Induction and Coinduction

(cribbed from Andy Gordon)

November 5, 2015

Let *U* be some universal set and $F: 2^U \to 2^U$ be a monotone function. Induction and co-induction are dual proof principles that derive from the definition of a set to be the least or greatest solution, respectively, of equations of the form X = F(X). First some definitions.

0.1 Fixpoints, *F*-closed and *F*-dense sets

A function $F : 2^U \to 2^U$ is monotone if $X \subseteq Y$ implies $F(X) \subseteq F(Y)$. A fixpoint of *F* is a solution of the equation X = F(X). A set $X \subseteq U$ is *F*-closed iff $F(X) \subseteq X$. A set $X \subseteq U$ is *F*-dense iff $X \subseteq F(X)$. $\mu X.F(X) \triangleq \bigcap \{X \mid F(X) \subseteq X\}.$ $\nu X.F(X) \triangleq \bigcup \{X \mid X \subseteq F(X)\}.$

Lemma 0.2.

μX.F(X) is the least F-closed set.
νX.F(X) is the greatest F-dense set.

Proof. We prove (2); (1) follows by a dual argument. Since vX.F(X) contains every *F*-dense set by construction, we need only show that it is itself *F*-dense, for which the following lemma suffices.

If every X_i is *F*-dense, so is the union $\bigcup_i X_i$.

Since $X_i \subseteq F(X_i)$ for every $i, \bigcup_i X_i \subseteq \bigcup_i F(X_i)$. Since F is monotone, $F(X_i) \subseteq F(\bigcup_i X_i)$ for each i. Therefore $\bigcup_i F(X_i) \subseteq F(\bigcup_i X_i)$, and so we have $\bigcup_i X_i \subseteq F(\bigcup_i X_i)$ by transitivity, that is, $\bigcup_i X_i$ is F-dense.

THEOREM 0.3 (TARSKI).

(1) $\mu X.F(X)$ is the least fixpoint of F.

(2) $\forall X.F(X)$ is the greatest fixpoint of F.

Proof. Again we prove (2) alone; (1) follows by a dual argument. Let $\overline{\mathbf{v}} = \mathbf{v}X.F(X)$. We have $\overline{\mathbf{v}} \subseteq F(\overline{\mathbf{v}})$ by Lemma 0.2. So $F(\overline{\mathbf{v}}) \subseteq F(F(\overline{\mathbf{v}}))$ by monotonicity of *F*. But then $F(\overline{\mathbf{v}})$ is *F*-dense, and therefore $F(\overline{\mathbf{v}}) \subseteq \overline{\mathbf{v}}$. Combining the inequalities we have $\overline{\mathbf{v}} = F(\overline{\mathbf{v}})$; it is the greatest fixpoint because any other is *F*-dense, and hence contained in $\overline{\mathbf{v}}$.

We obtain two dual methods for defining sets and dual proof principles associated with these definitions.

0.4 INDUCTION AND COINDUCTION

 $\mu X.F(X)$, the least solution of X = F(X), is the set *inductively defined* by *F*. $\nu X.F(X)$, the greatest solution of X = F(X), is the set *co-inductively defined* by *F*. *Principle of induction:* If *X* is *F*-closed then $\mu X.F(X) \subseteq X$. *Principle of co-induction:* If *X* is *F*-dense then $X \subseteq \nu X.F(X)$.

EXAMPLE 0.5. Mathematical induction is a special case. Suppose there is an element $0 \in U$ and an injective function succ : $U \to U$. If we define a monotone function $F_{\mathbb{N}}: 2^U \to 2^U$ by

 $F_{\mathbb{N}}(X) \stackrel{\scriptscriptstyle \Delta}{=} \{0\} \cup \{ \texttt{succ} \ x \mid x \in X \}$

and set $\mathbb{N} \stackrel{\triangle}{=} \mu X.F_{\mathbb{N}}(X)$, the associated principle of induction is that $\mathbb{N} \subseteq X$ if $F_{\mathbb{N}}(X) \subseteq X$, which is to say that $\mathbb{N} \subseteq X$ if

- $0 \in X$ and
- $x \in X$ implies succ $x \in X$.

Think of *X* as a predicate on the natural numbers (P(n) is true if $n \in X$). Then this says $\forall n \in \mathbb{N} \cdot P(n)$ if

- *P*(0) and
- P(n) implies P(n+1).

EXAMPLE 0.6. Induction on syntax is again just a special case. In fact, the above example F_T corresponds exactly to the syntax of naturals in TAPL. For another example, consider boolean expressions, generated by the following function

 $F_{\mathcal{T}}(X) \stackrel{\scriptscriptstyle \Delta}{=} \{\texttt{true}, \texttt{false}\} \cup \{\texttt{if} x_1 \texttt{ then } x_2 \texttt{ else } x_3 \mid x_1, x_2, x_3 \in X\}.$

The set of terms is $\mathcal{T} = \mu X.F_{\mathcal{T}}(X)$. The associated principle of induction is that $\mathcal{T} \subseteq X$ if $F_{\mathcal{T}}(X) \subseteq X$, which is to say that $\mathcal{T} \subseteq X$ if

- true $\in X$ and
- false $\in X$ and
- $x_1, x_2, x_3 \in X$ implies if x_1 then x_2 else $x_3 \in X$.

Think of *X* as a predicate on terms (P(t) is true if $t \in X$). Then this says $\forall t \in T$. P(t) if

• P(true) and

• P(false) and

• $P(x_1) \wedge P(x_2) \wedge P(x_3)$ implies $P(\text{if } x_1 \text{ then } x_2 \text{ else } x_3)$.

EXAMPLE 0.7. Induction on the derivation of evaluation is another special case. Induction on the derivation of typing is another special case. \Box

1 Strong Versions

The definitions given previously are in fact a bit weaker than one wants. For example, when showing that P(n) implies P(n + 1) one would like to be able to assume that $n \in \mathbb{N}$. This is not justified by the principle induction as outlined so far. In this section we show that such assumptions can be justified using a stronger formulation of (co)induction.

PROPOSITION 1.1. Let U be an arbitrary universal set and let $F : 2^U \to 2^U$ be some monotone function. If $\overline{\mu} \triangleq \mu X.F(X)$ and $\overline{\nabla} \triangleq \nu X.F(X)$ we have:

$\overline{\mu} = \mu X.F(X) \cap \overline{\mu}$	(µ.I)
---	-------

 $=\mu X.F(X\cap\overline{\mu}) \tag{(\mu.II)}$

$$= \mu X \cdot F(X \cap \overline{\mu}) \cap \overline{\mu} \tag{(\mu.11)}$$

$$\overline{\mathbf{v}} = \mathbf{v} X.F(X) \cup \overline{\mathbf{v}} \tag{v.I}$$

$$= \mathsf{v}X.F(X \cup \mathsf{v}) \tag{v.II}$$

$$= \mathbf{v}X.F(X \cup \overline{\mathbf{v}}) \cup \overline{\mathbf{v}} \tag{v.III}$$

Proof. We prove the results for \overline{v} ; the proofs for $\overline{\mu}$ are dual. Make the following definitions.

$$\overline{\mathbf{v}}_{1} \stackrel{\vartriangle}{=} \mathbf{v}X.F(X) \cup \overline{\mathbf{v}}$$
$$\overline{\mathbf{v}}_{2} \stackrel{\vartriangle}{=} \mathbf{v}X.F(X \cup \overline{\mathbf{v}})$$
$$\overline{\mathbf{v}}_{3} \stackrel{\vartriangle}{=} \mathbf{v}X.F(X \cup \overline{\mathbf{v}}) \cup \overline{\mathbf{v}}$$

We must show that each \overline{v}_i equals \overline{v} . Since $\overline{v} \subseteq F(\overline{v})$ it follows by coinduction that $\overline{v} \subseteq \overline{v}_i$ for each *i*. The reverse inclusions take a little more work.

- $\overline{\mathbf{v}}_2 \subseteq \overline{\mathbf{v}}$. Since $\overline{\mathbf{v}}$ is a fixpoint of *F*, which is monotone, we have $\overline{\mathbf{v}} = F(\overline{\mathbf{v}}) \subseteq F(\overline{\mathbf{v}}_2 \cup \overline{\mathbf{v}})$. Now $\overline{\mathbf{v}}_2 \subseteq F(\overline{\mathbf{v}}_2 \cup \overline{\mathbf{v}})$ so $\overline{\mathbf{v}}_2 \cup \overline{\mathbf{v}} \subseteq F(\overline{\mathbf{v}}_2 \cup \overline{\mathbf{v}})$, and therefore $\overline{\mathbf{v}}_2 \cup \overline{\mathbf{v}} \subseteq \overline{\mathbf{v}}$ by co-induction. Hence $\overline{\mathbf{v}}_2 \subseteq \overline{\mathbf{v}}$.
- $\overline{\mathbf{v}}_1 \subseteq \overline{\mathbf{v}}_2$. We have $\overline{\mathbf{v}}_1 = F(\overline{\mathbf{v}}_1) \cup \overline{\mathbf{v}} = F(\overline{\mathbf{v}}_1) \cup F(\overline{\mathbf{v}}) \subseteq F(\overline{\mathbf{v}}_1 \cup \overline{\mathbf{v}})$. So $\overline{\mathbf{v}}_1 \subseteq \mathbf{v}X.F(X \cup \overline{\mathbf{v}})$.
- $\overline{\mathbf{v}}_3 \subseteq \overline{\mathbf{v}}_2$. We have $\overline{\mathbf{v}}_3 = F(\overline{\mathbf{v}}_3 \cup \overline{\mathbf{v}}) \cup \overline{\mathbf{v}} = F(\overline{\mathbf{v}}_3 \cup \overline{\mathbf{v}}) \cup F(\overline{\mathbf{v}}) = F(\overline{\mathbf{v}}_3 \cup \overline{\mathbf{v}})$ since $F(\overline{\mathbf{v}}) \subseteq F(\overline{\mathbf{v}}_3 \cup \overline{\mathbf{v}})$. \Box

(μ .III) and (ν .III) justify the following strong version of induction and coinduction.

1.2 Strong (Co)Induction (where $\overline{\mu} = \mu X.F(X)$ and $\overline{\nu} = \nu X.F(X)$)
Strong induction: If $F(X \cap \overline{\mu}) \cap \overline{\mu} \subseteq X$ then $\overline{\mu} \subseteq X$.
<i>Strong co-induction:</i> If $X \subseteq F(X \cup \overline{v}) \cup \overline{v}$ then $\overline{v} \subseteq X$.

EXAMPLE 1.3. For numbers, our strong induction yields $\mathbb{N} \subseteq X$ if $\{0\} \cup \{ \text{succ } x \in \mathbb{N} \mid x \in X \land x \in \mathbb{N} \} \subseteq X$. Written another way, we can conclude that $\mathbb{N} \subseteq X$ if

- $0 \in X$ and
- succ $x \in X$ for every x such that $x \in \mathbb{N} \cap X$ and succ $x \in \mathbb{N}$.

Compare to the previous formulation:

- $0 \in X$ and
- succ $x \in X$ for every x such that $x \in X$.

In practice it is often handy to assume that *x* is in $\overline{\mu}$ (here \mathbb{N}) and to only have to prove $F(X) \subseteq X$ when F(X) is also in $\overline{\mu}$.