”

Instead, we define two new relations:

P −α→ Q  means P may evolve in one step α into Q 
We call α an event

Events include begin(x1,…,xn) and end(x1,…,xn)

P −t→ Q means P may evolve in many steps 
t6α1…αn into Q (we call t a trace)



37

Events and Traces

generate new xgen(x)
internal stepτ

beginning x1,…,xnbegin(x1,…,xn)
ending x1,…,xnend(x1,…,xn)

eventsα,β ::=

finite event sequenceα1 … αn

traces,t ::=



38

A Trace of Ex 1

end (m)−τ→

(inp ack(); end (m)) |
(begin (m); out ack())

−τ→

(inp ack(); end (m)) | out ack())−begin(m)→

(out c (m,ack); inp ack(); end (m)) | 
Receiver

−gen(ack)→

stop−end(m)→

Sender(m) | Receiver−gen(m)→
(new(m);Sender(m)) | Receiver



39

Safety

Let a trace t be a correspondence iff 
ends(t) ≤ begins(t) . 

Ex: t1 6 begin(x), begin(y), end(x), end(y)
Ex: t2 6 end(x), end(y), begin(x), begin(y)

A process P is safe iff for all t, Q, if P −t→ Q 
then t is a correspondence.

o Requires all “intermediate” traces to be 
correspondences.  

Multisets of begin
and end events in t



40

Robust Safety

A process P is robustly safe iff for all end-
free opponents O, P|O is safe.

Though safe, our example is not robustly safe
Let P @ (new(m);Sender(m)) | Receiver 

Take O @ inp c (m,ack); out ack() and P|O exhibits 
the trace: gen(m),gen(ack),τ,τ,end(m)

To achieve robust safety, the channel c must 
be private, as in new(c);P



41

Summary

Woo and Lam used correspondence 
assertions to specify authenticity properties of 
crypto protocols

Correspondence assertions are not just 
applicable to crypto protocols

We added these to the π-calculus by 
incorporating begin(x);P and end(x), and 
illustrated by example



42

Safety by Typing

A type and effect system for the π-
calculus

By typing, we can prove 
correspondence assertions

Joint work with A. Jeffrey



43

Motivation for Type Systems

A type system allows dynamic invariants (e.g., upper 
bounds on the values assumed by a variable) to be 
checked before execution (at compile- or load-time)

Historically, types arose in programming languages to 
help prevent accidental programming errors, e.g., 
1.0+“Fred”

Also, types can guarantee properties that prevent 
malicious errors:
Denning’s information flow constraints (Volpano and Smith)

Memory safety for mobile code (Stamos, bytecode verifiers, 
proof carrying code)



44

A Type and Effect System

Idea: statically infer judgments
E ∫ P : [xs1, …, xsn]

meaning that multiset [xs1, …, xsn] is a bound 
on the tuples that P may end but not begin.

Hence, if we can infer P : [], we know any 
end in P has at least one matching begin, and 
so P is safe.

We warm up by describing an effect system 
for straight-line code.

the effect of PTypes for names



45

Effects of begin and end

The process end(x1,…,xn) performs an 
unmatched end-event:

E ∫ end(x1,…,xn) : [(x1,…,xn)]

The process begin(x1,…,xn);P matches a 
single end-event:

If E ∫ P : [xs1, …, xsn]
then E ∫ begin(x1,…,xn);P : [xs1, …, xsn] − [(x1,…,xn)]

Ex: we can tell begin(x);end(x) is safe:

begin(x);end(x) : [(x)]−[(x)] 6 []

Multiset 
subtraction



46

Effects of Parallel and Stop

The effect of P | P’ is the multiset union of the 
effects of P and P’:
If E ∫ P : e and E ∫ P’ : e’ then E ∫ P | P’ : e+e’ 

The effect of stop is the empty multiset:

E ∫ stop : []

Ex: an unsafe process,

(begin(x);stop) | end(x)) : [(x)]



47

Effect of Replication

The effect of repeat P is the effect of P 
multiplied unboundedly.
On the face of it, repeat end(x) would have 
an effect [(x),(x),(x),…]
But an unbounded effect cannot ever be 
matched by begin(x), so is unsafe.
Hence, we require the effect of a replicated 
process to be empty.
If E ∫ P : [] then E ∫ repeat P : [] 



48

Effect of Restriction

Restriction does not change effect of its body
Need to avoid names going out of scope
Consider begin(x); new(x:T); end(x).
Unsafe, as the two x’s are in different scopes
Same as begin(x); new(x’:T); end(x’).
If the restricted name occurs in the effect, it can 

never be matched, so the restriction is unsafe.

Hence, we adopt the rule:
If E, x:T ∫ P : e and x Ì fn(e)
then E ∫ new(x:T);P : e 



49

Effects of I/O (First Try)

An output has no effect.
If E ∫ x : Ch(T1,…,Tn) and E ∫ yi : Ti for iÏ1..n
then E ∫ out x (y1,…,yn) : []

Like restriction, an input does not change the 
effect of its body, but we must avoid scope 
violations.
If E ∫ x : Ch(T1,…,Tn) and E, z1:T1,…,zn:Tn ∫ P : e
and no ziÏe then E ∫ inp x (z1:T1,…,zn:Tn);P : e

Ex: inp x(z:T); end (x,z) is not well-typed



50

Beyond Straight-Line Code?

We can now type 
straight-line code

But our system is 
rather incomplete.

What about the 
interdependencies 
induced by I/O?

begin(x);
new(z);
out z () |
(inp z(); end(x))

new(z);
(begin(x); out z ()) |
(inp z(); end(x))

Safe, but cannot 
be given effect []



51

Adding Effects to Channels

We annotate channel types with effects

Ex: a nullary channel, with effect [(x)]
z : Ch()[(x)]

Intuition: the effect of a channel represents 
unmatched end-events unleashed by output
An input can mask the effect: inp z(); end(x) : []
But an output must incur the effect: out z () : [(x)]
Have: (begin(x); out z()) | (inp z(); end(x)) : []
Sound, because an input needs an output to fire



52

Dependent Effects

Consider the nondeterministic process:
begin(x1); out z (x1) |
begin(x2); out z (x2) |
inp z(x); end(x)

We cannot tell whether the channel’s effect 
should be [(x1)] or [(x2)]
So we allow channel effects to depend on the 
actual names communicated
In this example, z : Ch(x:T)[(x)]



53

Effect of Output (Again)

An output unleashes the channel’s effect, 
given the actual data output:
If E ∫ x : Ch(z:T)ex and E ∫ y : T
then E ∫ out x(y) : ex{z←y}

Ex:
Given z : Ch(x:T)[(x)], out z (x1) : [(x1)]
and so begin(x1); out z (x1) : []
and also begin(x2); out z (x2) : [].

Generalizes to polyadic output.



54

Effect of Input (Again)

An input hides the channel’s effect:
If E ∫ x : Ch(z:T)ex and E,z:T ∫ P : e
and zÌe−ex then E ∫ inp x(z:T);P : e−ex

Ex:
inp z(x); end(x) : [] given z : Ch(x:T)[(x)]

Hence,
begin(x1); out z (x1) |
begin(x2); out z (x2) |
inp z(x); end(x)

has the empty effect.



55

Typing Ex 1

sender(msg:Msg) @
new(ack:Ack(msg));
out c (msg,ack);
inp ack();
end (msg)

receiver @
inp c (msg:Msg,ack:Ack(msg));
begin (msg);
out ack();

Msg @ Ch()[]
Ack(msg) @ Ch()[(msg)]
Req @ Ch(msg:Msg,ack:Ack(msg))[]

The channel c
has type Req

c:Req ∫ (new(msg:Msg)sender(msg:Msg)) | receiver : []



56

Typing Ex 2

All type-checks fine, apart from the 
conditional in the NameServer code…

Host @ Ch()[]
Ack(h) @ Ch()[“h pinged”]
Ping(h) @ Ch(ack:Ack(h))[]
Res(h) @ Ch(ping:Ping(h))[]
Query @ Ch(h:Host,res:Res(h))[]

NameServer(query,h1,…,hn,ping1,…,pingn) |
pingServer (h1,ping1) |… | pingServer (hn,pingn) |
pingClient(hj,query) : []



57

A Problem

inp q(h:Host, res:Res(h));
if h6h1 then out res(ping1); else
…
if h6hn then out res(pingn);

repeat
NameServer(q:Query,h1:Host,…,p1:Ping(h1),…) @

Whoops!
We have res:Ch(ping:Ping(h))[]

but p1:Ping(h1) Type error!
Hmm, in the then branch

we know that h6h1 …



58

Effect of If (First Try)

The obvious rule for if:

If E ∫ x : T and E ∫ y : T
and E ∫ P : e and E ∫ Q : e’
then E ∫ if x6y then P else Q : e∨e’

Ex: the following has effect [(x),(x),(y)]
if x6y then end(x) | end(x)

else end(x) | end(y)
This rule is sound, but incomplete in the sense 
it cannot type our server example

e∨e’ is the 
least effect 
including e 

and e’



59

Effect of If

Instead of the basic rule, we adopt:

If E ∫ x : T and E ∫ y : T
and E{x←y} ∫ P{x←y} : e{x←y} and E ∫ Q : e’
then E ∫ if x6y then P else Q : e∨e’

The operation E{x←y} deletes the definition of 
x, and turns all uses of x into y
Ex: we can now type-check:
if h6h1 then out res(ping1); else …



60

Safety by Typing

Theorem (Safety)
If E ∫ P : [] then P is safe.

Hence, to prove an authenticity property 
expressed as a correspondence assertion, 
all one need do is construct a typing 
derivation.



And nobody knows 
my code doesn’t 
type-check, heh 

heh!



62

Typing the Opponent

Want to prove robust safety, that P|O is safe 
for any (untyped) end-free opponent O.

We might, somehow, prove something about 
the type erasure of P, but this gets messy.

Instead, we adopt an old trick: a universal 
type Un for “typing” essentially untyped data.

Hence, we represent the opponent as a typed 
process whose variables are of type Un.



63

Rules for Type Un

Untrusted data of type Un is unregulated, 
except it cannot be confused with trusted 
data of type Ch(T1,…,Tn)e.

E ∫ inp x(z1:Un,…,zn:Un).P
E ∫ x : Un E, z1:Un,…,zn:Un ∫ P
(Proc Un Input)

E ∫ out x(y1,…,yn)
E ∫ x : Un E ∫ y1 : Un   E ∫ yn : Un
(Proc Un Output)



64

Robust Safety by Typing

Simply by constructing a type derivation, we 
proved our two examples are robustly safe.

A reasonable limitation is that names shared 
with opponent have types x1:Un,…,xn:Un.

Typing is considerably simpler than direct 
proof, and can prove infinite state properties.

Theorem (Robust Safety)
If x1:Un,…,xn:Un ∫ P : [] then P is robustly safe.



65

Summary of the Effect System

We exploited several ideas:

Woo and Lam’s correspondence assertions

A type and effect system

Dependent types for channels

Special rule for checking conditionals

The Un type for type-checking opponents 



66

Summary of Part I

A rather idiosyncratic view of the π-calculus, 
emphasising:
Examples of concurrent programming
Type systems for preventing errors, including 

security related errors:
Simple types prevent channel mismatches
Groups guarantee privacy (omitted)
Types with effects prove authenticity
The Un device for “typing” opponents

See elsewhere for a more traditional view, 
emphasising bisimulation and semantics.



67

Part II: The Spi Calculus

In this part:
Spi calculus = π-calculus plus crypto

Programming crypto protocols in spi

Two styles of specification and verification
By equations and bisimulation

By correspondence assertions and typing



68

Basic Ideas of Spi

Expressing cryptography in a 
nominal calculus

Joint work with M. Abadi



69

Beginnings

Crypto protocols are communication protocols 
that use crypto to achieve security goals

The basic crypto algorithms (e.g., DES, RSA) 
may be vulnerable, e.g., if keys too short

But even assuming perfect building blocks, 
crypto protocols are notoriously error prone
Bugs turn up decades after invention

Plausible application of the π-calculus:
Encode protocols as processes
Analyse processes to find bugs, prove properties



70

Spi = π + cryptography

The names of the π-calculus abstractly 
represent the random numbers of crypto 
protocols (keys, nonces, …)

Restriction models key or nonce generation

We can express some forms of encryption using 
processes in the π-calculus 

We tried various encodings

Instead, spi includes primitives for cryptography



71

Syntax of Spi Terms

Since the π-calculus can express pairing, 
only symmetric-key ciphers are new

We can include other crypto operations 
such as hashing or public-key ciphers

ciphertext{M}N

name, variablex
pair(M,N)

termsM, N ::=



72

Syntax of Spi Processes

pair splittingsplit M is (x,y);P
inactivitystop

decryptiondecrypt M is {x}N;P

new namenew(x);P

output N on Mout M N
input x off Minp M(x);P

compositionP | Q
replicationrepeat P

name equalitycheck M is N; P

processesP,Q,R ::=



73

Operational Semantics

The process decrypt M is {x}N;P means:

“if M is {x}N for some x, run P”

Decryption evolves according to the rule:
decrypt {M}N is {x}N;P → P{x←M}

Decryption requires having the key N
Decryption with the wrong key gets stuck

There is no other way to decrypt



74

Equations and Spi

Specifying and verifying crypto 
protocols using equations

Joint work with M. Abadi



75

Ex: A Simple Exchange

The process sys represents a protocol where:
A sends msg to B encrypted under k, over the public 
channel net
Then B outputs the decryption of its input on another 
channel d

The protocol will get stuck (safely) if anyone captures 
or replaces A’s message

sys(msg,d) @
new(k);
(out net({msg}k) |
(inp net(u);
decrypt u is {m}k; out d(m);))

A

B



76

Specifying Security Properties

We are only interested in safety properties.

We use equations for simplicity.

For authenticity, we build a necessarily correct, 
“magical” implementation:

Secrecy.  For all msgL, msgR,
new(d);sys(msgL,d) 3
new(d);sys(msgR,d) 

Authenticity.  For all msg,
sys(msg,d) 3 sys’(msg,d)

Sys’(msg,d) @ new(k); (out net({msg}k) |
(inp net(u); decrypt u is {m}k; out d(msg);))



77

Formality in Context…

Like other formalisms, spi abstracts protocols:

e.g., ignoring key and message lengths

So an implementation may not enjoy all the 
security properties provable at the spi level.

Similarly, for flaws found at the spi level

In security applications, as in others, formal 
methods need to be joined with engineering 
rules-of-thumb and commonsense!



78

Defining Equivalence

Two processes are equivalent if no environment 
(opponent) can distinguish them.

Technically, we use a testing equivalence P3Q
(R. Morris; R. de Nicola and M. Hennessy).

A test is a process O plus a channel c.

A process passes a test (O,c) iff P|O may 
eventually communicate on c.

Two processes are equivalent iff they pass 
the same tests.



79

Testing Equivalence

Allows equational reasoning
Is implied by other equivalences
Bisimulation focuses on the process in isolation
We often prove testing equivalence via bisimulation

Reveals curious properties of spi, such as the 
“perfect encryption equation”
new(k); out c {M}k 3 new(k); out c {M’}k

The outcome of a test cannot depend on data 
encrypted under an unknown key



80

The Opponent

Our use of testing equivalence implicitly defines 
the opponent as an arbitrary spi program:
it can try to create confusion through 
concurrent sessions,
it can initiate sessions,
it can replay messages,
it can make up random numbers,
but it cannot get too lucky, because of 
scoping.

Most approaches have more limited models.



81

Ex: Multiple Exchanges

Purpose: send multiset of messages from A to B:
The process sys represents a protocol where:

There are n senders send,
a replicated receiver recv capable of receiving 
arbitrarily many messages,
and both the senders and receivers share key k.

sys(msg1,…,msgn,d) @
new(k);
(send(msg1,k) | … | send(msgn,k) |
repeat recv(k,d))

A
B



82

Secrecy Specified in Spi

Secrecy.
For all (msgL1, msgR1), …, (msgLn, msgRn),
new(d);sys(msgL1,…,msgLn,d) 3
new(d);sys(msgR1,…,msgRn,d) 

No observer (opponent) should be able to distinguish 
runs carrying different messages.



83

Authenticity Specified in Spi

Authenticity.
For all p1, …, pn, there is Q such that fn(Q) ⊆
{p1,…,pn,net} and for all names msg1, …, msgn:

sys(msg1,…,msgn,d) 3
new(p1,…,pn);
(Q | inp p1(x).out d(msg1) |… | inp pn(x).out d(msgn))

By construction, the right-hand process:
Only ever delivers the names msg1, …, msgn on d.
Delivers msg no more times than it occurs in the 
multiset msg1, …, msgn.

By the equation, the same holds of sys(msg1,…,msgn,d).



84

An Insecure Implementation

send(msg,k) @ out net({msg}k);
recv(k,d) @ inp net(u); decrypt u is {msg}k; out d(msg)

Satisfies neither secrecy nor authenticity.

Can you see why?



85

A Secure Implementation

send(msg,k) @
inp net(u);
new(ca);
out net ({ca,u,msg}k);

recv(k,d) @
new(nb);
out net(nb);
inp net(u);
decrypt u is {co,nb’,msg}k;
check nb’ is nb;
out d(msg)

ca is a confounder, nb a nonce: random numbers;

ca is needed for secrecy, nb for authenticity

{ca,nb,msg}kaba → b:Message 2

nbb → a:Message 1



86

Ex: Wide Mouth Frog

The new channel is a fresh session key.

To prevent replays, we use nonce challenges.

A

S

B

Msg 1: new channel Msg 2: new channel

Msg 3: data on new channel



87

A Crypto Implementation

Goal: authenticate a and kab to b

a, {a,a,b,kab,ns}kasa → s:Message 3

nss → a:Message 2

aa → s:Message 1

nbb → s:Message 5

{a,s,b,kab,nb}ksbs → b:Message 6

a, {msg}kaba → b:Message 7

*s → b:Message 4



88

WMF Expressed in Spi

We consider n clients plus a server and m
instances (sender, receiver, message):
I1=(a1,b1,msg1), …, Im=(am,bm,msgm)

sys(I1,…, In,d) @
new(k1S); … new(knS);
new(kS1); … new(kSn);
(send(I1) | … | send(In) |
repeat server |
repeat recv(1,d) | … | repeat recv(n,d))

Allows opponent to interact with and initiate 
arbitrarily many concurrent sessions.



89

WMF Specified in Spi

Secrecy.
If aLk6aRk and bLk6bRk for all kÏ1..m then
new(d);sys(IL1,…, ILn,d) 3

new(d); sys(IR1,…, IRn,d)

Authenticity.
sys(I1,…, In,d) 3 sys’(I1,…, In,d)

where sys’(I1,…, In,d) is a suitable 
“magical” specification, as before

Proved via a bisimulation relation defined by a 
rather complex and ad hoc invariant.



90

Lessons so far…

The spi calculus is rather abstract

Can ignore details, especially details of encryption

The spi calculus is rather accurate

Can describe exact conditions for sending messages

More precise than informal notations and some 
formal notations, e.g., BAN

Implicit opponent falls out of testing equivalence

Direct proofs of equational specs can be very time 
consuming, though, can we do better?



91

Some Spi Developments…

Improved techniques for equational reasoning (Abadi 
and Gordon; Boreale, De Nicola, and Pugliesi; Abadi 
and Fournet)

Reachability analysis (Amadio; Abadi and Fiore)

Authentication schema (Focardi, Gorrieri, and Martinelli)

Type systems (Abadi; Gordon and Jeffrey)

Flow analyses (Bodei, Degano, Nielson, and Nielson) 



92

Interlude:
The Budget Calculus

Understanding correspondences 
as financial prudence

Based on a convivial conversation 
with Josh and Moti



93

The Budget Calculus

An analogy between processes and financial 
plans may help explain our effect system:
begin’s are like earnings; end’s are like spending.

The effect of a process is like a spending budget.
A budget is a bound on how much you plan to spend 
beyond what you earn or receive yourself.

An effect transfer is like a gift between different 
departments in the same organisation.

If you receive a gift, you can spend it, assuming someone 
else has already earned it.



94

The Widget Department

According to its plan, this dept starts with 
nothing, earns some money, and then spends 
it, depending on how things turn out.

WidgetDept @
workHard; paySalary;
if feelingGenerous then payR&D else payBonus

workHard @ earn €1000
paySalary @ spend €500
payR&D @ issue memo
payBonus @ spend €500



95

The Research Department

This department starts with nothing, breaks 
even by default, but spends some money if it 
has a friendly sponsor in another department.

ResearchDept @
thinkDeepThoughts; hopeForBertinoro

thinkDeepThoughts @ … --costs 0, earns 0
hopeForBertinoro @ await memo; goToBertinoro
goToBertinoro @ spend €500



96

Effects are like Budgets

Budgets are upper bounds on spending:

spend €1000 : €1000
earn €1000; spend €500 : €0
if … then spend €100 else spend €200 : €200

Budget memos allow gifts:

memo: Memo €100
earn €100; issue memo : €0 
await memo; spend €100 : €0 



97

Breaking Even like Safety

Showing a plan has a €0 budget implies it will 
at least break even.

Overall, all its spending is justified by earnings, 
though there may be surplus earnings.

Analogously, showing a process has an [] effect 
implies it is safe.
Overall, all its end’s are justified by earlier begin’s, 

though there may be surplus begin’s. 

WidgetDept | ResearchDept : €0



98

Typing and Spi

Type-checking correspondence 
assertions for crypto protocols

Joint work with A. Jeffrey



99

Woo and Lam for Spi

Adapting Woo and Lam, we specify authenticity 
by annotating the system with begin and end
events that ought to be in correspondence:

“Sender sent m” @ (m)
send(msg,k) @
begin“Sender sent msg”; out net ({msg}k);

recv(k,d) @
inp net(u); decrypt u is {msg}k;
end“Sender sent msg”; out d(msg)



100

Authenticity Re-formulated

For the same reason it failed previously, the 
insecure implementation fails this spec based 
on correspondence assertions.

We can annotate the secure implementation 
similarly.

If we could check robust safety by typing, we’d 
have a cost effective verification method…

Authenticity.
The process sys(msg1,…,msgn,d) is robustly safe, 
i.e., safe given any begin and end free opponent.



101

Typing Assertions in Spi?

First, we introduce a typed spi calculus, whose 
rules can type I/O, data structures, and 
encryption.

Second, we extend with effects for tracking 
end-events, as in the π-calculus.

A novel type for nonces transfers effects 
between senders and receivers.

In the end, the payoff is a guarantee of robust 
safety by typing, as in the π-calculus.



102

The Untrusted Type Un

Terms of type Un represent untrusted data 
structures read off the network
Rules include: if M:Un and N:Un then both 

(M,N):Un and {M}N:Un

For any untyped process O with free names x1,
…, xn there is a typed process O’ such that:

x1:Un, …, xn:Un ∫ O’ and O6erase(O’)

So (due to Un) typed opponents (such as O’) 
are as dangerous as untyped opponents.



103

The Channel Type Ch T

Terms of type Ch T are names used as 
channels for communicating type T
If M:Ch T and N:T then out M N well-typed

If M:Ch T and x:T ∫ P well-typed, then so is inp
M(x:T);P



104

The Key Type Key T

Terms of type Key T are names used as 
symmetric keys for encrypting type T
If M:T and N:Key T then {M}N:Un.

If M:Un and N:Key T and x:T ∫ P well-typed, then 
so is decrypt M as {x:T}N;P



105

The Pair Type (x:T, U)

Terms of type (x:T, U{x}) are dependent 
records of type T and type U{x}.
If M:T and N:U{x←M} then (M,N): (x:T, U).

If M: (x:T, U) and x:T,y:U ∫ P well-typed, then so is 
split M is (x:T,y:U);P.

This is a standard dependent record type; in 
(x:T, U{x}) name x is bound with scope U{x}.
If x is not free in U{x} we get ordinary pairs.



106

The Sum Type T+U

Terms of type T+U are tagged variants, either 
of type T or of type U.

If M:T then inl(M):T+U.

If M:U then inr(M):T+U

If M:T+U and both x:T ∫ P and y:U ∫ Q well-typed, 
then so is case M is inl(x:T);P is inr(y:U);Q

Motivation: type of a key for encrypting 
plaintexts of two different types: Key(T+U)



107

What Do We Have So Far?

We’ve enough to confer types on all the data in 
the multiple message protocol.

Typing avoids:
arity errors (MyKey only encrypts pairs)
key disclosure (cannot transmit MyKey on net)
mixing keys and channels (cannot encrypt with Msg)

Net @ Un
Msg @ Un
MyNonce @ Un
MyKey @ Key (Msg, MyNonce)



108

But Can We Check Assertions?

Much as before, let the judgment 
E ∫ P : [M1,…,Mn]

mean the multiset [M1,…,Mn] is a bound on 
the terms that P may end but not begin.

If M:T then end M : [M]

If M:T and P:e then begin M;P : e − [M]

Fine for straight-line code, but need to allow 
inter-process messages to transfer effects.



109

Transferring Effects?

In π, if a trusted channel Ch T has effect e, we:
allow an input to mask the effect e, but

require an output to incur the effect e.

Transfer sound due to both 1-1 correspondence 
and the requirement on output.

But useless for crypto protocols, since 
messages between processes are:
communicated on untrusted channels (e.g., net:Un)

secured via trusted keys (e.g., k:MyKey)



110

Cannot Transfer via Un

Suppose, somehow, each untrusted type Un
has an effect e, and we:

allow an untrusted input to mask the effect e, but

require an untrusted output to incur the effect e.

Unsound. Although have 1-1 correspondence, 
we need to type opponents using Un.

So cannot enforce requirement on Un outputs.



111

Cannot Transfer via Key T

Suppose each key type Key T has an effect e, 
and we:
allow a decryption to mask the effect e, but

require an encryption to incur the effect e.

Unsound. Although can enforce requirement on 
decryption, ciphertexts may be duplicated 
(replayed).

So cannot rely on 1-1 correspondence between 
encryption and decryption.



112

Can Transfer via Nonce e

Nonces are published names, so created as Un.  

Still, consider a type Nonce e, and we:
allow checking a nonce to mask effect e, but

require casting an Un name to Nonce e to incur e.

Sound, because:
Typing constraints guarantee if a Nonce e name 

exists then a cast has incurred the effect e
Linearity constraints on nonce checking ensure 1-1 

correspondence (only check fresh name, once)



113

Semantics of cast

The process cast x to (y:Nonce e);P evolves 
into the process P{y←x}
Only way to make name of type Nonce e

Implicitly checks x is a name

It incurs the effect e:

If E ∫ x : Un and E, y:Nonce e ∫ P : e’
then E ∫ cast x to (y:Nonce e);P : e+e’

Only kind of cast in the system



114

Semantics of check

Process check x is y;P evolves into process P if 
x6y; but otherwise gets stuck.

It masks the effect e:

If E ∫ x : Nonce e and E ∫ y : Un and E ∫ P : e’ then 
E ∫ check x is y; P : e’−e

For each new(y:Un);P, we require that the name y
be used in a check at most once

Enforced by adding a new kind of effect; details omitted



115

Summary of Spi Types

tagged variantT+U

untrusted dataUn

nonce, witnessing eNonce e
symmetric key Key T

channelCh T
dependent pair(x:T,U)

typesT, U ::=



116

Ex: Multiple Messages Again

net : Un
Msg @ Un
MyNonce(m) @ Nonce [“Sender sent m”]
MyKey @ Key (m:Msg, MyNonce(m))

send(msg:Msg,k:MyKey):[] @
inp net(u:Un);
begin “Sender sent msg”;
cast u to (no:MyNonce(msg));
out net ({msg,no}k);



117

Ex: Multiple Messages Cont.

(For clarity, we omit confounders.)

recv(k:MyKey,d:Un):[] @
new(no:Un);
out net(no);
inp net(u:Un);
decrypt u is {msg:Msg,no’:MyNonce(msg)}k;
check no’ is no;
end “Sender sent msg”;
out d(msg);



118

Robust Safety by Typing

In the multiple messages example:

net,msg1,…,msgn,d:Un ∫ sys(msg1,…,msgn,d) : []
Hence, authenticity is a corollary of the theorem.

Theorem (Robust Safety)
If x1,…,xn:Un ∫ P : [] then P is robustly safe.



119

Ex: A slight variant of WMF

a, {msg}kaba → b:Message 7

“a sending b key kab”b endsEvent 2

“a sending b key kab”a beginsEvent 1

a, {tag3(b,kab,ns)}kasa → s:Message 3

nss → a:Message 2

aa → s:Message 1

nbb → s:Message 5

{tag6(a,kab,nb)}kbss → b:Message 6

*s → b:Message 4



120

Typing the WMF
p1, …, pn,s: Prin @ Un       --n principals, one server

SKey = Key T --session keys, for some payload T
kpis: PrincipalKey(pi)         --longterm key for each principal

PrincipalKey(p) @ Key(Cipher3(p) + Cipher6(p))
Cipher3(a) @ (b:Prin, kab:SKey, ns:Nonce[“a sending b key kab”])
Cipher6(b) @ (a:Prin, kab:SKey, ns:Nonce[“a sending b key kab”])

Slightly simplified compared to original.

Given these types, the system has empty effect 
(and names known to opponent have type Un). 
Hence, authenticity follows just by typing.



121

Ex: Woo and Lam

Cannot type the flawed original

Can type a version where the ciphertexts 
include principal identities

As discussed by Abadi and Needham (others?)

The typing implies one encryption is redundant

As suggested by Anderson and Needham



122

Typing Woo and Lam

“a proving presence to b”b endsEvent 2

“a proving presence to b”a beginsEvent 1

{tag3(b,nb)}kasa → b:Message 3

nbb → a:Message 2

aa → b:Message 1

{tag5(a,nb)}kbss → b:Message 5

b,{tag4(a, {tag3(b,nb)}kas)}kbsb → s:Message 4

PrincipalKey(p) @ Key(Cipher3(p) + Cipher4(p) + Cipher5(p))
Cipher3(a) @ (b:Prin, nb:Nonce[“a proving presence to b”])
Cipher4(b) @ (a:Prin, cipher:Un)  --seems redundant

Cipher5(b) @ (a:Prin, nb:Nonce[“a proving presence to b”])



123

Typing Woo and Lam, again

“a proving presence to b”b endsEvent 2

“a proving presence to b”a beginsEvent 1

{tag3(b,nb)}kasa → b:Message 3

nbb → a:Message 2

aa → b:Message 1

{tag5(a,nb)}kbss → b:Message 5

a,{tag3(b,nb)}kasb → s:Message 4

PrincipalKey(p) @ Key(Cipher3(p) + Cipher5(p))
Cipher3(a) @ (b:Prin, nb:Nonce[“a proving presence to b”])

Cipher5(b) @ (a:Prin, nb:Nonce[“a proving presence to b”])



124

Ex: Otway and Rees

Cannot type the (correct) original

A “false positive” because we have no rules for the 
way in which nonces used

Can type a more efficient version given by 
Abadi and Needham

The typing implies a further simplification



125

Abadi and Needham’s version

“responder b key kab for a”b endsEvent 3

“initiator a key kab for b”s beginsEvent 1
“responder b key kab for a”s beginsEvent 2

“initiator a key kab for b”a endsEvent 4

{tag3a(a,b,kab,na)}kas,{tag3b(a,b,kab,nb)}kbss → b:Message 3

a,b,na,nbb → s:Message 2

a,b,naa → b:Message 1

{tag3a(a,b,kab,na)}kasb → a:Message 4

PrincipalKey(p) @ Key(Cipher3a(p) + Cipher3b(p))
Cipher3a(a)@(a’,b:Prin,kab:SKey,na:Nonce[“initiator a key kab for b”])
Cipher3b(b)@(a,b’:Prin,kab:SKey,nb:Nonce[“responder b key kab for a”])



126

Typing Spi: Status

Abadi already proposes typing for guaranteeing 
secrecy properties in spi.

Our types can guarantee correspondences, with 
little human work, for unbounded opponents.

Typing WMF took 30 minutes not 3 months!
Lots of open questions…

Need more typing rules for examples…
Relation to other notions of authenticity?
Can we deal with partially trusted opponents?
Can we type other uses of nonces, other primitives?



127

Relation to Model Checking…

Finite model checking, since Lowe, is popular:

User codes model, opponent, specification

Automatic discovery of attacks, but limited 
opponent, so “false negatives”

Type checking spi shows promise:

Additionally, user invents types

Automatic type-checking, unlimited opponent, 
but “false positives”



128

…and to Deductive Reasoning

Deductive reasoning in specific (e.g. BAN) or 
generic (e.g. HOL) logics complementary:
Typically, user needs to code model and 
specification, guide construction of the proof
Unlimited opponent, so no “false negatives”

Recent tools require little user intervention:
Song’s Athena (strand spaces)
Heather and Schneider (rank functions)



129

A Rule-of-Thumb

Our type system shows promise as a 
formalisation of at least some of this 
principle.

The Explicitness Principle: Robust security is 
about explicitness.  A cryptographic protocol 
should make any necessary naming, typing and 
freshness information explicit in its messages; 
designers must also be explicit about their starting 
assumptions and goals, as well as any algorithm 
properties which could be used in an attack.
(from Anderson and Needham, Programming Satan’s Computer, in LNCS 1000, 1995.)



130

Summary of Part II

The spi calculus allows programming and 
specification of crypto protocols

We borrow many ideas from the π-calculus
We specify both secrecy and authenticity

Testing equivalence crisply specifies secrecy
Woo and Lam’s correspondence assertions 
are good for authenticity
Type-checking spi programs is a cost effective 

method for checking some authenticity properties


