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ABSTRACT

We present an algorithm that checks behavioral consistency be-
tween an ANSI-C program and a circuit given in Verilog using
Bounded Model Checking. Both the circuit and the program are
unwound and translated into a formula that represents behavioral
consistency. The formula is then checked using a SAT solver. We
are able to translate C programs that include side effects, pointers,
dynamic memory allocation, and loops with conditions that cannot
be evaluated statically. We describe experimental results on various
reactive circuits and programs, including a small processor given in
Verilog and its Instruction Set Architecture given in ANSI-C.

Categories and Subject Descriptors

B.5.2 [Hardware]: Register-Transfer-Level Implementation—De-
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1. INTRODUCTION

When a new device is designed, a ”golden model” is often writ-
ten in a programming language like ANSI-C. This model is ex-
tensively simulated to insure both correct functionality and perfor-
mance. Later, a Verilog implementation is created. It is essential
to determine if the C and Verilog programs are consistent [1]. In
general, ANSI-C programs are used as specifications in a variety of
styles, using a language that designers are familiar with.

We automate the consistency test by using a formal verification
technique called Bounded Model Checking (BMC) [2, 3]. In BMC,
the transition relation for a system and its specification are jointly
unwound to obtain a Boolean formula, which is then checked for
satisfiability using an efficient SAT procedure. If the formula is sat-
isfiable, a counterexample is extracted from the output of the SAT
procedure. Otherwise, the system and its specification are further
unwound. This process terminates when the length of the potential
counterexample exceeds the completeness threshold (i.e., is suffi-
ciently long to ensure that no counterexample exists [4]) or when
the SAT procedure exceeds its time or memory bounds. Our tool,
called CBMC, takes as input a C program and a Verilog implemen-
tation. The two programs are unwound in tandem and converted
to a Boolean formula that represents behavioral consistency. The
formula is checked using Chaff [5]. If the two programs are incon-
sistent, a counterexample demonstrating this is generated, unless
the tool exceeds its time or memory bounds.

The tool allows the user to customize the concept of “consis-
tency”. Besides simple consistency criteria, such as cycle accuracy
or functional equivalence, other complex criteria can be realized.
The value of each Verilog signal at every clock cycle is visible to
the C program. This enables the programmer to monitor the behav-
ior of the design, and assert correct values at certain points. Both
cycle accurate and non cycle accurate specifications are easy to pro-
duce. Due to space limitations, we are not able to present this here.
The interested reader may refer to [6].

Although converting Verilog code to a Boolean formula is rel-
atively straightforward, ANSI-C programs are difficult to convert
to Boolean formulas for many reasons including side effects and
pointer usage. We give a procedure for this translation which ad-
dresses the subtleties of the language.

Related Work In [7], a tool for verifying the combinational
equivalence of RTL-C and an HDL is described. They translate
the C code into HDL and use standard equivalence checkers to es-
tablish the equivalence. The C code has to be very close to a hard-
ware description (RTL level), which implies that the source and
target have to be implemented in a very similar way. There are also
variants of C specifically for this purpose, for example Spec C and
Handel C, as well as the System C standard, which defines a subset
of C++ that can be used for synthesis [8].



The concept of verifying the equivalence of a software imple-
mentation and a synchronous transition system was introduced by
Pnueli, Siegel, and Shtrichman [9]. The C program is required to be
in a very specific form, since a mechanical translation is assumed.

The methodology presented in [10] provides a large set of ANSI-
C language features, including arbitrary loop constructs using un-
winding assertions. However, it is limited to comparing the func-
tion that the program and circuit compute. This paper extends this
methodology to allow fully reactive programs and circuits. This
is illustrated using clearly reactive circuits such as a microproces-
sor. Furthermore, we present optimizations for nested loops and
add support for pointer manipulation.

2. TRANSFORMING ANSI-C

We briefly show how to reduce the Model Checking Problem of

C programs to determining the validity of a bit vector equation.
A detailed explanation can be found in [6]. We pre-process the
program into an equivalent program that uses only while, if,
goto, and assignments. Next, all while loops are unwound using
the following transformation n times:
while (e) inst — if (e) { inst; while(e) inst}
The last while loop is replaced by an assertion of !e, which as-
sures that the program never performs more iterations. This un-
winding assertion is verified along with the user defined assertions.
If it fails we increase the number of iterations for this loop until the
bound is big enough. Note that this bound is an upper bound and
does not have to match the number of iterations.

The program now consists of only (nested) if instructions, as-
signments, assertions, and forward goto statements. It is next
transformed into a bit-vector equation C' that forms the set of con-
straints and a bit-vector equation P that represents the set of as-
sertions. During this process, the program variables are renamed
so that each (renamed) variable is assigned only once. Here is an
example of the renaming function p:

if (b) if (bo)

X =x + 1; X1 = X0 + 1;
else P else

X =X + 2; - X9 = X1 + 2;
Y =Y + X Y1 = Yo + X2j
X =y + 1; X3 =Yyl + 1;

At this point forward goto statements are changed into equiva-
lent if statements, as explained in [10].

The final transformation is done by the functions C(p, g), which
computes the constraints (assumptions), and P(p, g), which com-
putes the properties (assertions). Both take a program p and a guard
g as argument and map this to an equation. Both are defined by a
case split on p:

Skip. If p is empty or skip, both C and P are true.

C(skip, g) :=true P(skip,g) :=true
Conditional. Let p be an if statement with condition ¢, and code
blocks I and I'. Then: The functions are used recursively for both
code blocks. For I, p(c) is added to the guard, and for I', —p(c) is
added to the guard. The resulting constraints and claims are con-
joined.

C(if(c) I else I',g):=C(I,gAp(c)) AC(I',g A —p(c))
P(if(c) I else I',g):=P,gAp(c)) AP, gA-pc))
Sequential Composition. Let p be a sequential composition of [

and I'. Then: As above, the functions are used recursively for both
code blocks, but for this case with the same guard g.

C(x; 17,9):=C(I,9)ANC(I',g)
P(1; 1',9):=P(,g) AP, g)
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while (vpc<=2) {
switch (vpe) {
1:
while (B1) { ciafse(Bl)
S1;
S1; = 2;
while (B2) { { vpe }
— else
S2;
} vpc=3;
} break;
case 2:
if (B2) S2 else vpc=1l;
break; } }

Figure 2: Example of nested loop transformation

Assertion. Let p be an as assertion with argument a. The argument
is renamed, guarded by g, and then returned as a property.

P(assert (a),g) := g = p(a)

C of an assertion is true.
Assignment v = e. The assignment is returned as an equality
constraint, after renaming of variables. Let the value of the variable
after the assignment be v,. The value before the assignment is then
va—1. If v is a simple variable we add the following constraint:
The value of v,, is equal to the renamed right hand side if the guard
holds, and equal to v, —1 otherwise.

Clv=-e,g) :=va =g?p(e): vVa_1
Note that the case split on g cannot be evaluated at translation time
but is instead added as part of the constraint.

For v[a] = e we add a constraint as follows: The new value of
the array v, at index ¢ is equal to the renamed right hand side if the
guard holds and i is equal to a, and equal to v, —1[¢] otherwise. We
model arrays as functions and use lambda notation.

Clv=e,g):=va=Xi:(gAi=p(a))?p(e): va-1]i]
If bounds checking is desired, we assert (by defining P) that p(a)
is greater than or equal to zero and smaller than the number of
elements of a. Assignment to variables with struct types are
handled in a similar manner.

After computing C and P we verify that C = P is valid. This
proves that no unwinding assertions have been violated and that all
array bounds are obeyed. Figure 1 shows a simple example of the
transformation process.

3. NESTED LOOPS

Nested loops within the ANSI-C code can result in extremely
large CNF formulas since for every unwinding of an outer loop
we unwind each inner loop in full. To alleviate this problem we
transform nested loop constructs into equivalent single loops.

We partition the body of the nested loop construct into subpro-
grams. We then add a virtual program counter variable that keeps
track of which sub-program should be executed next. The result is
a monolithic loop that executes the correct subprogram according
to the virtual program counter. Figure 2 demonstrates this process.

The above transformation reduces the complexity of loop un-
windings in cases where the number of times each sub-program is
executed is bounded. This situation is extremely common when
writing programs that specify synchronous hardware designs. Usu-
ally, such programs use an integer variable to index the arrays that
contain signal values. The natural way of using this variable is to
increment it within each loop in the program. Note that this vari-
able can be incremented by any value, and of course one can always
refer to any cycle at any point in the program. However, since the



X=X+Y; X1=X0+Y0 7/
if(x!=1) { if (x1!=1) {

x=2; X2=2;

1f(z) x++; - if(zg) xX3=X2+1;
}
assert (x<=3) ; assert (x3<=3) ;

C:= (x1=%X0+Yy0) A
xo=((x1 #1)?2:x1) A

x3=((x1 #1 A zp)?x2+1:x2)
= x3 <3

P

Figure 1: The first box on the left contains the unwound program with assertions. Each variable is a bit vector. The first step is to
rename the variables. Then the program is transformed into a into bit vector equation as described in section 2.

C program is not allowed to access the value of a design signal at
a clock cycle that is greater than CBMC_bound, we expect the pro-
grammer to insert a condition on the cycle variable of always being
less than or equal to CBMC_bound. These observations lead us to
expect a variable that is increased within every loop body and is
checked to be below the bound in every loop condition. We per-
form our transformation only on such loops.

Let n be the bound of the Bounded Model Checking algorithm
(CBMC_bound). As mentioned in Section 2, our tool will unwind
each loop at least the maximum number of times that it might be
iterated through. Assume we have a double-nested loop for which
we perform our transformation. Under these conditions, the body
of the inner loop will be replicated O(n) times for the first unwind-
ing of the outer loop, O(n — 1) times for the second unwinding of
the outer loop, and so on. All together, the inner loop is replicated
O(n?/2). However, after the transformation we have a single loop
that is guaranteed not to need more than n unwindings.

4. POINTERS

Dereferencing Pointers Pointers are commonly used in ANSI-
C programs, in particular for call by reference and for arrays. This
applies even to programs that specify circuits.

During the unwinding phase, and before the variable renaming,
all pointer dereferences are removed recursively as follows. First
we simplify &*p expressions to p. This allows ANSI-C constructs
such as p=&*NULL (it is guaranteed not to cause an exception).

In the second step, the remaining dereferencing operators are
removed. Let e denote the sub-expression that is to be derefer-
enced. We remove dereferencing operators bottom-up, i.e., all sub-
expressions of e are already free of dereferencing operators or other
side effects. Let g denote the guard as described above, and o the
offset. Dereferencing is done by a recursive function that is de-
noted by ¢(e, g, 0). The function maps a pointer expression to the
dereferenced expression.

ANSI-C offers two dereferencing operators: The star operator
and the array index operator. Both are replaced by the expression
provided by ¢. The star operator uses offset zero.

xe —> ¢(e,9,0)  efo] — (e, g,0)

The pointer or array e has a type *7". This type T' can be deter-
mined syntactically. The function ¢ is defined by a case split on
e:

e is a symbol of pointer type. Let p be that pointer. The equation
generated so far or the guard g must contain an equality of the form
p(p) = €' where €' is an expression. The pointer p is then derefer-
enced by applying ¢ to e’

¢(p, g,0) (e’ 9,0)
e is a symbol of array type. Let a be that array, i.e., e = a. We
treat this case as syntactic sugar for e = &al0].
e is an ”address of symbol”, i.c., e = &s where s is a symbol. In
this case, ¢(e, g, 0) is just s and we assert that the offset is zero.
The variable is then renamed according to the rules above.

b(&s,9,0)

S
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In addition to that, we check type consistency: the type of s has
to match the type 7" (this can be determined syntactically). If 7" is
a struct type and a prefix of the type of s, this is considered a
match. In any other case, we generate an assertion that g is false.

e is an ”address of array element”, i.e., e = &ali], we add the
offset to the index:

¢(&ali], g, 0) ali + o]
The array access is then done according to the rules above. As
above, we check type consistency: the type of the array elements
of the array a has to match the type T'.
e is a conditional expression. The function ¢ is applied recur-
sively for both cases. The condition c is added to the guard. The
condition is free of side effects and pointer dereferences.

¢(C?e, : 6”,9,0) C?¢(€,79AC7 O) : ¢(€”7g/\ﬂc7 O)
e is a pointer arithmetic expression. A pointer arithmetic expres-

sion is a sum of a pointer and an integer . Let e’ denote the pointer
part, and ¢ denote the integer part. The function ¢ is applied recur-
sively to e’, part while i is added to the offset.

¢(e' +1,9,0) (€', 9,0 +1)
In order to prevent exposure of architecture properties, such as en-
dianess, we assert that =" matches the type of ¢’. This also prevents
arithmetic on (void *) orincomplete type pointers.
e is a pointer typecast, i.e., e = (Q *)e’, where @ is an arbitrary
type. The recursion proceeds with ¢’.

P((Q*)e’, g,0) ¢(e’,g,0)
All other cases. For other cases the ANSI-C standard does not de-
fine semantics. For example, e might be the NULL pointer or a
pointer variable that is uninitialized. We use an error value in this
case and we assert that this dereferencing is never executed by the
program. This is implemented by adding an assertion that p(g)
does not hold. The algorithm for the difference of two pointers
p — q is similar. We assert that p and ¢ point to the same object, as

required by the ANSI-C standard.
Consider the following example:

int a,
if (x)
*p=1;

b, *p;
p=&a; else p=&b;

The first statement is transformed into:
AN p2=(xo?p1: &b)

The variable p in the assignment is renamed to p». The star operator
in the assignment statement is removed as follows:

*D ¢(p,true, 0)
d(zo?p1 : &b,true,0) because of p(p) = p2
xo? ¢(p17 Zo, 0) : ¢(&b7 o, 0)
o ? p(xz0?&a : po,x0,0) : b

because of py = (zo ? &a : po)
zo ? (zo?¢(&a, x0,0) : ¢(po, o A 20,0)) : b
zo ? (1’0?(1 : ¢(p0, zo N\ xo, 0)) :b

p1 = (xo?&a : po)



This simplifies to z7a : b. After renaming, this is zo?ao : bo. This
simplification is done by the program.

Dynamic Memory Allocation We allow programs that make
use of dynamic memory allocation, e.g., for dynamically sized ar-
rays or data structures such as lists or graphs. This is realized by
adding two variables for each dynamic object: an active bit, and the
object size. This allows bounds checks, and checking whether the
object is accessed after its lifetime ended. The absence of memory
holes can be verified by asserting that the active bits are false at
program termination. We provide the full details in [6].

S. FINAL TRANSFORMATION

In order to create the final SAT instance we first need to unwind
the Verilog circuit and transform it into a bit vector equation as
well. We only consider the subset of the Verilog language known as
the synchronous register transfer level (RTL). The process of trans-
lating the Verilog design closely resembles the process of synthesis
of behavioral Verilog into a netlist.

The transition relation obtained from the Verilog file is then un-
wound. In contrast to the unwinding done for ANSI-C, the number
of times the Verilog design is unwound must be specified manually
(this is the CBMC_bound variable mentioned above).

We now have bit vector equations for both the ANSI-C program
and the Verilog design. In order to compare them, we translate
them into a SAT instance. For lack of space, the details of these
transformations can not be included here.

6. EXPERIMENTS

We have run our tool on several examples. Following is a de-
scription of each example including running times. No optimiza-
tion techniques, such as Bounded Cone of Influence, were applied.
Instruction Fetch Unit This example is the Instruction Fetch Mod-
ule for the Torch Microprocessor, taken from [11]. The clock sig-
nals had to be identified manually. The specification implements
the instruction fetch state machine and specifies a few invariants.
For an unwinding bound of 100, the total runtime is 380s, using 1.4
GB of memory.

DRAM Arbiter This example is courtesy of Galileo Technology
[12]. It features a rather small and yet non-trivial 4 to 1 arbiter that
arbitrates between four client units requesting the services of one
DRAM unit. For this example we created two different C specifi-
cations, the first uses a a list of invariants and the second gives a
full (cycle accurate) functional specification. For sufficiently large
bounds, we hit the memory limit of 2 GB.

PS/2 Interface The interface implements a serial bus standard that
connects the keyboard and mouse to a PC. The Verilog keyboard
controller has 67 latches and is about 700 lines. The ANSI-C code
we wrote for it does not try to reproduce the behavior of the Verilog,
but it nondeterministically picks a key and generates appropriate
PS/2 clock and data signals, which are fed to the Verilog module.
Thus, it plays the role of the keyboard, while the Verilog module
is the computer. After sending the packet, it waits for the circuit to
decode the packet and then compares the decoded key with the key
that was sent. For an unwinding bound of 48, the total run time is
51 seconds.

DLX We compare a hardware and a software implementation of
the DLX microprocessor, which is a load/store architecture with
a RISC instruction set similar to the MIPS instruction set. The
ANSI-C code implements the ISA only and is not a cycle-accurate
simulation. In particular, it does not make use of a state machine but
rather uses ANSI-C flow control to distinguish between individual
instructions. It is approximately 550 lines of code. The hardware
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implementation contains a total of 1219 latches.

The software implementation is derived from a DLX simulator
dlxsim. CBMC found a bug in the code that decodes the instruc-
tion word. This bug was not previously known. Using an unwind-
ing bound of 5 cycles, CBMC generates a counterexample within
1 minute and 37 seconds. This shows how each implementation
processes the instruction affected by the bug differently.

7. CONCLUSION AND FUTURE WORK

We have described the translation of ANSI-C programs and Ver-
ilog designs into a bit-vector equation using Bounded Model Check-
ing techniques. This method allows us to specify the behavior of
complex, reactive hardware designs using a well-known and easy
to use sequential programming language like ANSI-C. The algo-
rithm formally verifies behavioral consistency using an efficient
SAT solver. We have performed experiments using hardware and
software implementations of several reactive designs.

As future work, we intend to further optimize the generation of
the SAT instance using specialized bit vector decision procedures
and abstraction techniques.
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