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Let U be some universal set and F : 2V — 2Y be a monotone function. Induction
and co-induction are dual proof principles that derive from the definition of a set to be
the least or greatest solution, respectively, of equations of the form X = F(X). First
some definitions.

0.1 FIXPOINTS, F-CLOSED AND F-DENSE SETS

I

A function F : 2Y — 2Y is monotone if X C Y implies F(X) C F(Y).
A fixpoint of F is a solution of the equation X = F(X).

Aset X C Uis F-closed iff F(X) C X.

Aset X C U is F-dense iff X C F(X).

pX.F(X) = N{X | F(X) € X}.

VX.F(X)=U{X | X CF(X)}.

L

LEMMA 0.2.

(1) uX.F(X) is the least F-closed set.
(2) VX.F(X) is the greatest F-dense set.

Proof. We prove (2); (1) follows by a dual argument. Since vX.F(X) contains every

F-dense set by construction, we need only show that it is itself F-dense, for which the
following lemma suffices.

If every X; is F-dense, so is the union |J; X;.

Since X; C F(X;) forevery i, U; X; C |U; F(X;). Since F is monotone, F(X;) C F(U; X;)
for each i. Therefore |J; F(X;) C F(U;X;), and so we have |J;X; C F(lJ; Xi) by transi-
tivity, that is, |J; X; is F-dense. O

THEOREM 0.3 (TARSKI).

(1) uX.F(X) is the least fixpoint of F.

(2) VX.F(X) is the greatest fixpoint of F.

Proof. Again we prove (2) alone; (1) follows by a dual argument. Let V = vX.F(X).
We have Vv C F(V) by Lemma[0.2l So F(V) C F(F(V)) by monotonicity of F. But
then F(V) is F-dense, and therefore F(V) C V. Combining the inequalities we have
V = F(V); it is the greatest fixpoint because any other is F-dense, and hence contained
inVv. O



We obtain two dual methods for defining sets and dual proof principles associated with
these definitions.

0.4 INDUCTION AND COINDUCTION

I

uX.F(X), the least solution of X = F(X), is the set inductively defined by F.
VX.F(X), the greatest solution of X = F(X), is the set co-inductively defined by F.
Principle of induction: If X is F-closed then uX.F(X) C X.

Principle of co-induction: If X is F-dense then X C VX.F(X).

L

EXAMPLE 0.5. Mathematical induction is a special case. Suppose there is an element
0 € U and an injective function succ : U — U. If we define a monotone function
Fy:2V —2U by

Fn(X) = {0} U{succx|xe X}

and set N = uX . Fiy (X), the associated principle of induction is that N C X if Fy(X) C X,
which is to say that N C X if

e 0€Xand
e x € X implies succ x € X.

Think of X as a predicate on the natural numbers (P(n) is true if n € X). Then this says
VneN.P(n)if

e P(0) and

e P(n) implies P(n+ 1). O

EXAMPLE 0.6. Induction on syntax is again just a special case. In fact, the above ex-
ample F g corresponds exactly to the syntax of naturals in TAPL. For another example,
consider boolean expressions, generated by the following function

Fz(X) = {true,false} U{if x| thenx, else x3 | x1,X2,x3 € X}.

The set of terms is 7 = uX.F7(X). The associated principle of induction is that 7 C X
if F7(X) C X, which is to say that 7 C X if

e true € X and

e false € X and

® x1,xp,x3 € X implies if x| thenx; elsexs € X.
Think of X as a predicate on terms (P(t) is true if t € X). Then this says Vt € 7 . P(t)
if

e P(true)and

e P(false) and

e P(x1) AP(x2) AP(x3) implies P(if x| thenx; else x3). O

EXAMPLE 0.7. Induction on the derivation of evaluation is another special case. In-
duction on the derivation of typing is another special case. ]



1 Strong Versions

The definitions given previously are in fact a bit weaker than one wants. For exam-
ple, when showing that P(n) implies P(n+ 1) one would like to be able to assume
that » € N. This is not justified by the principle induction as outlined so far. In this
section we show that such assumptions can be justified using a stronger formulation of
(co)induction.

PROPOSITION 1.1. Let U be an arbitrary universal set and let F : 2V — 2V be some
monotone function. If i = uX.F(X) and V = vX.F(X) we have:

fi=uX.F(X) N (D)
= uX.F(XN) (u.ID)
= uX.F(XNE)NH (u.I10)

V=VvX.F(X)Uv v.D
= VX.F(XUV) (v.ID)
= VX.F(XUV)UV (v.IID)

Proof. We prove the results for V; the proofs for i are dual. Make the following defini-
tions.

= VX.F(X)UV

£ VX.F(XU
£ VX.F(XU

<l <l <l
[3*) —

w

v)
V)uv
We must show that each V; equals V. Since V C F(V) it follows by coinduction that
Vv C V; for each i. The reverse inclusions take a little more work.

Vv, CV. SinceV is a fixpoint of F, which is monotone, we have V= F (V) C F(V,UV).
Now Vv, C F(V, UV) so VUV C F(V,UV), and therefore v, UV C V by co-
induction. Hence v, C V.

Vi C Va. We have V| = F(V;) UV = F(V;) UF(¥) C F(V; UV). SoV; C VX.F(XUV).
V3 C Va. We have V3 = F(V3 UV) UV = F(V3 UV) UF(V) = F(V3 UV) since F(V) C
F(V3UV). Hence V3 C VX.F(XUV). O
(uJIT) and @.III) justify the following strong version of induction and coinduction.

1.2 STRONG (CO)INDUCTION (WHERE I = uX.F(X) AND V = vX.F (X))
I

Strong induction: If F(XNu)Nu C X then i C X.
Strong co-induction: If X C F(XUV)UV then vV C X.
L

EXAMPLE 1.3. For numbers, our strong induction yields N C X if {0} U {succx €
N |x € X Ax € N} C X. Written another way, we can conclude that N C X if



e 0€Xand
e succx € X for every x such that x € NNX and succx € N.

Compare to the previous formulation:

e 0cXand
e succx € X for every x such that x € X.

In practice it is often handy to assume that x is in i (here N) and to only have to prove
F(X) C X when F(X) is also in 1. O
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